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Abstract

This chapter describes how the SP System, meaning the SP Theory of
Intelligence, and its realisation as the SP Computer Model, may promote
transparency and granularity in AI, and some other areas of application.
The chapter describes how transparency in the workings and output of the
SP Computer Model may be achieved via three routes: 1) the program
provides a very full audit trail for such processes as recognition, reasoning,
analysis of language, and so on. There is also an explicit audit trail for the
unsupervised learning of new knowledge; 2) knowledge from the system is
likely to be granular and easy for people to understand; and 3) there are
seven principles for the organisation of knowledge which are central in the
workings of the SP System and also very familiar to people (eg chunking-
with-codes, part-whole hierarchies, and class-inclusion hierarchies), and that
kind of familiarity in the way knowledge is structured by the system, is likely
to be important in the interpretability, explainability, and transparency of
that knowledge. Examples from the SP Computer Model are shown through-
out the chapter.
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1 Introduction

As its title suggests, the subject of this chapter is how the SP System, which means
the SP Theory of Intelligence, and its realisation as the SP Computer Model, may
promote ‘transparency’ and ‘granularity’ in both the structuring and processing
of knowledge. It is chiefly relevant to AI and the modelling of human learning,
perception, and cognition (HLPC) but, as will be described later, it is also relevant
to other areas of application for the SP System.

Since people often ask about the meaning of ‘SP’, it is intended to be a name,
not an abbreviation. That said, Section 4.1 describes the meanings of ‘S’ and ‘P’
in the SP programme of research.

The next two sections contain introductory remarks about transparency and
granularity. Then Section 4 outlines the SP System with pointers to where fuller
information may be found. Section 5 discusses information compression (IC) and
the representation and processing of knowledge in the SP System. Section 6 de-
scribes how the SP System promotes transparency via the provision of audit trails
for all its processing. Section 7 discusses how granularity and corresponding trans-
parency may be seen in the workings of the SP System. And, since the knowledge
created by the SP System will be in forms such as chunking-with-codes, part-
whole-hierarchies, and class-inclusion hierchies that are widely used by people,
that very familiarity will facilitate interpretability, explainability, and consequent
transparency in that knowledge. Section 8 outlines some recent studies related to
interpretability and explainability, with some brief comments.

2 Introduction to transparency

In the words of the ‘call for chapters’ for this book: “It is desirable that the models
of AI are transparent so that the results being produced have to be easily inter-
pretable and explainable.” (emphasis added). Thus transparency’ in an AI program
means that processing by the program and results from it are comprehensible by
people, and thus interpretable and explainable. Hence, the main emphasis in this
chapter is on transparency rather than the more specific concepts of interpretable
and explainable, but see Section 8.

Transparency in AI systems is a matter of concern, chiefly because of shortcom-
ings in deep neural networks (DNNs). Despite their striking successes in several
different areas of application, it is normally difficult to understand how DNN re-
sults are achieved.

Transparency is particularly important when there is a need to diagnose what
has gone wrong when there are outright failures of DNNs, and these can be dra-
matic. For example, a DNN may fail to recognise something in a picture that, to a
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person, looks very similar to another picture which the DNN recognises correctly
[1]. And a DNN may recognise something as a ‘guitar’ or a ‘penguin’, when people
think it looks like white noise on a TV screen or an abstract pattern that does not
represent any specific object [2].

Failures of DNNs can be can be both expensive and dangerous, either or both
of which may apply if, for example, self-driving cars were too dependent on DNNs
for the recognition of objects and events as they drive along. Obscurity in the
workings of DNNs makes it difficult to find out the reason or reasons for such
failures.

3 Introduction to granularity

The concept of an ‘information granule’ has a bearing on transparency in comput-
ing and thus the interpretablity of the results of computing, and their explainabil-
ity. The concept has been defined as:

“... a clump of points (objects) drawn together by indistinguishability,
similarity, proximity or functionality. For example, the granules of a
human head are the forehead, nose, cheeks, ears, eyes, etc. In general,
granulation is hierarchical in nature. In general, granulation is hier-
archical in nature. A familiar example is the granulation of time into
years, months, days, hours, minutes, etc.” [3, p. 111].

And in a similar way, an ‘information granule’ is:

“... a collection of elements drawn together by their closeness (resem-
blance, proximity, functionality, etc.) articulated in terms of some use-
ful spatial, temporal, or functional relationship. ... Granular Comput-
ing is about representing, constructing, processing, and communicating
information granules.” [4, p. 1026].

4 The SP System in brief

The SP Theory of Intelligence with the SP Computer Model are the products of a
lengthy research programme which has aimed to simplify and integrate observations
and concepts across AI, mainstream computing, mathematics, and HLPC. Despite
its ambition, that goal has been largely met, with corresponding benefits in the
versatility of the SP System, as outlined in Sections 4.6 and 4.6.2, below.

This section aims provide readers with enough information to make the rest
of the chapter intelligible. There is more information in [5], which is largely a
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shortened version of the book Unifying Computing and Cognition [6], in which
much fuller information may be found. Details of other peer-reviewed papers, and
other documents, with download links, are in www.cognitionresearch.org/sp.htm.

Readers may wonder why most of the citations of research related to the SP
System are to this author’s work. The main reasons seem to be these: 1) The
SP System is radically different from DNNs which dominate AI research today,
and it is well known that radical ideas can take time to gain acceptance [7]; 2)
When the book Unifying Computing and Cognition was published in 2006, the
author switched his attention into nearly seven years of full-time campaigning
about climate change, instead of promoting the book as would normally have been
the case; 3) Because, for environmental reasons, flying has been avoided as much
as possible, it has not been possible to attend many of the influential conferences
such as IJCAI; 4) Given the intense pressures on many researchers to “publish or
perish”, it can be difficult for them to get into a new field.

4.1 Information compression

Right from the beginning of this research, a unifying theme, which has proved
its value in spades, is that IC in the SP System is likely to be part of the solu-
tion to the goal of simplification and integration across a broad canvass. This is
largely because of an accumulation of evidence from many studies, beginning with
pioneering research by Fred Attneave [8] and Horace Barlow [9, 10], and others,
showing the importance of IC in HLPC [11].

The letters ‘S’ and ‘P’ in the name ‘SP’ may be seen to stand for ‘Simplic-
ity’ and ‘Power’. This is because: 1) a good theory should combine conceptual
‘Simplicity’ with explanatory or descriptive ‘Power’; and 2) IC, which is central
in the organisation and workings of the SP System, may be seen as a process
which increases the ‘Simplicity’ of a body of information, I, by the extraction of
unnecessary repetition or redundancy in I, and at the same time retains as much
as possible of its explanatory and descriptive ‘Power’.

There is more detail about IC in the SP System in Sections 4.4, 4.5, and 5.

4.2 Abstract view of the SP System

At a high level of abstraction, the SP System may be seen to be like a brain
which takes in New information (with a capital ‘N’) through its senses and stores
all or part of it in a repository of Old information (with a capital ‘O’), as shown
schematically in Figure 1.
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Old
(compressed)

New
(not compressed)

Fig. 1. Schematic representation of the SP System. Adapted from Figure 1 in
[5], with permission.

4.3 Basic structures in the SP System for representing
knowledge

In the SP System, SP-patterns are the vehicle for storing all kinds knowledge.
Here an SP-pattern is an array of atomic SP-symbols in one or two dimensions.
The SP Computer Model has not yet been developed to process two-dimensional
SP-patterns, but the aim is for that to be possible in later versions of the program.

An SP-symbol is simply a mark that can be matched with any other symbol
to yield a ‘same’ or ‘different’ answer. The meaning of any SP-symbol is provided
exclusively by its association with one or more other SP-symbols. There is nothing
like + or × in arithmetic, where the meaning of each of those two symbols is hidden
from view. As described in Section 4.4, below, SP-symbols gain expressive power
via their roles in SP-multiple-alignments.

An SP-pattern that is ‘New’ is raw information from the system’s ‘environ-
ment’, brought in via its ‘senses’. An example of such a New SP-pattern is the
sentence ‘f o r t u n e f a v o u r s t h e b r a v e’ in row 0 in Figure
3, below.

Each SP-pattern that is Old has ‘ID’ SP-symbols at the beginning and end
which are used in the building of ‘SP-multiple-alignments’ and in the encoding
process, as outlined in Section 4.4, below.

An example of an Old SP-pattern as just described is the SP-pattern ‘N 4 f o

r t u n e #N’ in row 4 in Figure 3, below. Here, the SP-symbols ‘N’, ‘4’, and ‘#N’
are examples of the ‘ID’ SP-symbols mentioned above. The ID SP-symbols ‘N’ and
‘#N’ serve in marking the start and finish of the SP-pattern and also in classifying
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the SP-pattern as a noun. The ID SP-symbol ‘4’ distinguishes this noun from
others in the set of stored Old SP-patterns.

Although SP-patterns and SP-symbols are very simple, they gain expressive
power via their roles in SP-multiple-alignments, (see, Section 4.4, next).

Provided that SP-patterns have been created via unsupervised learning that
achieves high levels of IC (Section 4.5), it seems likely that they would be amongst
the groupings recognised as ‘granules’, and also ‘chunks’ (Section 5.5.1) and ‘ob-
jects’ or ‘entities’ (Section 5.5.2).

4.4 The concept of SP-multiple-alignment

A central part of the SP Computer Model, is the concept of SP-multiple-alignment
(SPMA). It is a concept that has been adapted from the concept of ‘multiple
sequence alignment’ in bioinformatics.

This concept is responsible for most of the existing and potential versatility
of the SP System in all areas of AI except unsupervised learning, but even in
unsupervised learning it has a major role to play. Existing and potential strengths
of the SP System are summarised in Sections 4.6 and 4.6.2.

4.4.1 Multiple sequence alignment

As an introduction to the concept of SPMA, Figure 2 shows an example of a
multiple sequence alignment.

G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Fig. 2. Five DNA sequences in a multiple sequence alignment that is rated as
‘good’. From Figure 3.1 in [6], reproduced with permission.

In this kind of application in biochemistry, two or more DNA sequences are
arranged one above another as in the figure (or side by side) and then, by judicious
‘stretching’ of sequences in a computer, the aim is to bring as many symbols as
possible into alignment that match each other from one sequence to another.

With most sets of sequences, exhaustive search will not work because there are
astronomically many possible alignments. This means that it is necessary to use
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heuristic methods which will normally deliver solutions that are reasonably good,
within a reasonable amount of time.

4.4.2 An example of an SPMA

Figure 3 shows an example of an SPMA. Here, a New SP-pattern that represents a
sentence in natural language (in row 0) is, in effect, analysed into its sections and
subsections, in essentially the same manner as parsing in theoretical and compu-
tational linguistics, but within the versatile framework of SP-multiple-alignment
instead of a hard-wired tree structure.

7



0 f o r t u n e f a v o u r s t h e b r a v e 0

| | | | | | | | | | | | | | | | | | | | | |

1 | | | | | | | Vr 6 f a v o u r #Vr | | | | | | | | | 1

| | | | | | | | | | | | | | | | | |

2 | | | | | | | V 7 Vr #Vr s #V | | | | | | | | 2

| | | | | | | | | | | | | | | | |

3 | | | | | | | VP 3 V #V NP | | | | | | | | #NP #VP 3

| | | | | | | | | | | | | | | | | | |

4 N 4 f o r t u n e #N | | | | | | | | | | | | 4

| | | | | | | | | | | | | |

5 NP 2 N #N #NP | | | | | | | | | | | | 5

| | | | | | | | | | | | | |

6 S 0 NP #NP VP | | | | | | | | | | #VP #S 6

| | | | | | | | | |

7 | | | | N 5 b r a v e #N | 7

| | | | | | |

8 NP 1 D | | | #D N #N #NP 8

| | | | |

9 D 8 t h e #D 9

Fig. 3. An SPMA produced by the SP Computer Model with a New SP-pattern (in row 0)
representing a sentence to be parsed and a set of Old SP-patterns supplied by the user (including
those in rows 1 to 9, one Old SP-pattern per row), each of which represents a grammatical
category, and that includes words. Reproduced from Figure 2 in [12], with permission.
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The SP-patterns in rows 1 to 9 of the figure, one SP-pattern per row, are Old
SP-patterns, drawn from a much larger repository of Old SP-patterns.

The main features that distinguish an SPMA from a multiple sequence align-
ment are described in [5, Section 4] and [6, Sections 3.4 to 3.7].

4.4.3 The creation of SP-multiple-alignments

As with the building of multiple sequence alignments, it is necessary to use heuristic
search in the building of SPMAs to obtain reasonably good results in a reasonable
time.

The creation of an SPMA like the one shown in Figure 3 begins with the New
SP-pattern shown in row 0 of that figure and the repository of Old SP-patterns
mentioned above which includes the ones shown in rows 1 to 9 of the figure.

At first, each of the Old SP-patterns in the repository is matched with the New
SP-pattern as outlined in Section 5.1, below, including the kinds of discontinuous
matching outlined in Section 5.2. Each match is evaluated in terms of its potential
to compress the New SP-pattern. From the best of those matches, an SPMA is
created from the New SP-pattern and one Old SP-pattern.

In subsequent processing, each newly-created SPMA is treated as if it was a
single SP-pattern. As such, it may be matched with the New SP-pattern, any
of the Old SP-patterns, and any of the other SPMAs in the current run of the
program. As before, the best matches are selected and corresponding SPMAs are
created, and then the cycle is repeated until no more good matches can be found.

If a good match is found between two ‘parent’ SPMAs, the ‘child’ SPMA that
is formed from that match includes all the SP-patterns in both parents. Likewise
for a good match between an SPMA and an SP-pattern. In this way, SPMAs with
many SP-patterns can build up quickly.

4.4.4 Versatility of the SP-multiple-alignment construct

The SPMA concept is largely responsible for the versatility of the SP System,
which is outlined in Section 4.6, below. In all areas except unsupervised learning
(Section 4.5), it is almost exclusively responsible for that versatility, but it also
has major role in unsupervised learning, together with other processing.

4.5 Unsupervised learning

In broad terms, unsupervised learning in the SP System means compressing a
relatively large body of New SP-patterns from the system’s environment to create
a smaller body of Old SP-patterns which may be added to the repository of Old
SP-patterns, in keeping with the schematic view of the SP System shown in Figure

9



1, Section 4.2. For a given body of New SP-patterns, that smaller body of Old
SP-patterns is called its SP grammar.

It should be mentioned that, although some useful results have been achieved
with unsupervised learning in the SP Computer Model (see [6, Chapter 9]), there
are some unsolved problems with unsupervised learning in the program, noted in
[5, Section 3.3]. For those reasons, with the example in Figure 3 and examples
shown in later sections, it has been necessary to provide the model with appropriate
SP-patterns rather than allowing the model to learn those SP-patterns for itself.

As we shall see in Section 5.4, the SP System, via unsupervised learning, can
bootstrap a knowledge of granular structures such as words, and grammatical rules
from samples of an English-like artificial language in which all punctuation and
spaces between words have been removed.

4.6 Existing and potential strengths of the SP System

In keeping with the aim of simplifying and integrating observations and concepts
across a broad canvass (mentioned at the beginning of Section 4), the SP System
has strengths and potential in several different areas, as summarised in [13, Section
3.7].

In brief, the strengths and potential of the SP Computer Model in AI include
unsupervised learning, pattern recognition, several kinds of reasoning, the pro-
cessing of natural language, planning, problem solving, and more. Likewise, it
has strengths in the representation of several different kinds of knowledge. And
because these things all flow largely from the SPMA construct, there is clear po-
tential for the seamless integration of different aspects of AI and different kinds of
knowledge, in any combination.

On the strength of this evidence, and evidence summarised in the next two
subsections, it seems fair to say that the SP System provides a relatively promising
foundation for the development of artificial general intelligence.

What is said in this chapter about transparency and granularity is likely to
apply to the evidence summarised in this section, in the next subsection, and in
Section 4.6.2.

4.6.1 Potential to help solve AI-related problems

labelpotential-with-ai-related-problems-section
Apart from the existing and potential strengths just described, the SP System

has clear potential to help solve several problems in AI research. Many of these
have been described by leading researchers in AI in interviews with science writer
Martin Ford and, after any corrections by the interviewees, reported in Ford’s book
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Architects of Intelligence [14]. The potential of the SP System to help solve many
of those problems, and some others, is described in [15].

4.6.2 Areas of application apart from AI

Apart from AI, the SP System has clear potential in other areas. Relevant papers
may be downloaded via links in www.cognitionresearch.org/sp.htm. They include:
the management of big data [16]; computer vision and the understanding of natural
vision [17]; the development of intelligent databases [18]; medical diagnosis [19];
and more.

4.7 SP-Neural

The SP System has been developed largely as an abstract model, with well-known
features of HLPC as its main touchstones of success. But it is a matter of some
interest to discover whether the main features of the SP System may be reproduced
with with neural tissue, and if so how.

In the SP programme of research, a first tentative model in this area is called
SP-Neural, described and discussed in [12].

It seems that a case can be made for: modelling SP-symbols with single neurons
or, more plausibly, with small clusters of neurons; SP-patterns may be modelled
with arrays of neural symbols; and, very tentatively, spike potentials travelling
along axons connecting neural SP-symbols and neural SP-patterns may achieve
the effect of building SPMAs, and perhaps, unsupervised learning.

As with the non-neural SP System, it seems likely that the creation of a com-
puter model of SP-Neural will help to clarify issues where there is uncertainty at
present.

4.8 Future developments

It is envisaged that the SP Theory of Intelligence and the SP Computer Model
will be developed into a highly parallel “SP-Machine”, as described in [20], and
shown schematically in Figure 4.

It is envisaged that this will provide a foundation for further work by re-
searchers anywhere, singly or in teams, towards the development of a system with
the strength and robustness for large-scale applications.
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SP Theory and SP Computer Model

SP MACHINEHigh parallel
In the cloud

Open source
Good user interface

Representation of knowledge Natural language processing

Several kinds of reasoning Planning & problem solving

Information compression Unsupervised learning

Pattern recognition Information retrieval

MANY APPLICATIONS

Fig. 4. Schematic representation of the development and application of the SP
Machine. Adapted from Figure 2 in [5], with permission.

5 Information compression and the representa-

tion and processing of knowledge in the SP

System

Before getting on to transparency and granularity in the SP System (Sections 6, 7,
and 8), something needs to be said about IC and how it relates to the representation
of knowledge in the SP System, and how it is processed.

5.1 Information compression via the matching and unifi-
cation of patterns

A working hypothesis in the SP programme of research is that IC may always be
understood as the product of a search for patterns that match each other and the
merging or ‘unifying’ of patterns that are the same. The expression “Information
Compression Via the Matching and Unification of Patterns” will be abbreviated
as ‘ICMUP’.

This idea is illustrated in the upper part of Figure 5. Here, in some ‘raw data’
shown at the top of the figure, two examples of the pattern ‘INFORMATION’ are
merged or unified to create a single instance, shown immediately below.
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Raw data

Compressed data

....w62................w62.........

....INFORMATION................INFORMATION.........

w62INFORMATION
Unified pattern
with identifier

INFORMATION
Unified pattern
without identifier

Fig. 5. How two instances of the pattern ‘INFORMATION’ in a body of raw data
may be merged to form a single ‘unified’ pattern or ‘chunk’ of information, shown
below the ‘raw data’. The rest of the figure is considered later. Adapted from
Figure 2.3 in [6], with permission.

In this instance, there is compression of information because two instances of
‘INFORMATION’ are reduced to one. The rest of the figure is considered in Section
5.3.2, below.

To achieve IC via ICMUP in a given body of raw information, I, the patterns
that are to be unified must be relatively frequent in I and no less frequent than
would occur by chance.

That figure for chance varies inversely with the size of the pattern, so that,
with a given I, a large pattern like this:

‘pneumonoultramicroscopicsilicovolcanoconiosis’

may exceed the threshold with a frequency as low as 2, while smaller patterns like
‘si’ may only reach the threshold with a higher frequency.

5.2 Discontinuous patterns

An important point to mention in connection with ICMUP is that the concept of
‘pattern’ in the SP programme of research includes patterns that are ‘discontinu-
ous’ in the sense that they may be interwoven with other information.

13



For example, a pattern like ‘ABC’ may be seen in ‘LMANOPBQCSTU’, and likewise
in many other sequences.

From prominent features of HLPC, such as the way we can recognise a familiar
pattern like a car despite interfering patterns such as iron railings or the branches
of a plant, it has been understood from the beginning of the SP research that there
would be a need for that kind of capability in the SP Computer Model.

A first goal was to create a system that could recognise good full and partial
matches between sequences (where ‘good’ means good in terms of IC), and could
deliver two or more such solutions where they exist. The method which has been
adopted, and incorporated in successive versions of the SP Computer Model, is
described in [6, Appendix A].

5.3 Seven variants of ICMUP

ICMUP is an intrinsically simple idea, but it comes in seven main variants which
add a lot in terms of its descriptive and explanatory value. The variants are
described in [13, Section 5] and [11, Sections 6, 7, and 8], and are outlined more
briefly here.

In general, these structures would arise from IC via unsupervised learning, as
outlined in Section 4.5.

In general, these structures that are very widely used and are likely to be
familiar to most people. Some comments to that effect are in Section 7.

5.3.1 Basic ICMUP

Basic ICMUP is our first variant of ICMUP, essentially what is described at the
beginning of Section 5.1: if two or more patterns match each other, they may be
unified to create one copy, with a corresponding compression of information.

5.3.2 Chunking-with-codes and ICMUP

A problem with Basic ICMUP is that, for each set of unified patterns, information
is lost about their locations in I, except for the unified pattern itself, assuming it
retains a place in I.

A solution to this problem, called Chunking-with-codes, is to assign a relatively
short identifier or code to the unified pattern—which is commonly referred to as
a chunk of information—and then to place a copy of the chunk, with its code, in
a separate ‘dictionary’ of patterns. Then replace each copy of the chunk in I with
the code for the chunk. This is illustrated in the lower part of Figure 5, where the
chunk of information is ‘INFORMATION’ and the code for that chunk is ‘w62’.
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Because in general the code should be smaller than the chunk it represents,
there should be an overall compression of I.

5.3.3 Schema-plus-correction and ICMUP

An interesting variant of MICMUP is known as Schema-plus-correction. Perhaps
the best-known example is a menu of dishes that are available in a cafe or restau-
rant.

The menu itself may be seen as special kind of ‘chunk’ of information which,
as with chunking-with-codes, has a relatively short name, identifier, or ‘code’—
something like ‘Menu’, ‘Your choices’, ‘As you like it’, and so on.

What makes it different from an ordinary example of chunking-with-codes is
that it provides the means of introducing variations into the chunk.

A typical menu offers three or more places where variations may be introduced.
These would be parts of the menu such as ‘starter’, ‘main course’, and ‘pudding’.
With each of these there would be a selection of dishes that the diner may choose,
such as ‘soup’, ‘antipasto’, and so on for the starter, ‘vegan chickpea curry’, ‘shep-
herd’s pie’, and so on for the main course, and ‘ice cream’, ‘apple crumble’, and
so on for the pudding.

5.3.4 Run-length encoding and ICMUP

Run-length encoding may be applied where there is a sequence of two or more
matching patterns, each one contiguous with next one. Then a sequence like
‘INFORMATIONINFORMATIONINFORMATIONINFORMATIONINFORMATION’ may be re-
duced to something like ‘INFORMATION ×5’, or, more generally as ‘INFORMATION*’,
where the ‘*’ indicates that the given pattern is repeated but without specifying
how many times it is repeated.

5.3.5 Part-whole hierarchies and ICMUP

A fifth variant of ICMUP is the way things can be organised as part-whole hier-
archies. A car may be seen to be divided to engine, wheels, body, and so on. And
each of these things may be divided into parts and subparts, and so on.

Economies arise because, at any one level in a part-whole hierarchy, all the
alternatives at that level share the same place in the hierarchy, which saves having
to repeat that information for every one of the alternatives.

For example, someone buying a particular model of a car may be offered a
choice of two or three different engines. Each of the alternatives may be described
without the need, for each alternative, to describe the rest of the car. Hence, those
several copies of the context of ‘engine’ have been merged into a single copy, in
accordance with ICMUP.
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5.3.6 Class-inclusion hierarchies and ICMUP

One of the meanings of the word ‘class’ is that it is a collection of things that share
certain features. So the class ‘table’ applies to things that have a horizontal top
that may be used as a temporary place to put things, especially plates, knives and
forks and so on at meal times, often with four legs, often made of wood, and so
on.

This may be seen as an example of ICMUP because, across all the many ex-
amples of tables, the features that they have in common have been seen to match
each other and have been unified to create the list of features for the class ‘table’.

It is true that there are many exceptions and special cases—for example, not
all tables are made of wood—but that does not alter the great economies that
can be achieved, in both thinking and communication, from the use of classes like
‘table’. The class saves having to describe all the features of a table every time
one wants to talk about tables or simply remember something about tables, such
as the way a table may be used to help in the changing of a light bulb.

From this idea of a class, it is a short step to the idea of a hierarchy of subclasses,
subsubclasses, and so on. At each level in the hierarchy, there are features that
are inherited by all the higher levels.

5.3.7 SP-multiple-alignment and ICMUP

The last of the seven variants of ICMUP is the concept of SPMA that has been
described already in Section 4.4.

Out of the seven variants of ICMUP, it appears that SPMA can be, with
appropriate data, the most effective means of compressing information, largely
because the matching and unification of patterns may occur at several different
levels, not just one level.

And this seventh variant of ICMUP has a special status amongst the seven
variants because SPMA may be seen to encompass all of the other six variants,
and, within any one SPMA, there can be a seamless integration of the other six
variants.

It appears that it is this versatility which is largely responsible for the versatility
of SPMAs in modelling diverse aspects of intelligence, in the representation of
diverse kinds of knowledge, and in the seamless integration of aspects of intelligence
and kinds of knowledge, in any combination (Section 4.6).

5.4 The DONSVIC principle

An idea which is fundamental in the workings of the SP System is the ‘DONSVIC’
principle, meaning the “Discovery Of Natural Structures Via Information Com-
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pression” It is described quite fully in [5, Section 5.2].
It seems that the reason that IC does not normally have the effect of revealing

‘natural’ structures is that, largely because of the low power of early computers,
most systems for IC have been designed to be ‘quick and dirty’, sacrificing accuracy
for speed on those low-powered computers. Now that computers are more powerful,
one can be more ambitious.

The same section of the paper [5, Section 5.2] describes how the MK10 pro-
gram for unsupervised learning of segmental structures—with IC as its driving
principle—may discover structures in natural language such as words and phrases,
and this without any prior knowledge of any of those structures, and without
any markers in the raw data such as punctuation and spaces between words to
show the beginnings and ends of segmental structures [21]. And in a similar way,
the SNPR program for unsupervised learning of grammars—with IC as its cen-
tral principle—demonstrates successful learning of the grammars of English-like
artificial languages (ibid).

In that connection, there is evidence that a first language can be learned by
children without ‘reinforcement’ as normally understood, or any other kind of
explicit teaching or the correction of errors (see, for example, [22, 23, 24]). It
seems likely that the same applies to the learning of non-syntactic structures as
well.

As a rough generalisation, structures that may be discovered via the DONSVIC
principle from a given body of information, I, are ones that are useful in compress-
ing I and are likely to be useful in compressing any later body of information that
has a similar structure.

These observations are in accord with substantial evidence for the significance
of IC in HLPC [11].

5.4.1 The DONSVIC principle and granularity

It is assumed in this research that, in HLPC, the DONSVIC principle applies to
the unsupervised learning of the great majority of entities, structures, or events,
that we recognise ‘naturally’, including the kinds of SP-patterns shown in rows 1
to 9 of Figure 3.

If it is accepted that most of the “entities, structures, or events, that we recog-
nise ‘naturally’ ” would also qualify as ‘granules’, we should also accept that gran-
ules and the ways in which they are structured are likely to emerge via learning
processes that conform to the DONSVIC principle, either in human brains, or in
artificial unsupervised learning of the future.
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5.4.2 The DONSVIC principle and familiarity

In the same way that the DONSVIC principle suggests that information granules
and their structures emerge from a search for patterns with an optimum combi-
nation of size and frequency, it is likely that the way in which those granules are
structured (as described in Section 5.3) will also be familiar to people.

The familiarity of those kinds of structures—such as chunking-with-codes, run-
length coding, part-whole hierarchies, and class-inclusion hierarchies—will clearly
be important in ensuring the interpretability, explainability, and transparency of
knowledge created via unsupervised learning in the SP System, and via the building
of SPMAs.

5.5 Ideas related to the concept of a granule

This section briefly discusses two ideas that appear to be relevant to the concept
of a granule, and also to key ideas in the SP System.

5.5.1 The concept of a chunk of information

As we have seen in Sections 5.3.2 and 5.3.3, and elsewhere above, the concept of
‘chunk’ can be useful in describing any small coherent body of information. As
such, it is similar to the concept of a ‘granule’.

It appears that the concept of a ‘chunk’ in cognition-related research, was first
introduced in George Miller’s much-quoted paper on “The magical number seven,
plus or minus two” [25] where he argued that:

“... we must recognize the importance of grouping or organizing [in-
formation] into units or chunks. Since the memory span [of a typical
person] is a fixed number of chunks, we can increase the number of bits
of information that it contains simply by building larger and larger
chunks, each chunk containing more information than before.” [25,
p. 93].

In keeping with that description, Section 5.1, above, suggests how chunks of
information may be discovered via the matching and unification of patterns.

Since Miller’s seminal paper, the concept of a chunk of information has been
and still is widely used in the academic literature in cognitive science and cogni-
tive psychology. Now the word ‘chunk’, apparently without reference to Miller’s
concept, has been associated with the word ‘granule’ like this:

“Granular computing ... is a research area focused on representing, rea-
soning, and processing basic chunks of information, namely granules.”
[26, p. 1835], emphasis added.
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Apart from that connection between ‘chunk’ and ‘granule’, a search of the
literature suggests that there is at present little interest in examining possible
synergies between the two areas of research.

As noted in Section 4.3, the concept of an ‘SP-pattern’ in the SP System
appears to capture much of what is meant by the concepts of ‘granule’ and ‘chunk’.

5.5.2 Object-oriented programming

Another thing with much of the flavour of the concepts of ‘granule’, ‘SP-pattern’,
and ‘chunk’, is the concept of a discrete entity or object in object-oriented pro-
gramming. From small beginnings in Norway [27], this paradigm for programming
has grown to be a widely-adopted feature in the design of programming languages,
and in the design of software systems.

For readers not already familiar with OO-programming and OO-design, the
neat idea is that a software system should be a model of the system it is to
serve, with a discrete software ‘object’ for each entity or object in the system to
be modelled, and with hierarchies of ‘classes’ of object and with ‘inheritance’ of
‘attributes’ of objects from higher levels to lower levels (Section 5.3.6).

Some connections have been made between concepts of granularity and object-
oriented programming (eg [28]) but it appears not to be a live issue.

5.6 Tying things together?

In view of what has been said earlier about information granules (Section 3), about
SP-patterns (Section 4.3), about information chunks (Section 5.5.1), and about
entities or objects in object-oriented programming (Section 5.5.2), there seems
to be a case for tying these concepts together, perhaps within the framework of
information compression. It seems likely that the SP System could accommodate
them all.

6 Transparency via audit trails

Compared with DNNs, the SP System has the striking advantage that it provides
a full audit of what it is doing, and it provides it in a form that people can
understand. That advantage applies to unsupervised learning in the SP System,
which means the creation of SP-grammars (Section 4.5), and it also applies to the
building of SPMAs by the SP System (Section 4.4.3), which provides the means of
modelling all the other AI-related things that the SP System can do, such as the
processing of natural language, recognition of entities, several forms of reasoning,
and so on, as summarised in Section 4.6.
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Figure 6 shows a bare-bones audit trail for the creation of the SPMA shown
in Figure 3, to illustrate how, for each SPMA that is created by the SP Computer
Model, the program provides detailed information about how the SPMA is built.
The caption to Figure 6 describes how it should be interpreted.
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ID6        (N 4 f o r t u n e #N)

ID10                    (V 7 Vr #Vr s #V)

ID8                                     (Vr 6 f a v o u r #Vr)

ID7                                                    (N 5 b r a v e #N)

ID16              ID6                               ID1
   
ID67                              ID10           ID1

ID20                                     ID8 ID1

ID11                                                (D 8 t h e #D)

                                                             (f o r t u n e f a v o u r s t h e b r a v e)ID1

                                                                        (NP 1 D #D N #N #NP)ID3

ID23                                                               ID7  ID1

ID2                                                                             (S 0 NP #NP VP #VP #S)

ID78                                                                            ID16  ID3

ID5                                                                                        (VP 3 V #V NP #NP #VP)

ID72                                                                             ID20  ID67

ID51                                                                        ID11 ID1

ID92                                                               ID23  ID3

ID405                                                   ID78  ID2

ID321                                      ID72  ID5

ID227                           ID92  ID51

ID673                ID321  ID405

ID2075  ID673  ID227

Fig. 6. An audit trail for the creation of the SPMA shown in Figure 3. It should be interpreted
as follows: the figure should be read from the bottom to the top, starting with a row about
the SPMA in Figure 3; at the beginning of each row there is an identifier for an SPMA or
an SP-pattern; in each row that describes an SPMA, there are two identifiers to the right,
referencing the two structures that were matched and unified to create the given SPMA; those
two structures might be one SP-pattern with another SP-pattern (or different parts of itself),
or an SPMA with an SP-pattern (in either order), or an SPMA with an SPMA; in most cases,
there is an arrow from each of the two identifiers to the SPMA or SP-pattern that it refers to;
but with the SP-patterns ‘ID1’ and ‘ID3’, each of their identifiers (shown in colour) appears
more than once in the figure, so to avoid undue clutter in the figure in each of those two cases,
only one arrow is shown.
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The information in Figure 6 is only an extract from the much fuller informa-
tion that the SP Computer Model provides. With each SPMA referenced in the
figure, and many others on paths that turned out to be blind alleys, the following
information is provided:

� The full structure of the SPMA.

� The pairing that produced the given SPMA: an SP-pattern with an SP-
pattern, or an SPMA with an SP-pattern (in either order), or an SPMA
with an SPMA (see Section 4.4.3).

� A full evaluation of each SPMA in terms of IC, described in detail in [6,
Section 3.5] and [5, Section 4.1].

� Absolute and relative probabilities associated with each SPMA, calculated
as shown in [6, Section 3.7] and [5, Section 4.4].

A similar level of detail is provided for the creation of SP-grammars by the SP
Computer Model.

As noted above, this kind of transparency in the workings of the SP Computer
Model contrasts with the considerable obscurity in the workings of DNNs (Section
2).

7 Transparency via granularity and familiarity

As we have seen in Section 5.4, it appears that the concepts of granularity and the
DONSVIC principle are closely related. For that reason, they will be discussed
together in subsections below which describe how the SP System exhibits granu-
larity associated with each of the seven variants of ICMUP described in Section
5.3.

In addition to granularity, it seems that, because they are so widely used, each
of those variants of ICMUP are likely to strike a chord of familiarity with most
people.

Thus because of both granularity and familiarity, each of those seven variants
of ICMUP are likely to contribute to interpretability and explainability, and a
consequent transparency, in the operation of the SP System.

7.1 Granularity, familiarity, and Basic ICMUP

Although Basic ICMUP, as described in Section 5.3.1, is indeed remarkably basic
and simple, it is also surprisingly powerful, providing examples of both granularity
and the DONSVIC principle. It may, for example, be seen to provide the main
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mechanism for our perception of the world as being populated by three-dimensional
objects.

In case this seems obscure, the learning and perception of 3D objects is a
development envisioned for the SP System, described in [17, Sections 6.1 and 6.2],
but it has not yet been implemented in the SP Computer Model.

In brief, the basic idea is that, with any kind of object that is new to us, we may
view it from several different angles so that there is overlap between neighbouring
fields of view. Then our brains can piece together a three-dimensional model of the
object by merging the overlapping areas (via Basic ICMUP), much as a panoramic
view of a scene may be made with a digital camera from several overlapping views
of the scene. In a similar way, we may recognise 3D objects that we already know,
and refine our knowledge of them.

The idea of creating 3D models from two or more views, called ‘photogramme-
try’, is the basis of commercial and free systems that are available for creating 3D
models from photographs.1

The same kinds of process are at work in the creation of Google’s ‘Streetview’.
Here, overlapping digital photographs taken of streets and junctions all over the
world are pieced together to create very useful 3D digital models of those many
streets and junctions.

Because objects are such a familiar aspect of how we perceive the world, Ba-
sic ICMUP contributes to familiarity as well as granularity, and both of them
contribute to transparency in results produced by the SP System.

Even without objects, A little reflection will show that Basic ICMUP is some-
thing we do all the time. Whenever we recognise something that we know already,
we are employing Basic ICMUP. And whenever we see something new but see a
similarity to something we know already, we are employing Basic ICMUP.

7.2 Granularity, familiarity, and chunking-with-codes

From the perspective of the chunking-with-codes principle for achieving IC (Section
5.3.2), it seems that a ‘chunk’ of information qualifies as an information granule,
and as an example of the DONSVIC principle at work.

It appears that chunking-with-codes is widespread in HLPC, especially in our
use of language. For example, a word like ‘house’ may be understood as a relatively
short identifier or code for the much larger chunk of information which is the
meaning of ‘house’. It matters not that the chunk may be relatively generalised
so that it accommodates many of the different kinds of houses that people live in.
Regardless of the complexity of that concept, the word ‘house’ serves as a short

1See, for example, Agisoft (www.agisoft.com/), All3DP (all3dp.com/), Sculpteo
(www.sculpteo.com), and more.
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identifier for the concept.
A little reflection shows that, in any natural language, every noun, adjective,

verb, and adverb, is in effect a short code for the much larger chunk of information
which is what the word means.

Because this method for the economical encoding of information is so simple
and effective, it is likely that non-verbal aspects of our thinking would be encoded
in a similar way—although it is more difficult to obtain direct evidence for this
than it is with the surface forms of natural languages.

As with Basic MUP, chunking-with-codes is an extremely common feature of
how we conceive the world, and thus it exhibits familiarity as well as granularity,
and both of them contribute to transparency.

7.3 Granularity, familiarity, and schema-plus-correction

With regard to schema-plus-correction as a means of achieving IC (Section 5.3.3),
granularity and the DONSVIC principle may be seen at work at two main levels:
the schema itself and the ‘chunks’ of information which serve as ‘corrections’ to
the schema.

As we saw in Section 5.3.3, a menu in a restaurant or cafe is a good example of
the schema-plus-correction means of achieving IC. This is illustrated in Figure 7,
which is a relatively simple example of an SP-grammar composed of SP-patterns.
The first SP-pattern, ‘MU ST #ST MC #MC PD #PD #MU’, represents an outline of
the menu with slots for the starter (‘ST #ST’), main course (‘MC #MC’), and pudding
(‘PD #PD’), and all the other SP-patterns represent different dishes in those three
categories.

MU ST #ST MC #MC PD #PD #MU | Prepare meal

ST 0 mussels #ST | Starter: mussels

ST 1 soup #ST | Starter: soup

ST 2 avocado #ST | Starter: avocado

MC 0 lasagna #MC | Main course: lasagna

MC 1 beef #MC | Main course: beef

MC 2 nut-roast #MC | Main course: nut-roast

MC 3 kipper #MC | Main course: kipper

MC 4 salad #MC | Main course: salad

PD 0 ice cream #PD | Pudding: ice cream

PD 1 apple-crumble #PD | Pudding: apple crumble

PD 2 fresh-fruit #PD | Pudding: fresh fruit

PD 3 tiramisu #PD | Pudding: tiramisu

Fig. 7. An SP grammar composed of SP-patterns that represent a three-course
meal. Each SP-pattern has a comment to the right which explains what it is about,
with the marker ‘|’ at the beginning of each comment. Adapted from Figure 2 in
[29].
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How this grammar may be used in practice may be seen in the SPMA shown
in Figure 8. A prominent difference between this SPMA and the one shown earlier
in Figure 3 is that, in the earlier one, SP-patterns are arranged horizontally, while
in the later one, they are arranged vertically. This has no theoretical significance
and is purely a matter of which arrangement is the best fit for the page.

0 1 2 3 4

MU -- MU | Menu

ST ------------------ ST | Starter

0 ------------------------- 0

mussels

#ST ----------------- #ST

MC ---------------------------- MC | Main course

4 ----------------------------------- 4

salad

#MC --------------------------- #MC

PD -- PD | Pudding

1 --------- 1

apple-crumble

#PD - #PD

#MU - #MU

0 1 2 3 4

Fig. 8. The best SPMA created by the SP Computer Model with the New
SP-pattern, ‘MU 0 4 1 #MU’, and the set of Old SP-patterns shown in Figure 7.
Adapted from Figure 3 in [29].

The SPMA shown in Figure 8, is the best of several alternatives created by the
SP Computer Model, starting with the New SP-pattern ‘MU 0 4 1 #MU’ (shown
in column 0), and the SP-grammar shown in Figure 7. Old SP-patterns selected
from that grammar appear in columns to to 4 in the figure, one SP-pattern per
column.

The New SP-pattern, ‘MU 0 4 1 #MU’, is an economical description of a meal:
the SP-symbols ‘MU’ and ‘#MU’ at the top and bottom show that the New SP-
pattern is about the menu, the full version of which is shown in the Old SP-
pattern in Column 1; the SP-symbol ‘0’ in column 0 shows that the starter is a
dish of mussels; the SP-symbol ‘4’ shows that the main course is a salad; and the
SP-symbol ‘1’ shows that the pudding is apple crumble.

Things like menus in cafes and restaurants are not quite as familiar as chunking-
with-codes but they are very much part of everyday life and so that we may say
that they contribute to familiarity as well as granularity, both them promoting
transparency in the workings of the SP System.
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7.4 Granularity, familiarity, and run-length encoding

With the repeated instances of ‘INFORMATION’ in Section 5.3.4, illustrating the
run-length coding concept, repetition of the pattern ‘INFORMATION’ would in itself
suggest that it conforms to the DONSVIC principle, and would thus qualify as an
information granule.

Whenever a sports coach, for example, says “keep doing push-ups until I say
stop”, he or she is employing run-length coding. It is very widely used and may
thus contribute to familiarity and transparency for users of an SP System.

7.5 Granularity, familiarity, and part-whole hierarchies

A part-whole hierarchy is similar in some respects to the schema-plus-correction
example shown in Figures 7 and 8. Perhaps the main difference is that a part-whole
hierarchy would normally have more levels, as in the SPMA in Figure 9.
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0 1 2 3 4 5 6 7 8

mycar

name

George

#name

engine ------------------------ engine

block ----- block

blockhead ----------- blockhead

blockbody

#block ---- #block

engine-control-unit ------------- engine-control-unit

crankshaft ------------------------------------------------------------- crankshaft

csbody --------------------------------------------------------------------------------------------------- csbody

counterweights

#counterweights

...

#crankshaft ------------------------------------------------------------ #crankshaft

pistons

#pistons

valves

#valves

...

#engine ----------------------- #engine

wheels -- wheels

wheel1 ------------------------------------------------ wheel1

wheel2

...

#wheels - #wheels

body ------------- body

windscreen

roof

seats ------ seats

seat1

seat2 ------------------------------------------------------------------------------------------- seat2

...

#seats ----- #seats

dashboard

#dashboard

doors -- doors

door1 --------------------------------------------------------------------- door1

door2

...

#doors - #doors

...

#body ------------ #body

#mycar

0 1 2 3 4 5 6 7 8

Fig. 9. The SPMA shown here is the best of several that the SP Computer Model has created,
beginning with several one-SP-symbol SP-patterns (in column 0) that describe some features
of a car, and a grammar of Old patterns, some of which are the SP-patterns shown in columns
1 to 8. These SP-patterns include one for ‘mycar’, in column 4, and other SP-patterns that
describe parts and sub-parts of ‘mycar’.
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With many simplifications, this SPMA shows how the SP Computer Model
may create an analysis of ‘mycar’ into a part-whole hierarchy when it is presented
with some features of ‘mycar’ in column 0 and a repository of Old SP-patterns
which include those SP-patterns in columns 1 to 8 of Figure 9.

As with other examples in this chapter, it is clear that there is granularity in the
SP-patterns shown in the figure because economies can be achieved as described in
Section 5.3.5, and thus the SPMA is likely to conform to the DONSVIC principle
as described in Section 5.4.

As with other variants of ICMUP, part-whole hierarchies are very familiar in
everyday life, and that familiarity is likely to contribute to transparency in results
from the SP System.

7.6 Granularity, familiarity, and class-inclusion hierarchies

Figure 10 shows an SPMA created by the SP Computer Model which, via classes
and subclasses of plants, illustrates the concept of a class-inclusion hierarchy, as
described in Section 5.3.6.

Although the categories used by botanists to classify plants have a formal
status, it is likely that they have a foundation in what seems ‘natural’, which is
itself one facet of the DONSVIC principle (Section 5.4). More generally, categories
like that may be seen as information granules.
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0 1 2 3 4 5 6

<species>

acris

<genus> ---------------------------------------------------------------------------- <genus>

Ranunculus ------------------------------------------------------------------------- Ranunculus

<family> --------- <family>

Ranunculaceae ---- Ranunculaceae

<order> ------ <order>

Ranunculales - Ranunculales

<class> ------ <class>

Angiospermae - Angiospermae

<phylum> --------- <phylum>

Plants ----------- Plants

<feeding>

has-chlorophyll ------------------ has-chlorophyll

photosynthesises

<feeding>

<structure> ------ <structure>

<shoot>

<stem> ---------- <stem> ---------------------------- <stem>

hairy ----------- hairy

</stem> --------- </stem> --------------------------- </stem>

<leaves> -------------------------- <leaves>

compound

palmately-cut

</leaves> ------------------------- </leaves>

<flowers> ------------------- <flowers>

<arrangement>

regular

all-parts-free

</arrangement>

<sepals> -------------------------------------------------------- <sepals>

not-reflexed

</sepals> ------------------------------------------------------- </sepals>

<petals> -------- <petals> -------------------------------------------------------- <petals> --------- <petals>

<number> --------- <number>

five

</number> -------- </number>

<colour> -------------------------------------------------------- <colour>

yellow ---------- yellow

</colour> ------------------------------------------------------- </colour>

</petals> ------- </petals> ------------------------------------------------------- </petals> -------- </petals>

<hermaphrodite>

<stamens> ------------------------------------------------------------------------- <stamens>

numerous -------------------------------------------------------------------------- numerous

</stamens> ------------------------------------------------------------------------ </stamens>

<pistil>

ovary

style

stigma

</pistil>

</hermaphrodite>

</flowers> ------------------ </flowers>

</shoot>

<root>

</root>

</structure> ----- </structure>

<habitat> ------- <habitat> ------ <habitat>

meadows --------- meadows

</habitat> ------ </habitat> ----- </habitat>

<common-name> -- <common-name>

Meadow

Buttercup

</common-name> - </common-name>

<food-value> ----------------------------------- <food-value>

poisonous

</food-value> ---------------------------------- </food-value>

</phylum> -------- </phylum>

</class> ----- </class>

</order> ----- </order>

</family> -------- </family>

</genus> --------------------------------------------------------------------------- </genus>

</species>

0 1 2 3 4 5 6

Fig. 10. An SP-multiple-alignment created by the SP Computer Model. It is the best of
several alternatives that the program creates, starting with a set of of New SP-patterns (in
column 0) which are a description of an unknown plant, and an SP-grammar which includes
Old SP-patterns shown in columns 1 to 6, which describe different categories of plant and a
selection of their attributes. From Figure 16 in [5], reproduced with permission.
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Column 0 shows some New SP-patterns that represent features of a plant that
has not yet been identified, while the SP-pattern in column 1 shows that the
unknown plant is probably a Meadow Buttercup (the name is shown near the
bottom of the column), and the SP-patterns in columns 2 to 6 show higher-level
categories such as the genus (column 6), the family (column 5), and so on.

The way in which IC is served by Old SP-patterns like the ones shown can be
seen in the way they make it possible to avoid unnecessary repetition of informa-
tion. For example, the SP-pattern representing the high-level category ‘Plants’
(column 2) has the features ‘haschlorophyll’ and ‘photosynthesises’. As can be
seen from the SPMA, there is no need to repeat that information in the lower-level
category ‘Angiospermae’ (column 3), or in the next category below, the category
‘Ranunculales’ (column 4), and so on down to the level of the Meadow Buttercup
(column 1).

Much the same can be said about class-inclusion hierarchies as was said about
part-whole hierarchies. They promote granularity, they are very familiar, and thus
likely to contribute to transparency in the results from the SP System.

7.7 Granularity, familiarity, and SP-multiple-alignments

As described in Section 5.3.7, the concept of SPMA is a generalisation of the other
six versions of ICMUP described in Section 5.3. As such, it is likely to exhibit
the same levels of granularity and familiarity as the other six, with corresponding
benefits for transparency.

8 Interpretability and explainability

Although interpretability and explainability fall under the heading of transparency,
considered in Sections 6 and 7, above, this section describes some recent studies
that are more specific to those two concepts, with some brief comments from an
SP perspective.

Quanshi Zhang and Song-Chun Zhu describe a survey of visual interpretabil-
ity for deep learning [30]. Like other authors, they emphasise achievements with
DNNs but lament how interpretability is always their Achilles’ heel. Concentrating
on convolutional neural networks (CNNs), they examine methods for discovering
representations of pre-trained CNNs, including methods for ‘disentangling’ repre-
sentations of pre-trained CNNs, and they examine how learning by CNNs may
be achieved with ‘disentangled’ representations, and how ‘middle-to-end’ learning
may be achieved with ‘model interpretability’. Finally, they suggest that “In the
future, we believe the middle-to-end learning will continuously be a fundamental
research direction.” [30, p. 37] In addition, they suggest that, “based on the se-
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mantic hierarchy of an interpretable network, debugging CNN representations at
the semantic level will create new visual applications.” (ibid.).

David Alvarez-Melis and Tommi Jaakkola describe research towards the devel-
opment of neural networks that interpretable, self-explaining, and also robust [31].
In that connection, they propose three desirable features for neural networks: ‘ex-
plicitness’, ‘faithfulness’, and ‘stability’, and they show that, in general, existing
methods do not satisfy them. Starting with linear classifiers, they have developed
self-explaining models in stages, progressively generalizing them to meet their cri-
teria of success. They say that experimental results show that the framework they
have developed shows promise for reconciling the complexity of models and their
interpretability.

Alejandro Barredo Arrieta and colleagues [32] present an overview of studies
in “eXplainable Artificial Intelligence (XAI)”, which they classify in two different
categories: 1) “[Machine learning] models that feature some degree of transparency,
[which are] thereby interpretable to an extent by themselves; and 2) “post-hoc XAI
techniques devised to make ML models more interpretable.”(p. 108). They have
introduce a new classification of DNNs “giving rise to an alternative taxonomy
that connects more closely with the specific domains in which explainability can
be realized for Deep Learning models.” (ibid.). Also,

“Our reflections about the future of XAI, conveyed in the discussions
held throughout this work, agree on the compelling need for a proper
understanding of the potentiality and caveats opened up by XAI tech-
niques. It is our vision that model interpretability must be addressed
jointly with requirements and constraints related to data privacy, model
confidentiality, fairness and accountability. (ibid.).

Ruth Byrne [33] discusses how ‘counterfactuals’ (what would have happened if
circumstances had been different) may provide evidence in support of explainable
AI. In particular in this connection, she considers which kinds of counterfactual
are most useful. “... to maximize their effectiveness, it will be useful for XAI
to incorporate information from psychological experiments about the way people
create and comprehend counterfactuals, for counterfactuals of different structure
and content, and with various relations.” [33, p. 6280].

David Gunning and colleagues [34] discuss how “... for many critical applica-
tions in defense, medicine, finance, and law, explanations are essential for users to
understand, trust, and effectively manage these new, artificially intelligent part-
ners” (p. 1). They describe several issues associated with explainability but do
not reach conclusions.

Randy Goebel and colleages [35] note the problems with explainability in the
results normally produced by DNNs. They suggest that one possible way forward
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is to develop DNNs that can create explanations in parallel with their main pro-
cessing. Another possibility is some kind of hybrid process that leverages human
intelligence in conjunction with machine intelligence.

These studies are only a small fraction of activity in the areas of interpretability
and explainability. The impression one gains from these studies and others is that
it is likely to be a struggle to develop DNNs, or varieties thereof, which provide
what is needed in terms of transparency, interpretability, and explainability.

By contrast, the SP System has clear strengths in terms of ‘transparency via
audit trails’ (Section 6), and in terms of ‘transparency via granularity and famil-
iarity’ (Section 7).

9 Conclusion

This chapter describes how the SP System—which is the SP Theory of Intelligence
and the SP Computer Model—may promote transparency and granularity in AI,
and perhaps also in other areas of computing.

The SP System is introduced (Section 4), together with an account of the
significance of IC in the representation and processing of knowledge in the SP
System (Section 5). It seems that much of this IC can be seen as “IC via the
matching and unification of patterns” (ICMUP, Section 5.1).

An important part of ICMUP in this context is the matching of patterns that
are ‘discontinuous’, meaning that any given pattern may be interspersed with other
information (Section 5.2).

Seven variants of ICMUP are described in Section 5.3. Amongst those seven
variants, the most important is the concept of SP-multiple-alignment (SPMA)
(Sections 5.3.7 and 4.4), a version that generalises the six other versions (Section
5.3).

Another important idea associated with the SP System is the concept of “Dis-
covery Of Natural Structures Via Information Compression” (‘DONSVIC’) (Sec-
tion 5.4). As described in Section 5.4, the DONSVIC principle seems to provide a
basis for the concept of granularity in AI.

There may be a case for exploring what appears to be some common ground
amongst such concepts as ‘information granule’, ‘SP-pattern’, ‘information chunk’,
and ‘entity’ or ‘object’ in object-oriented programming (Section 5.6).

The main conclusions of this chapter are:

� Transparency via audit trails. For the creation of any given SPMA, the SP
System provides very full information about how, via heuristic search, that
SPMA has been created, with full information about all the false trails that
were followed in that search (Section 6). For any given SPMA it is possible
to plot an audit trail of all its ancestors.
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The fact that such an audit trail can be created confirms the existence of
clear, granular structures in the system’s processing. There is very full in-
formation about all the SPMAs created on the path to ‘good’ SPMAs, and
all the SPMAs created on false trails away from ‘good’ SPMAs.

� Transparency via granularity. The SP Computer Model has already demon-
strated the unsupervised learning of words and grammatical classes from
English-like artificial language without any punctuation or spaces to mark
where one words ends and the next one begins. There is clear potential
for further development along these lines. There is also potential for the
unsupervised learning of 3D objects.

In general, the SP System, via the DONSVIC principle, has potential to
bootstrap ‘natural’ structures in its knowledge, and thus to bootstrap gran-
ularity in that knowledge.

� Transparency via familiarity. Owing to the organisation and workings of the
SP System, the seven variants of ICMUP described in Section 5.3 will be the
mainstay of how its knowledge is organised.

In view of evidence that the same principles have a role to play in brains and
nervous systems [11], the kinds of structures created by the SP System as it
matures are likely to be similar to structures that people use themselves—
chunking-with-codes, part-whole hierarchies, class-inclusion hieararchies,
and more. Consequently, the kinds of structures created by the SP Sys-
tem are likely to be familiar to people, helping to make those structures
relatively easy to interpret and to explain, and correspondingly transparent.

Many recent studies of interpretability and explainability (Section 8) suggest
that, in the quest for transparency in those two areas, it is likely to prove difficult
to overcome fundamental weaknesses in DNNs. It may be better to make a fresh
start with the SP System for development, especially since there is evidence that
the SP System provides a relatively promising foundation for the development of
artificial general intelligence. (Section 4.6).

Since the SP System has potential in several areas apart from AI (Section
4.6.2), there is potential for the advantages just described to be seen in those
areas as well.
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