
Unsupervised Learning in a Framework of Information

Compression by Multiple Alignment, Unification and Search

J Gerard Wolff
gerry@informatics.bangor.ac.uk

School of Informatics
University of Wales
Dean Street, Bangor

Gwynedd, LL57 1UT, UK

March 12, 2002

Abstract

This paper describes a novel approach to unsupervised learning that has been de-
veloped within a framework designed to integrate learning with such things as parsing
and production of language, fuzzy pattern recognition and best-match information re-
trieval, class hierarchies with inheritance of attributes, probabilistic and exact forms of
reasoning, and others.

This framework, which may be characterised as information compression by multiple
alignment, unification and search (ICMAUS), is founded on principles of Minimum
Length Encoding. Some of its capabilities (other than learning) are briefly described.

The main body of the paper describes SP70, a computer model of the ICMAUS
framework that incorporates processes for unsupervised learning. Examples are pre-
sented to show how the model can infer plausible grammars from appropriate input.

Anticipated future developments of the model are briefly discussed.
keywords: unsupervised learning, information compression, multiple alignment, uni-

fication, minimum length encoding

1 Introduction

This paper describes a novel approach to unsupervised learning that has been developed
within a framework of information compression by multiple alignment, unification and
search (ICMAUS).

The research reported here is part of a long-term research programme whose overarching
goal is the integration of diverse functions—learning, recognition, reasoning and others—
within one relatively simple framework. This has had a substantial impact on the way in
which the learning processes are organised.

The section that follows describes the background to this research. This is followed
by a section describing the ICMAUS framework in outline, with some of its applications
(other than learning). The main section of the paper describes how the framework has been
developed for unsupervised learning and describes the computer model (SP70) in which the

1

ideas are realised, with examples of what it can do. Shortcomings of the current model and
possible future developments are discussed.

2 Background

Several years ago, I developed a computer model, MK10, that is quite successful at dis-
covering, without supervision, words and other linguistic segments in unsegmented natural
language texts [Wolff, 1980, 1977, 1975]. MK10 was further developed into SNPR, a model
that is able, without supervision, to discover plausible context-free phrase-structure gram-
mars from unsegmented samples of artificial languages [Wolff, 1988, 1982].

Each of these models may be seen to be largely a process of information compression
(IC) by matching patterns against each other and merging or ‘unifying’ patterns that are
the same. Both models incorporate a process of searching through the abstract space of
alternative matches to find those that yield relatively large amounts of compression.

To a large extent, both models operate in accordance with principles of Minimum Length
Encoding (MLE) described in Section 3.2, below.1

In the early 1980s, I was struck by the parallels that seemed to exist between my
two programs for unsupervised learning and the Prolog system, designed originally for
theorem proving. A prominent feature of both learning models is IC by pattern matching,
unification and search. Although information compression is not a recognised feature of
Prolog, a process of searching for patterns that match each other is fundamental in that
system and the merging of matching patterns is an important part of ‘unification’ as that
term is understood in logic. It seemed possible that IC might have the same fundamental
role in logic—and perhaps also in ‘computing’ and mathematics—as it does in grammatical
inference.

These observations led to the thought that it might be possible to integrate unsupervised
learning and logical inference within a single system, dedicated to IC by pattern matching,
unification and search. Further thinking suggested that the scope of this integrated system
might be expanded to include such things as best-match information retrieval, fuzzy pattern
recognition, parsing and production of language, probabilistic inference and other aspects
of AI.

Some of this thinking is described in Wolff [1993].

2.1 Development

Development of these ideas has been underway since 1987.
Given the overall goal of integrating diverse functions within a single system, it was

evident quite early that the new system would need to be organised in a way that was rather
different from the organisation of the MK10 and SNPR models. And, notwithstanding
the development of Inductive Logic Programming, it seemed that Prolog, in itself, was not
suitable as a vehicle for the proposed developments—largely because of unwanted complexity
in the system and because of the relative inflexibility of the search processes in Prolog.

1MLE is an umbrella term for Minimum Message Length (MML) encoding, Minimum Description Length
(MDL) encoding and related ideas such as ‘Kolmogorov complexity’ [see Li and Vitányi, 1997].

2

It seemed necessary to build the proposed new integrated system from new and ‘deeper’
foundations.

Initial efforts focussed on the development of an improved version of ‘dynamic program-
ming’ for finding full matches and good partial matches between pairs of patterns [see, for
example, Sankoff and Kruskall, 1983]. About 1994, it became apparent that the scope of
the system could be greatly enhanced by replacing the concept of ‘pattern matching’ with
the more specific concept of ‘multiple alignment’, similar to that concept in bio-informatics
but with important differences.

Notwithstanding the origin of these ideas in research on inductive learning, most of the
effort to date has been focussed on such things as probabilistic reasoning [Wolff, 2001a,
1999b], natural language processing [Wolff, 2000], and the application of these ideas to the
interpretation of ‘computing’ [Wolff, 1999a] and concepts in mathematics and logic [Wolff,
2001c]. Now, with the integration of learning capabilities within the new framework, the
circle is largely complete.

2.2 Novelty of the Proposals

As we shall see, this approach to learning is founded on MLE principles and, in that respect,
it lies in the mainstream of work on unsupervised grammar induction and related kinds
of learning [see, for example, Denis, 2001, Nevill-Manning and Witten, 1997, Oliveira and
Sangiovanni-Vincentelli, 1996, Rapp et al., 1994, Allison et al., 1992, Fu and Booth, 1986a,b,
Solomonoff, 1964].

Although the ICMAUS framework draws its inspiration from many strands of thinking
in AI, computing and related disciplines, the framework itself—as it has been developed in
this programme of research—is a distinct and novel approach to problems in those fields,
including unsupervised learning.

Perhaps the most important and distinctive feature of this approach to learning is its
broad scope, integrating unsupervised learning with such things as parsing and production of
language, fuzzy pattern recognition and best-match information retrieval, class hierarchies
with inheritance of attributes, probabilistic and exact forms of reasoning, and others.

3 Information Compression by Multiple Alignment, Unifica-
tion and Search (ICMAUS)

The ICMAUS framework is intended as an abstract model of any kind of system for com-
puting or cognition. The overall organisation of the framework is as follows:

• The system receives raw data from the world via its ‘senses’. These data are designated
‘New’. In the course of learning, New information is transferred to a repository of
stored information, initially empty, which is designated ‘Old’.

• The system tries to compress each section of New as much as possible by searching for
matching patterns both within the given section and between that section and infor-
mation already stored in Old. If for example, the pattern ‘information compression’
appears two or more times, it may be assigned a relatively short identifier or ‘code’

3

(e.g., “IC”) which may then be used as an abbreviation for that pattern wherever it
appears.

• In Old, the system stores repeating patterns of this kind. It also stores unmatched
portions of New in case they may prove useful in compressing sections of New that
come later. As we shall see, the system also creates and stores patterns that represent
higher levels of abstraction. Each of the patterns stored in Old has appropriate code
symbols.

• Periodically, the patterns in Old are evaluated to differentiate those that are proving
useful in the encoding of New from those that are not. The latter may be purged from
the system.

In broad terms, this incremental scheme is similar to the well-known and widely-used
Lempel-Ziv algorithms for information compression. What is different about the ICMAUS
scheme (as it has been developed for AI applications) is an emphasis on partial matching
and on relatively thorough searching of the space of alternative possible matches. Also
distinctive is the concept of ‘multiple alignment’ as it has been developed in this research
to support the encoding of New information in terms of Old information in a hierarchy of
‘levels’ (as will be seen in examples below).

Information compression may be interpreted as a process of maximising Simplicity in
information (by removing redundancy) whilst retaining as much as possible of its non-
redundant, descriptive Power. Hence the sobriquet ‘SP’ that has been adopted for the
ICMAUS proposals and the computer models in which the framework is realised.

3.1 Representation of Knowledge

Given the intended wide scope of the framework, a goal of the research has been to devise a
‘universal’ scheme for the representation of knowledge, capable of representing diverse kinds
of knowledge in a succinct manner and capable of integrating diverse kinds of knowledge in
a seamless manner. Naturally, the design of the scheme would depend, in part, on the ways
in which stored knowledge is going to be used.

What has emerged is almost the simplest conceivable format for knowledge: arrays
or patterns of atomic symbols in one or more dimensions. So far, the focus has been on
one-dimensional arrays—‘strings’ or ‘sequences’ of symbols. However, since the system is
intended eventually to embrace arrays in two dimensions and possibly more, the relatively
general term ‘pattern’ is normally used.

In this context, a ‘symbol’ is merely a ‘mark’ that can be discriminated in a yes/no
manner from other symbols. In all the examples in this paper, each symbol is represented
by a string of one or more non-space characters bounded by spaces.

In general, symbols do not have ‘hidden’ meanings (e.g., “multiply” for the symbol
‘×’)—any meanings that may attach to symbols within a given body of knowledge are to
be expressed in the form of other symbols and patterns within that knowledge.

An apparent exception to the slogan “no hidden meanings” is that, within each pattern,
there is normally a distinction between symbols that represent the substance or contents
of the pattern and other symbols that serve to identify or ‘encode’ the pattern (as will be

4

described). This kind of distinction may be justified on the grounds that it is part of the
mechanism by which the system organises and uses its knowledge. What the slogan really
applies to are meanings that are part of the knowledge itself.

The ‘granularity’ of symbols in the ICMAUS framework is undefined. Symbols may be
used to represent very fine-grained details of a body of information or they may be used to
represent relatively large chunks of information.

Despite the extreme simplicity of the format for representing knowledge, the way it
is processed within the ICMAUS framework means that it can model a variety of es-
tablished representational schemes including context-free phrase-structure grammars (CF-
PSGs), context-sensitive grammars, production rules, networks, trees and other schemes.
Some examples will be seen below and many more may be found in Wolff [2001b,c, 2000,
1999a,b].

In general, it is assumed that principles of IC provide the key both to the succinct
representation to diverse kinds of knowledge and to the manipulation of that knowledge for
purposes of learning, reasoning, inference, calculation and the like.

3.2 Minimum Length Encoding

The ICMAUS framework is founded explicitly on MLE principles proposed by Solomonoff
[1997, 1964] and also by Wallace and Boulton [1968] and Rissanen [1978] [see also Li and
Vitányi, 1997].

The key idea in MLE is that, in grammatical inference and related kinds of learning,
one should seek to minimise (G + E), where G is the size of the grammar (in bits or
equivalent measure) and E is the size of the sample (in bits) after it has been encoded in
terms of the grammar. This principle guards against the induction of grammars that are
trivially small (where a small G is offset by a disproportionately large E) and it also guards
against the induction of grammars where a small value for E is achieved at the cost of a
disproportionately large value for G.

This approach to learning differs sharply from others such as ‘language identification
in the limit’ [Gold, 1967] or ‘probably approximately correct (PAC) learning’ [see Li and
Vitányi, 1997, pp. 339–350] because there is no pre-defined ‘target’ grammar or equivalent
structure against which the correctness of learning may be judged. The aim of learning is
simply to minimise (G + E) (abbreviated hereinafter as T), as far as that can be achieved
in practice.

One might suppose that the grammar with the smallest possible value for T constitutes
the target grammar. But, unlike target grammars in Gold’s framework or in PAC learning,
this grammar is not pre-defined and, in most cases, it can never be known. The reason it
cannot normally be known is that the abstract space of alternative grammars is normally
too large to be searched exhaustively. Any practical system must necessarily use heuristic
techniques to prune the search tree and this means that, in most cases, we can never be
sure that we have found the smallest possible value for T and we can thus never know what
the grammar with the smallest possible value for T would be. In MLE learning, we can
compare one grammar with another in terms of T but there is no pre-defined grammar to
serve as a touchstone of success.

5

3.2.1 MLE and Human Intuition

Part of the motivation for focussing on MLE principles is that they seem to have a bearing
on human perception and learning [see Chater, 1999, 1996, Wolff, 1988] and the human brain
is currently the best learning system in existence. Human intuitions about what constitutes
‘good’ or ‘natural’ ways of structuring information do seem to seem to be conditioned to a
large extent by MLE principles [Wolff, 1988, 1977].

3.3 Computer Models

During the development of the ICMAUS framework, computer models have been developed
as a means of testing the ideas and also as a means of demonstrating what can be done
with the framework.

Two main models have been developed to date:

• SP61 which realises the encoding of New information in terms of pre-defined Old
information but without any attempt to modify Old by adding patterns or purging
them. SP61 also contains procedures for calculating probabilities of inferences that
may be drawn by the system, as described in Section 3.4.4, below.

• SP70 which realises all four elements of the framework, including the addition of
patterns to Old and their evaluation in terms of MLE principles.

Although SP61 is largely a subset of SP70, it is convenient to run it as a separate model
for some applications. The organisation of SP70 is described in Section 4, below.

3.4 Applications

As an indication of the scope of the ICMAUS framework, this subsection briefly sketches
some of the things that it can do.

The first example (parsing of natural language) is described relatively fully because it
serves to illustrate the main elements of the multiple alignment concept as it has been de-
veloped in this research. Owing to limitations of space, the remaining examples of ICMAUS
applications are necessarily brief.

A much fuller overview of the framework and its capabilities is provided in Wolff [2001b]
and more detail about specific aspects of the framework may be found in other sources cited
below.

3.4.1 Natural Language Processing

Figure 1 shows the best alignment found by SP61 with the sentence ‘o n e o f t h e m d o e
s’ in New and patterns representing grammatical rules in Old. In this context, ‘best’ means
the alignment that allows New to be encoded economically in terms of patterns in Old, as
explained below.

By convention, New is always shown at the top of each alignment with patterns from
Old in the rows underneath, one in each row. The order of the rows below the top row is
entirely arbitrary and has no special significance.

6

0 o n e o f t h e m d o e s 0

| | | | | | | | | | | | |

1 | | | | | < N Np 0 t h e m > | | | | 1

| | | | | | | | | | | |

2 | | | < Q 0 < P | | > < N > > | | | | 2

| | | | | | | | | | | | | | |

3 | | | | | < P 2 o f > | | | | | 3

| | | | | | | | | |

4 | | | | | | < V Vs 1 d o e s > 4

| | | | | | | | | |

5 S Num ; < NP | | | | | | > < V | > 5

| | | | | | | | | | | |

6 | | | | < N Ns 3 o n e > | | | | | 6

| | | | | | | | | | | | |

7 | | < NP 0 < N | > < Q > > | 7

| | | | |

8 Num SNG ; Ns Q Vs 8

Figure 1: The best alignment found by SP61 with ‘o n e o f t h e m d o e s’ in New and
patterns representing grammatical rules in Old.

Apart from the pattern in row 8, the patterns from Old in this example are like re-write
rules in a context-free phrase-structure grammar (CF-PSG) with the re-write arrow omitted.
If we ignore row 8, the alignment shown in Figure 1 is very much like a conventional parsing,
marking the main components of the sentence: words and phrases and the sentence pattern
itself (shown in row 5).

Row 8 shows how the ‘discontinuous’ dependency that exists between the singular noun
in the subject of the sentence (‘Ns’) and the singular verb (‘Vs’) can be marked within the
alignment in a relatively direct manner. Despite the simplicity of the format for representing
knowledge, the formation of multiple alignments enables the system to express ‘context
sensitive’ aspects of language and other kinds of knowledge.

Within each pattern, some symbols have the status of identification (ID) symbols and
others serve as contents (C) symbols. In general, ID symbols in any given pattern comprise
bracket symbols (‘<’ and ’>’) that define the left and right boundaries of the pattern (where
that is necessary) together with one or more symbols, usually near the start of the pattern,
that serve to identify the pattern uniquely within Old or otherwise define how it relates
to other patterns. All other symbols are C symbols. Examples of ID symbols in Figure 1
include ‘< N Np 0 >’ in row 1, ‘< NP 0 >’ in row 7 and ‘Num SNG ; Q’ in row 8. The
corresponding C symbols are ‘t h e m’ in row 1, ‘< N > < Q >’ in row 7 and ‘Ns Vs’ in
row 8.2

An encoding for New can be derived from each alignment by looking for columns in the
alignment containing a single ID symbol, not matched to any other symbol, and copying
these symbols into a code pattern in the same sequence as they appear in the alignment. In
this example, the code pattern derived in this way is ‘S SNG 0 3 0 0 1’.

A neat feature of the ICMAUS framework is that, without any modification, it may be
used to produce sentences as well as parse them. If the program is run again with the
sentence in New replaced by the code pattern ‘S SNG 0 3 0 0 1’, the best alignment found

2Notice that the distinction between ID symbols and C symbols does not depend on their appearance.
The status of each symbol within a pattern is marked when the pattern is created.

7

by the system is, apart from the top row, the same as the one shown in Figure 1. All the
words in the original sentence appear within the alignment in their correct order.

Much more detail, with many more examples, may be found in Wolff [2000].

3.4.2 Fuzzy Pattern Recognition and Best-Match Information Retrieval

The dynamic programming built into the SP models means that they are just as at home
with ‘fuzzy’, partial matches between patterns as with exact matches. This means they lend
themselves well to modelling human-like capabilities for recognising patterns and objects
despite errors of omission, commission or substitution, including the way in which we can
recognise something even if it is partially obscured by other things. In a similar way, the
models are able to model best-match retrieval of information from Old.

Examples may be seen in Wolff [2001b, 1999b].

3.4.3 Class Hierarchies with Inheritance of Attributes

The ICMAUS framework also lends itself quite well to modelling class hierarchies with
inheritance of attributes and recognition of objects or patterns at multiple levels of abstrac-
tion. Any class and its associated attributes may be represented by a pattern and ‘isa’
links between classes may be established in much the same way as grammatical patterns
are linked by means of matching symbols in the parsing example shown in Figure 1.

Examples may be seen in Wolff [2001b, 1999b].

3.4.4 Probabilistic Reasoning

Any column within an alignment that does not contain a symbol from New may be regarded
as an inference that may be drawn from the alignment. For example, the column in Figure
1 that contains (two instances of) the symbol ‘V’ may be seen as representing the inference
that ‘d o e s’ is a verb.

This and related aspects of the ICMAUS framework provide a powerful means of mod-
elling several kinds of probabilistic inference including probabilistic chains of reasoning,
abductive reasoning, default reasoning, nonmonotonic reasoning, the phenomenon of “ex-
plaining away” and the solution of geometric analogy problems. These aspects of the IC-
MAUS framework are explained quite fully, with examples, in Wolff [1999b] [see also Wolff,
2001a].

3.4.5 Modelling ‘Computing’ and Concepts in Mathematics and Logic

In Wolff [1999a], I have argued that the ICMAUS framework provides an interpretation for
the Turing model of ‘computing’ and equivalent models such as the Post Canonical System.
Although the ICMAUS model is a little more complex than earlier models it appears to
illuminate a range of issues (mainly in AI) that are outside the scope of earlier models.

In Wolff [2001c], I have argued that the ICMAUS framework provides an interpretation
for a range of concepts in mathematics and logic, including both the static structures found
in those disciplines and the dynamics of calculation and inference.

8

4 SP70

All the main components of the ICMAUS framework outlined in Section 3 are now realised
within the SP70 software model (version 9.2).

In the description of the model that follows, the examples have a ‘linguistic’ flavour with
an emphasis on the simpler aspects of English syntax. However, the term ‘grammar’ in this
context should be construed very broadly since, as we noted in Section 3.1, it assumed that
similar principles may be applied to many different kinds of knowledge.

The model gives results in the area of unsupervised learning that are good enough to
show that the framework is sound. As we shall see, the model is able to abstract plausible
grammars from sets of simple sentences without prior knowledge of word segments or the
classes to which they belong (Section 6) and the computational complexity of the model
appears to be acceptable (Section 5.1).

However, in its current form, the model has at least two significant shortcomings and
some other deficiencies. A programme of further development, experimentation and refine-
ment is still needed to realise the full potential of the model for unsupervised learning.

This model is governed by mathematical principles—explained at pertinent points below—
but these are remarkably simple and in accordance with established theory. The main focus
in what follows is on the organisation of the model and the computational techniques em-
ployed within it.

4.1 Objectives

The main problems addressed in the development of this model have been:

• How to identify significant segments in the ‘corpus’ of data which is the basis of learn-
ing when the boundary between one segment and the next is not marked explicitly.

• How to identify classes of syntactically-equivalent segments.

• How to combine the learning of segmental structure with the learning of disjunctive
classes.

• How to achieve the learning of segments and classes through two or more levels of
abstraction. In a linguistic context, this means how to learn abstract structures
representing phrases, clauses and sentences—and classes of these entities—as well
as lower-level segments such as words.

• How to generalize grammatical rules beyond the data and how to correct over-
generalizations without feedback from a ‘teacher’ or the provision of ‘negative’ samples
or the grading of the data from ‘easy’ to ‘hard’.3

Solutions to these problems were found in the SNPR model [Wolff, 1988, 1982] but,
as noted earlier, the organisation of this model is quite unsuited to the wider goals of

3In the learning framework considered by Gold [1967], learning is not possible without some kind of
feedback or negative samples or grading of samples. The MLE framework circumvents the need for these
sources of information but it is still necessary to consider exactly how the generalization of rules and the
correction of over-generalizations is to be achieved.

9

the present research—integration of diverse functions within one framework. Finding new
solutions to these problems within the ICMAUS framework has been a significant challenge.

The SP70 model (v. 9.2) provides solutions to the first three problems and partial
solutions to the fourth and fifth problems. Further development will be required to achieve
robust learning of structures with more than two levels of abstraction and more work is
required on the generalization of grammatical rules and the correction of overgeneralizations
(see Section 7, below).

4.2 Overall Structure of the Model

Figure 2 shows the high-level organisation of the SP70 model. The program starts with a
set of New patterns and with a repository of Old patterns that is initially empty.

In broad terms, the model comprises two main phases:

• Create a set of patterns that may be used to encode the patterns from New in an
economical manner (operations 1 to 3 in Figure 2).

• From the patterns created in the first phase, compile one or more alternative ‘gram-
mars’ for the patterns in New in accordance with MLE principles (operation 4 in
Figure 2).

After reading a set of patterns into New, the system compiles an ‘alphabet’ of the
different types of symbols appearing in those patterns, counts their frequencies of occurrence
and calculates encoding costs as described below. These values will be needed for the
evaluation of alignments. The term symbol type in this connection means a representative
template or example of a set of identical symbols.

Next (operation 3), each pattern from New is processed by searching for alignments that
allow the given pattern to be encoded economically in terms of patterns in Old (as outlined
in Section 3.4.1). From a selection of the best alignments found, the program ‘learns’ new
patterns, as explained below, and adds them to Old. A copy of each pattern from New is
also added to Old, marked with new ID symbols as will be explained.

When all the patterns from New have been processed in this way, there is a process of
sifting and sorting to create one or more alternative grammars for the patterns from New
(operation 4). Each grammar comprises a subset of the patterns in Old and each one is
scored in terms of MLE principles.

4.3 Creating Multiple Alignments

The function create multiple alignments() referred to in Figure 2 creates zero or more mul-
tiple alignments, each one comprising the current pattern from New (CPFN4) and one or
more patterns from Old. Each alignment has a compression score which is a measure of
the amount of compression of the CPFN that can be achieved by encoding it in terms of
patterns from Old.

Apart from some minor modifications and improvements, this function is essentially
the same as the main component of the SP61 model, described quite fully in Wolff [2000].

4Where the word “current” is not required, a pattern from New will be referred as a PFN.

10

SP70()
{

1 Read a set of patterns into New. Old is initially empty.
2 Compile an alphabet of symbol types in New and, for each type,

find its frequency of occurrence and the number of bits
required to encode it.

3 While (there are unprocessed patterns
in New)

{
3.1 Identify the first or next pattern from New as the

‘current pattern from New’ (CPFN).
3.2 Apply the function CREATE_MULTIPLE_ALIGNMENTS() to

create multiple alignments, each one between the
CPFN and one or more patterns from Old.

3.3 During 3.2, the CPFN is copied into Old, one symbol
at a time, in such a way that the CPFN can be
aligned with its copy but that any one symbol in
the CPFN cannot be aligned with the corresponding
symbol in the copy.

3.4 Sort the alignments formed by this function in order
of their compression scores.

3.5 From amongst the best alignments, select a subset
that conforms to other constraints described in the
text.

3.6 Process the selected alignments with the function
DERIVE_PATTERNS(). This function derives encoded
patterns from alignments and adds them to Old.

}

4 Apply the function SIFTING_AND_SORTING() to create one or
more alternative grammars for the patterns in New, each
one scored in terms of MLE principles. Each grammar is
a subset of the patterns in Old.

}

Figure 2: The organisation of SP70. The workings of the functions cre-
ate multiple alignments(), derive patterns() and sifting and sorting() are explained in Sec-
tions 4.3, 4.5 and 4.6, respectively.

11

Readers are referred to this source for a more detailed description of how multiple alignments
are formed in the ICMAUS framework.

At the heart of the function is a process for finding full alignments and good partial
alignments between pairs of patterns. This process, described quite fully in Wolff [1994], is
a version of ‘dynamic programming’ [see Sankoff and Kruskall, 1983] with advantages over
standard methods:

• List processing techniques allow memory to be used efficiently so that long patterns
may be matched.

• In cases where a pair of patterns can be matched in more than one way, the process can
deliver two or more alternative alignments, each one scored in terms of compression.

• The ‘depth’ or thoroughness of searching—and thus the speed of processing—can be
varied.

This matching process is applied iteratively to build alignments containing two or more
rows, one pattern per row. The process stops when no more alignments can be found or
when compression scores have reached a peak and have fallen for two or three cycles.

On the first cycle, the matching process is applied to find alignments, each one between
the CPFN and one of the patterns stored in Old. When this has been completed, they are
sorted in order of their compression scores and several of the best are selected for further
processing. In general, the alignments that are selected are ones that can be treated as if
they were a single sequence (pattern) of symbols, as described in Section 4.3.3, below.

In the second and subsequent cycles of the building process, two or three of the best
alignments selected in the previous cycle are chosen as ‘driving’ patterns and matched
against ‘target’ patterns comprising the current set of patterns in Old together with all
of the alignments selected in previous cycles (including the driving patterns themselves).
Each of the resulting alignments is between one driving pattern and one target pattern. As
on the first cycle, several of the best alignments formed are selected for further processing
provided they can be treated as if they were single sequences of symbols.

4.3.1 Calculation of Compression Scores

The compression score for an alignment is calculated as:

C = Nr −Ne

where Nr is the size, in bits, of the CPFN in its uncompressed ‘raw’ form and Ne is the
size, in bits, of the code pattern derived from the alignment as indicated in Section 3.4.1.
Nr is calculated as:

Nr =
i=n∑

i=1

si

where si is number of bits required to encode the ith symbol in the sequence of n symbols
in the CPFN. Ne is calculated in the same way from the symbols in the code pattern.

12

With a qualification to be described, the number of bits required to encode any given
symbol type that appears in New (its ‘encoding cost’) is calculated using the Shannon-
Fano-Elias (SFE) method [see Cover and Thomas, 1991]. This method is similar to the
well-known Huffman coding method and gives similar results—but it has advantages over
the Huffman method when codes are used for the calculation of probabilities [see Wolff,
1999b]. As noted above, the values for the frequencies of symbol types that are required for
this method are computed (in operation 2 in Figure 2) from the set of patterns in New.

Notice that the encoding cost of any symbol is totally independent of the size of the
symbol as it appears to the reader. In general, symbols are represented by character strings
chosen for reasons of readability or mnemonic value. These strings are quite independent of
the number of bits required to discriminate one symbol from another in an efficient manner.

The qualification mentioned above is that the encoding costs of symbol types appearing
in New (calculated by the SFE method) are multiplied by a cost factor, normally about 5
or 10. This means that symbols representing the original raw ‘data’ for the program are
treated by the system as if they were relatively large chunks of information—by contrast
with other symbols that are used to encode the data (added by the system in the course of
learning) which are not given any additional weighting. The reason for applying this cost
factor to data symbols is that, without this weighting, the best grammar found for the kind
of small example that is convenient for experimentation and demonstration is often simply
a repetition of the original patterns, without any recognition of structures within those
patterns. If the data symbols are treated as if they were larger chunks of information, then
the benefits of recognising substructures outweighs the costs of encoding those structures.
With larger examples, where frequency values for substructures will normally be higher,
this problem should disappear.

As learning proceeds, patterns are added to Old (operation 3.6 in Figure 2). Within
those patterns, some of the symbols are derived from New and their encoding costs are
already known. However, other symbols—ID symbols and copies of them—are created by
the system in operation 3.6 (Figure 2) and the variety of types of these symbols and their
frequencies of occurrence are constantly changing. For this reason, it is difficult at this
stage to calculate encoding costs using the SFE method. Accordingly, the encoding costs
of symbols created by the system are initially set at a fixed arbitrary value. As we shall
see, more precise values are calculated in the sifting and sorting() phase of processing. The
approximation at this stage does not seem to be a serious impediment to learning, perhaps
because the selection of alignments depends on relative values for compression scores, not
absolute values.

The search for alignments that maximise C conforms with MLE principles as outlined
in Section 3.2. The repository of Old patterns may be taken to be the current ‘grammar’
for encoding the CPFN and, for any given CPFN, the size of this grammar, G, is constant.5

Since G is constant, the goal of minimising T is equivalent to a goal of minimising E. For
any given CPFN, E is the same as Ne. Thus, since Nr is constant for any given CPFN,
seeking to minimise E is equivalent to the attempt to maximise C.

5As indicated in operation 3.3 of Figure 2 and described in Section 4.4, below, a copy of the CPFN is
added to Old during the process of building alignments. However, for the purpose of encoding the CPFN,
the entire copy (with ID symbols that are added to the copy) counts as part of Old and thus, for any given
CPFN, G is indeed constant.

13

4.3.2 Constraints on Matching when a Given Pattern Appears Two or More
Times in an Alignment

An important point to notice about multiple alignments in the ICMAUS framework is that
any pattern may appear two or more times in one alignment. For example, in a sentence
like The winds from the west are strong, there are two instances of a simple form of noun
phrase (the winds and the west) so that, in a multiple alignment parsing of the sentence,
there would be two appearances of the pattern representing the structure of that form of
noun phrase.

Notice that multiple appearances of one pattern within an alignment are not the same as
multiple copies of the pattern within an alignment. In the latter case, there are two or more
distinct patterns and it is quite acceptable for them to be fully aligned, one with another.
In the former case, there is only a single pattern so it is not permissible for a symbol in
one appearance to be matched against the corresponding symbol in another appearance—
because this would mean matching the given symbol with itself. However, it is permissible
to form a match between one symbol within the given pattern and another symbol (in
another position) in the same pattern.

In any situation where a given pattern is matched—directly or indirectly—with itself,
the matching process in the create multiple alignments() function is constrained to prevent
any one symbol being matched with itself.

4.3.3 Constraints on “Mismatches” between Patterns and the Treatment of
Alignments as Simple Sequences

A mismatch in an alignment occurs where one or more unmatched symbols in one pattern
appear opposite one or more unmatched symbols in another pattern within the alignment.
Symbols are ‘opposite’ each other if they lie between two columns of matched symbols or
between one column of matched symbols and the beginning or end of the alignment.

In the ICMAUS framework, mismatches are illegal if they occur between patterns from
Old. If any alignment contains that kind of mismatch, it is discarded. Notice that a
mismatch between the CPFN and any pattern from Old is legal and, as we shall see, it is
those kinds of mismatches (and, more generally, unmatched C symbols within alignments)
that drive the learning process.

In each of the alignments shown in Figure 3, row 0 contains a pattern from New and
rows 1 and 2 contain patterns from Old. Where ‘x’ and ‘y’ lie opposite each other (in (a)
and (b)), there is an illegal mismatch. Where ‘b’ or ‘c’ lies opposite ‘x’ or ‘y’ (or both) (in
all four alignments), the mismatch is legal.

As was noted above, the process of building multiple alignments requires that each
alignment created in the intermediate stages can be treated as a single sequence of symbols.
The critical issue here is whether or not a given alignment contains any illegal mismatches.
If it does contain illegal mismatches, it cannot be treated as a single sequence. Otherwise, it
can. Notice that mismatches between the CPFN and other patterns are of no consequence.
For example, alignment (c) in Figure 3 may be treated as the sequence ‘a x c’ while alignment
(d) in the same figure may be treated as ‘a b y’. All unmatched symbols within the CPFN
are simply ignored.

14

0 a b c 0 0 a b c 0
| | | |

1 a x c 1 1 a b x 1
| | | |

2 a y c 2 2 a b y 2

(a) (b)

0 a b c 0 0 a b c 0
| | | |

1 a x c 1 1 a b 1
| | | |

2 a c 2 2 a b y 2

(c) (d)

Figure 3: Alignments illustrating mismatches as discussed in the text.

4.4 Copying the CPFN into Old

In its bare essentials, ‘learning’ in SP70 is achieved by the addition of patterns to Old. This
occurs in two ways: by copying each pattern from New into Old (operation 3.3 in Figure 2)
and by deriving patterns from alignments in the function derive patterns() (operation 3.6
in the same figure). The first of these is described here and the second is described in the
next subsection.

During the matching process in the first cycle of the create multiple alignments() func-
tion, the CPFN is copied, one symbol at a time, into Old in such a way that any symbol in
the CPFN can be matched with any earlier symbol in the copy but it cannot be matched
with the corresponding symbol in the copy or any subsequent symbol. When the transfer is
complete, ID symbols are added to the copy to provide a ‘code’ for the pattern, as described
below.

The aim here is to detect any redundancy that may exist within each pattern from New
(e.g., the repetition that can be seen in the pattern ‘a b c d x y z a b c d’) but to avoid
detecting the redundancy resulting from the fact that the CPFN has been copied into Old.
This constraint is imposed for very much the same reason as the constraint (described in
Section 4.3.2, above) which prevents any one symbol within an alignment being matched
with itself.

The reason for copying each pattern from New into Old rather than simply moving it is
that each such pattern (with its ID symbols) is a candidate for inclusion in one or more of
the best grammars selected by the sifting and sorting() function and it cannot be evaluated
properly unless it is a copy of the corresponding pattern from New, not the pattern itself
(see Section 4.6, below).

The ID symbols that are added to the copy of each CPFN comprise left and right
brackets (‘<’ and ‘>’) at each end of the pattern together with symbols immediately after
the left bracket that serve to identify the pattern uniquely amongst the patterns in Old.

15

For the sake of consistency with the derive patterns() function (see Section 4.5, next), two
ID symbols follow the left bracket. Thus, for example, a pattern from New like ‘t h a t b o
y r u n s’ might become ‘< %1 9 t h a t b o y r u n s >’ when ID symbols have been added.

4.5 Deriving Patterns from Alignments

In operation 3.6 in Figure 2, the derive patterns() function is applied to a selection of the
best alignments formed and, in each case, it looks for sequences of unmatched symbols
within the alignment and also sequences of matched symbols.

Consider the alignment shown in Figure 4. From an alignment like that, the function
finds the unmatched sequences ‘g i r l’ and ‘b o y’ and, within row 1, it also finds the
matched sequences ‘t h a t’ and ‘r u n s’. With respect to row 1, the focus of interest is the
matched and unmatched sequences of C symbols—ID symbols are ignored.

0 t h a t g i r l r u n s 0
| | | | | | | |

1 < %1 9 t h a t b o y r u n s > 1

Figure 4: A simple alignment from which other patterns may be derived.

A copy of each of the four sequences is made, ID symbols are added to each copy (as
described in Section 4.5.1, below) and the copy is added to Old. In addition, another
‘abstract’ pattern is made that records the sequence of matched and unmatched patterns
within the alignment. The result in this case is five patterns like those shown in Figure 5.

< %7 12 t h a t >
< %9 14 b o y >
< %9 15 g i r l >
< %8 13 r u n s >
< %10 16 < %7 > < %9 > < %8 > >

Figure 5: Patterns derived from the alignment shown in Figure 4.

It should be clear that the set of patterns in Figure 5 is, in effect, a simple grammar for
the two sentences in Figure 4, with patterns representing grammatical rules in much the
same style as those shown in Figure 1. The abstract pattern ‘< %10 220 < %7 > < %9
> < %8 > >’ describes the overall structure of this kind of sentence with slots that may
receive individual words at appropriate points in the pattern.

Notice how the symbol ‘%9’ serves to mark ‘b o y’ and ‘g i r l’ as alternatives in the
middle of the sentence. This is a grammatical class in the tradition of distributional or
structural linguistics [see, for example, Fries, 1952, Harris, 1951].

With alignments like this:

0 t h e g r e e n a p p l e 0
| | | | | | | |

1 < %1 2 t h e a p p l e > 1

16

or this:
0 t h e a p p l e 0

| | | | | | | |
1 < %1 2 t h e g r e e n a p p l e > 1

the system derives patterns very much as before except that the unmatched sequence (‘g r
e e n’) is assigned to a class by itself, without any alternative pattern that may appear in
the same context. Arguably, there should be some kind of ‘null’ alternative to ‘g r e e n’
in cases like this in order to capture the idea that “the apple” and “the green apple” are
acceptable variants of the same phrase. This is a possible refinement of the model in the
future.

Readers may wonder why the grammar shown in Figure 5 was not simplified to some-
thing like this:

< %9 14 b o y >
< %9 15 g i r l >
< %10 16 t h a t < %9 > r u n s >

The main reason for adopting the style shown in Figure 5 is that the overall organisation
of the model is simpler if each newly-derived pattern is automatically referenced from the
contexts or contexts in which it may appear. Another reason is that it is anticipated that,
with realistically large corpora, most of the patterns that will ultimately turn out to be
significant in terms of MLE principles will appear in two or more contexts and, in that case,
MLE principles are likely to dictate that each pattern should be referenced from each of its
contexts rather than written out redundantly in each of the two or more places where it
appears.

4.5.1 Assignment of Identification Symbols

Apart from the terminating brackets, each pattern in Figure 5 has two ID symbols:

• A ‘class’ symbol (e.g., ‘%7’ or ‘%9’) that normally starts with the ‘%’ character.
The class symbol is, in effect, a reference to the context or contexts in which the
given pattern may appear. Thus, for example, the symbol ‘%7’ in the first pattern in
Figure 5 shows that that pattern may appear where the matching symbol occurs in
the pattern ‘< %10 220 < %7 > < %9 > < %8 > >’. Any one pattern may belong
to more than one class and should contain a symbol for each of the classes it belongs
to (see Section 4.5.2).

• A ‘discrimination’ symbol (e.g., ‘12’, ‘14’) that serves to distinguish the pattern from
any others that may belong in the same class. At this stage, the discrimination
symbol is simply a unique identifier for the given pattern amongst the other patterns
and alignments created by the program.

While alignments are being built and coded patterns are being added to Old, new class
symbols and new discrimination symbols are created quite liberally. However, many of these
symbols are weeded out during the sifting and sorting() phase of processing and those that
remain are renamed in a tidy manner.

17

4.5.2 Avoiding Duplication

In the course of deriving patterns from alignments and adding them to Old, it can easily
happen that a newly-derived pattern has the same C symbols as one that is already in Old.
For this reason, each newly-derived pattern is checked against patterns already stored in
Old and it is discarded if an existing pattern is found with the same C symbols.

Although the discarded pattern has the same C symbols as a pre-existing pattern, it
comes from a different context. So a new symbol type is created to represent that context,
a copy of the symbol type is added to the pre-existing pattern, and another copy of the
symbol type is added to the abstract pattern in the appropriate position. In this way,
any one sequence of C symbols may appear in a pattern containing several different class
symbols, each one representing one of the contexts where the C symbols may appear.

As the program stands, there is a one-to-one relation between contexts and classes. But
it can easily happen that the set of patterns that may appear in one context is the same
as the set of patterns that may appear in another. At some stage, it is intended that the
program will be augmented to check for this kind of redundancy and to merge classes that
turn out to be equivalent.

4.5.3 Deriving Patterns from Alignments Containing Three or More Rows

For any given alignment, the derive patterns() function works by looking for one or more
unmatched sequences of symbols in the CPFN, or one or more sequences of unmatched
C symbols in a pattern from Old, or both these things. What happens if an alignment
contains two or more patterns from Old?

Consider the alignment shown in Figure 6. In a case like this, it is necessary to identify
one of the patterns from Old for the purpose of deriving patterns from the alignment. The
pattern that is chosen is the one that is deemed to be the most ‘abstract’ pattern amongst
those in the rows below the top row.

0 t h e r e d a p p l e f a l l s 0
| | | | | | | | | | | | |

1 | | | | | | | | < %4 5 f a l l s > 1
| | | | | | | | | | |

2 < %5 7 < %1 | | | > < %2 > < %3 | | | | | > < %4 > > 2
| | | | | | | | | | | | | |

3 | | | | | | < %3 3 a p p l e > 3
| | | | | |

4 < %1 0 t h e > 4

Figure 6: An alignment (between a pattern from New and four patterns from Old) from
which other patterns may be derived.

The most abstract row in any alignment is the row below the top row that starts furthest
to the left within the alignment, e.g., row 5 in Figure 1 and row 2 in Figure 6. Typically,
this is also the row that finishes furthest to the right. In general, this is the row within
any alignment that, directly or indirectly, encodes the largest number of symbols from the

18

CPFN. Of course, if an alignment contains only two rows, then row 1 is the most abstract
row.

To be a suitable candidate for processing by the derive patterns() function, the only
row below the top row that may contain unmatched C symbols is the most abstract row.
Also, there must be at least one unmatched C symbol somewhere within the CPFN and the
most abstract row. Any alignment that does not meet these conditions is discarded for the
purpose of deriving new patterns.

From the alignment shown in Figure 6, the function creates patterns like those shown
in Figure 7 and adds them to Old.

< %2 9 r e d >
< %7 10 < %3 > < %4 > >
< %8 11 < %1 > < %2 > < %7 > >

Figure 7: A set of patterns derived from the alignment shown in Figure 6.

Here, the unmatched sequence ‘r e d’ from the CPFN has been converted into the pattern
‘< %2 9 r e d >’. The system recognises that ‘r e d’ lies opposite the sequence ‘< %2 >’
within row 2 of Figure 6 and that this sequence is a reference to the class ‘%2’. Accordingly,
the pattern ‘r e d’ has been assigned to that class. If the unmatched sequence opposite ‘r e
d’ could not be recognised as a reference to a class, or if there was no unmatched sequence
opposite ‘r e d’, then the system would create a new class and new patterns in the same
manner as we saw in the examples at the beginning of Section 4.5.

The second pattern in Figure 7 (‘< %7 10 < %3 > < %4 > >’) is derived from the
sequence ‘< %3 > < %4 >’ within the abstract pattern in row 2 of Figure 6. The third
pattern (‘< %8 11 < %1 > < %2 > < %7 > >’) is a new version of that abstract pattern
that references the class of the second pattern (‘%7’).

4.5.4 Redundancy in Old

Given that the system is dedicated to information compression, it may seem strange that, at
this stage of processing, there may be considerable replication of information (redundancy)
amongst the patterns in Old. Patterns are added to Old but, at this stage, nothing is
removed from Old. In the example just considered, the pattern ‘< %7 10 < %3 > < %4 >
>’ coexists with the pattern ‘< %5 7 < %1 > < %2 > < %3 > < %4 > >’ even though
they both contain the sequence ‘< %3 > < %4 >’. In the example from Figures 4 and 5,
the patterns ‘< %7 12 t h a t >’, ‘< %9 14 b o y >’ and ‘< %8 13 r u n s > coexist with
the pattern ‘< %1 9 t h a t b o y r u n s >’ despite the obvious duplication of information
amongst these patterns.

The reason for designing the system in this way is that there is no guarantee that any
given pattern derived from an alignment will ultimately turn out to be ‘correct’ in terms
of MLE principles or one’s intuitions about what the correct grammar should be. Indeed,
many of the patterns abstracted by the system are clearly ‘wrong’ in these terms. Retention
of older patterns in the store alongside patterns that have been derived from them leaves the
door open for the system to create ‘correct’ patterns at later stages regardless of whether

19

‘wrong’ patterns had been created earlier. In effect, the system is able to explore alternative
paths through the abstract space of possible patterns.

4.6 Sifting and Sorting of Patterns

Identification of ‘wrong’ patterns occurs in the sifting and sorting() stage of processing
(operation 4 in Figure 2), where the system develops one or more alternative grammars
for the patterns in New in accordance with MLE principles. Figure 8 shows the overall
structure of the sifting and sorting() function.

Each pattern in Old has an associated frequency of occurrence and, at the start of the
function, all these values are set to zero. Then, all the patterns in New are reprocessed with
the create multiple alignments() function, building multiple alignments as before, each one
between one pattern from New and one or more patterns in Old.

The difference on this occasion is that, for each CPFN, the best alignments are filtered to
remove any that contain unmatched symbols in the CPFN or unmatched C symbols in any
pattern from Old. The remaining ‘full’ alignments provide the basis for further processing.

SIFTING_AND_SORTING()
{

1 For each pattern in Old, set its frequency of occurrence to 0.
2 While (there are still unprocessed patterns in New)
{

2.1 Identify the first or next pattern from New as the CPFN.
2.2 Apply the function CREATE_MULTIPLE_ALIGNMENTS() to

create multiple alignments, each one between the CPFN
and one or more patterns from Old.

2.3 From amongst the best of the multiple alignments formed,
select ‘full’ alignments in which all the symbols of
the CPFN are matched and all the C symbols are
matched in each pattern from Old.

2.4 For each pattern from Old, count the maximum number of
times it appears in any one of the full alignments
selected in operation 2.3. Add this count to the
frequency of occurrence of the given pattern.

}
3 Compute frequencies of symbol types and their encoding costs.

From these values, compute encoding costs of patterns in
Old and new compression scores for each of the full
alignments created in operation 2.

4 Using the alignments created in 2 and the values computed in
operation 3, COMPILE_ALTERNATIVE_GRAMMARS().

}

Figure 8: The organisation of the sifting and sorting() function. The com-
pile alternative grammars() function is described in Section 4.6.1.

20

In this phase of the program, we can be confident of finding at least one full alignment
for each CPFN because, in the previous phase, each unmatched portion of the given pattern
from New led to the creation of patterns in Old that would provide an appropriate match
in the future.

When all the patterns from New have been processed in this way, there is a set A of full
alignments, divided into b1...bm disjoint subsets, one for each PFN. From these alignments,
the function computes the frequency of occurrence of each of the p1...pn patterns in Old as:

fi =
j=m∑

j=1

max(pi, bj)

where max(pi, bj) is the maximum number of times that pi appears in any one alignment
in subset bj . Using the maximum value for any one alignment for a given PFN is necessary
because the alignments in each bj are alternative analyses of the corresponding PFN. If we
simply counted the number of times each pattern appeared in all the alignments for a given
PFN, the frequency values would be too high.

The function also compiles an alphabet of the symbol types, s1...sr, in the patterns in
Old and, following the principles just described, computes the frequency of occurrence of
each symbol type as:

Fi =
j=m∑

j=1

max(si, bj)

where max(si, bj) is the maximum number of times that si appears in any one alignment
in subset bj .

From these values, the encoding cost of each symbol type is computed using the SFE
method as before [Cover and Thomas, 1991]. As before (Section 4.3.1), the encoding cost
of each of the ‘data’ symbol types (those that appears in New) is weighted so that data
symbols behave as if they were relatively large chunks of information.

Each symbol in each pattern in New and Old is then assigned the frequency and encoding
cost of its type. With these values in place, the compression score of each alignment in the
set of full alignments is recalculated.

Finally, in operation 4 of Figure 8, a set of one or more alternative grammars is compiled,
as described in Section 4.6.1.

As the program stands, these alternative grammars are simply presented to the user
for inspection. However, it is intended that the patterns in Old should be purged of all
its patterns except those in the best grammar that has been found. It is anticipated that
the program will be developed so that patterns from New will be processed in batches and
that this kind of purging of Old will occur at the end of each batch to remove the ‘rubbish’
and retain only those patterns that have proved useful in encoding the cumulative set of
patterns from New.

4.6.1 Compiling a Set of Alternative Grammars

The set of alternative grammars for the patterns in New are derived (in the com-
pile alternative grammars() function) from the full alignments created in operation 2 of
Figure 8.

21

For any given PFN, a grammar for that pattern can be derived from one of its full
alignments by simply listing the patterns from Old that appear in that alignment, counting
multiple appearances of any pattern as one. Any such grammar may be augmented to cover
an additional PFN by selecting one of the full alignments for the second PFN and adding
patterns from Old that appear within that alignment and are not already present in the
grammar (counting multiple appearances as one, as before). In this way, taking one PFN
at a time, a grammar may be compiled for all the patterns from New.

A complication, of course, is that there are often two or more full alignments for any
given PFN. This means that, for a given set of patterns from New, one can generate a tree of
alternative grammars with branching occurring wherever there are two or more alternative
alignments for a given PFN. Without some constraints, this tree can become unmanageably
large.

In the compile alternative grammars() function, the tree of alternative grammars is
pruned periodically to keep it within reasonable bounds. The tree is grown in succes-
sive stages, at each stage processing the alignments for one of the patterns from New and,
for each grammar, processing only one alignment for each PFN. Values for G, E and T
are calculated for each grammar and, at each stage, grammars with high values for T are
eliminated.

For a given grammar comprising patterns p1...pg, the value of G is calculated as:

G =
i=g∑

i=1

(
j=Li∑

j=1

sj)

where Li is the number of symbols in the ith pattern and sj is the encoding cost of the jth
symbol in that pattern.

Given that each grammar is derived from a set a1...an of alignments (one alignment for
each PFN), the value of E for the grammar is calculated as:

E =
i=n∑

i=1

ei

where ei is the size, in bits, of the code string derived from the ith alignment (as described
in Section 3.4.1), calculated as described in Section 4.3.1.

When the set of alternative grammars has been completed, each grammar is ‘cleaned
up’ by removing code symbols that have no function in the grammar and by renaming code
symbols in a tidy manner (see Section 6.1, below).

Before leaving this section, it is worth pointing out a minor anomaly in the way values
for G and E are calculated. These values depend on the encoding costs of symbols which
themselves depend on frequencies of symbol types. At present, these frequencies are derived
from the entire set of patterns in Old but it would probably be more appropriate if frequency
values were derived from each grammar individually at each stage in the process of compiling
grammars. The results are likely to be similar in both cases since encoding costs depend on
relative frequency values, not absolute values and, for the symbol types appearing in any
one grammar, it is likely that the ranking of frequency values derived from the grammar
would be similar to the ranking derived from the entire set of patterns in Old.

22

5 Evaluation of the Model

Criteria that may be used to evaluate a learning model like SP70 include:

• If applications are scaled up to realistic size, is the model likely to make unreasonable
demands for processing power or computer memory?

• Given that the system aims to find grammars with relatively small values for T , does
it succeed in this regard?

• Does it produce knowledge structures that look ‘natural’ or ‘reasonable’? Since hu-
mans are the most ‘powerful’ learning systems on the planet, there is some justification
for using human intuitions about the structuring of information as a touchstone for
success or failure of an artificial learning system. Given evidence that human cogni-
tion is conditioned by MLE principles (Section 3.2.1), human intuitions provide an
indirect check on whether or not MLE principles have been successfully implemented
in the model.

• Does it produce knowledge structures that successfully support other operations such
as reasoning, making ‘expert’ judgements, playing chess, and so on?

The first of these criteria is discussed in the next subsection. Evidence bearing on the
second criterion is presented in Section 6.1.2, below, and the intuitive plausibility of results
obtained from the model is considered at various points in Sections 6 and 7. No attempt
has yet been made to evaluate SP70 in terms of the fourth criterion.

5.1 Computational Complexity

In common with other programs for unsupervised learning (and, indeed, other programs
for finding good multiple alignments), SP70 does not attempt to find theoretically ideal
solutions. This is because the abstract space of possible grammars (and the abstract space
of possible alignments) is, normally, too large to be searched exhaustively. In general,
heuristic techniques like hill climbing, genetic algorithms, simulated annealing etc must be
used. By using these techniques, one can normally convert an intractable computation into
one with computational complexity that is within acceptable limits.

In SP70, the critical operation is the formation of multiple alignments (cre-
ate multiple alignments()). Other operations (e.g., the derive patterns() function) are, in
comparison, quite trivial in their computational demands.

In a serial processing environment, the time complexity of the cre-
ate multiple alignments() function has been estimated [Wolff, 1998] to be approximately
O(log2n× nm), where n is the size of the pattern from New (in bits) and m is the sum of
the lengths of the patterns in Old (in bits). In a parallel processing environment, the time
complexity may approach O(log2n × n), depending on how well the parallel processing is
applied. In serial and parallel environments, the space complexity should be O(m).

23

In SP70, the function is applied (twice) to the set of patterns in New so we need to take
account of how many patterns there are in New. It seems reasonable to assume that the
sizes of patterns in New are approximately constant.6

Old is initially empty and grows as learning proceeds. The size of Old (before purging)
is, approximately, a linear function of the size of New. Given this growth in the size of Old,
the time required to create alignments for any given pattern from New will grow as learning
proceeds. Again, the relationship is approximately linear.

So if we ignore operations other than the create multiple alignments() function, we may
estimate the time complexity of the program (in a serial environment) to be O(N2) where N
is the number of patterns in New. In a parallel processing environment, the time complexity
may approach O(N), depending on how well the parallel processing is applied. In serial or
parallel environments, the space complexity should be O(N).

6 Examples

This section presents two examples to illustrate how SP70 works and what it can do. The
examples are fairly simple, partly for the sake of clarity and partly because of shortcomings
in the model (discussed in Section 7, below).

6.1 Example 1

The four short sentences supplied to SP70 as New for this first example are shown in Figure
9.

j o h n r u n s
m a r y r u n s
j o h n w a l k s
m a r y w a l k s

Figure 9: Four patterns supplied to SP70 as New.

The two best grammars found by the program for these sentences (with 10 as the cost
factor) are shown in Figure 10. In (a) the best grammar is shown in the form that it is first
compiled and in (b) the same grammar is shown after it has been cleaned up. Figure 10 (c)
shows the second-best grammar after it has been cleaned up.

Cleaning up grammars means removing class symbols that have no referents (e.g., ‘%7’
and ‘%11’ in the second pattern in Figure 10 (a)) and renumbering the class symbols and the
discrimination symbols, starting from 1 for each set. The renumbering is a purely cosmetic
matter and makes no difference to the encoding cost calculated for each symbol.

The two grammars shown in Figure 10 are both reasonably plausible grammars for the
four original sentences. In the best grammar ‘m a r y’ and ‘j o h n’ are picked out as discrete
words and assigned to the same grammatical class (‘%3’). In a similar way, ‘r u n’ and ‘w

6There is no requirement in the model that patterns in New should, for example, be complete sentences.
They may equally well be arbitrary portions of incoming data, perhaps measured off by some kind of input
buffer.

24

< %4 15 s >
< %7 %9 %11 152 m a r y >
< %9 %14 162 j o h n >
< %24 406 r u n >
< %24 %27 407 w a l k >
< %25 412 < %9 > < %24 > < %4 > >

(a)

< %2 1 s >
< %3 2 m a r y >
< %3 3 j o h n >
< %1 4 r u n >
< %1 5 w a l k >
< 6 < %3 > < %1 > < %2 > >

(b)

< %2 2 m a r y >
< %2 3 j o h n >
< %1 1 r u n s >
< %1 5 w a l k s >
< 4 < %2 > < %1 > >

(c)

Figure 10: Grammars found by SP70 with the four patterns shown in Figure 9 supplied as
New. (a) The best grammar without cleaning up. (b) The same grammar after cleaning
up. (c) The second best grammar after cleaning up.

25

a l k’ are each picked out as a discrete entity—corresponding to the ‘stem’ of a verb—and
both are assigned to the class ‘%1’. The suffix for these verb stems (‘s’) is picked out as a
distinct entity and the overall sentence structure is captured in the pattern ‘< 6 < %3 >
< %1 > < %2 > >’. The second best grammar is the same except that the suffix of each
verb is not separated from the stem.

6.1.1 Intermediate Results

The simplicity of the results shown in Figure 10 disguises what the program has done to
achieve them. The flavour of this processing may be seen from the selection of intermediate
results presented here.

When the first pattern from New is processed, Old is empty except for a copy of that
first pattern that is added to Old, one symbol at a time, as the pattern is processed. The
only alignment formed at this stage is shown in Figure 11. Remember that the symbols
in the PFN (‘j o h n r u n s’) must not be aligned with the corresponding symbols in the
pattern in Old because, in effect, this would mean matching each symbol with itself (Section
4.4).

0 j o h n r u n s 0
|

1 < %1 5 j o h n r u n s > 1

Figure 11: The only alignment formed when the first pattern from New is processed.

It is evident that, at this stage, opportunities to gain any useful insights into the overall
structure of the patterns in New are quite limited. From the ‘bad’ alignment shown in
Figure 11 the program abstracts the ‘bad’ patterns ‘< %2 7 n >’, ‘< %3 10 j o h >’, ‘<
%3 11 j o h n r u >’, ‘< %4 14 r u n s >’, ‘< %4 15 s >’ and ‘< %5 19 < %3 > < %2 >
< %4 > >’.7

When the next PFN (‘m a r y r u n s’) is processed, the program is able to form more
sensible alignments like

0 m a r y r u n s 0
| | | |

1 < %4 14 r u n s > 1

and

0 m a r y r u n s 0
| | | |

1 < %1 5 j o h n r u n s > 1.

The first of these alignments yields the patterns ‘< %7 152 m a r y >’ and ‘< %8 157
< %7 > < %4 > >’. It would have created a pattern for ‘r u n s’ but this is suppressed

7As applied to alignments and patterns, the words ‘bad’ and ‘good’ are shorthand for “bad/good in
terms of MLE principles and perhaps also in terms of one’s intuitions about what is or is not an appropriate
grammar for the data”. Quote marks will be dropped in the remainder of the paper.

26

because the program detects that a pattern with those C symbols already exists (‘< %4 14
r u n s >’).

From the second alignment, the system derives the pattern ‘< %9 162 j o h n >’ (assigned
to the class ‘%9’) and it would create a pattern for ‘m a r y’ but it detects that a pattern
with these C symbols already exists (‘< %7 152 m a r y >’). However, since ‘j o h n’
and ‘m a r y’ occur in the same context (‘—r u n s’), they should be assigned to the same
context-defined class. Accordingly, the program adds the class symbol ‘%9’ to the pattern
‘< %7 152 m a r y >’ so that it becomes ‘< %7 %9 152 m a r y >’ and it creates the
abstract pattern ‘< %10 168 < %9 > < %4 > >’, tying the whole structure together.

As processing proceeds in the pattern-generation phase (operation 3 in Figure 2), the
program forms good alignments like

0 j o h n w a l k s 0
| | | | |

1 < %1 5 j o h n r u n s > 1

and relatively bad ones like

0 j o h n w a l k s 0
| | | | |

1 < %1 5 j o h n r u n s > 1.

From alignments like these it derives correspondingly good and bad patterns.
By the time the last PFN is processed (‘m a r y w a l k s’) there are enough good

patterns in Old for the program to start forming quite plausible alignments like

0 m a r y w a l k s 0
| | | | | | | | |

1 | | | | < %22 %29 %4 %31 394 w a l k s > 1
| | | | | | |

2 < %8 157 < %7 | | | | > < %4 > > 2
| | | | | | |

3 < %7 %9 %11 152 m a r y > 3.

At the end of this phase of processing, Old contains a variety of patterns including
several good ones and quite a lot of bad ones.

In the second sifting and sorting() phase of the program (operation 4 in Figure 2) the
program compiles a set of alternative grammars the best of which are shown in Figure 10.

6.1.2 Plotting Values for G, E and T

The value of T for the best grammar is 1379 bits before cleaning up and 1348 bits after
cleaning up. For the second-best grammar, the corresponding values are 1418 and 1377.
By contrast, T is calculated to be 2245 bits for the ‘naive’ grammar that comprises the four
patterns from New with added ID symbols (‘< %1 5 j o h n r u n s >’, ‘< %6 21 m a r y r
u n s >’, ‘< %21 212 j o h n w a l k s >’ and ‘< %33 457 m a r y w a l k s >’).

Figure 12 shows how the values of G, E and T change as successive patterns from New
are processed when the set of alternative grammars is compiled. Each point on each of the

27

lower three graphs represents the relevant value from the best grammar found after the full
alignments for a given PFN have been processed. The top graph shows successive values of
T for the ‘naive’ grammar mentioned above.

0 1 2 3 4
0

500

1000

1500

2000

2500

Patterns from New

G
, E

 o
r

T
 in

 b
its

G
E
T
T*

Figure 12: Values of G, E and T for the best grammar found (before cleaning up) as
successive patterns from New are processed in compile alternative grammars(). Values for
T for the ‘naive’ grammar are also shown (marked with ‘*’).

Notice how the value of G does not change between the third PFN and the fourth. This
is because there is nothing in the fourth pattern that has not already been found in the first
three patterns.

6.2 Example 2

When New contains the eight sentences shown in Figure 13, the best grammar found by
SP70 (after cleaning up) is the one shown in Figure 14.

t h a t b o y r u n s
t h a t g i r l r u n s
t h a t b o y w a l k s
t h a t g i r l w a l k s
s o m e b o y r u n s
s o m e g i r l r u n s
s o m e b o y w a l k s
s o m e g i r l w a l k s

Figure 13: Eight sentences supplied to SP70 as New.

28

< %2 2 s o m e >
< %2 3 t h a t >
< %1 5 b o y >
< %1 6 g i r l >
< %3 4 r u n s >
< %3 7 w a l k s >
< 1 < %2 > < %1 > < %3 > >

Figure 14: The best grammar found by SP70 (after cleaning up) when New contains the
eight sentences shown in Figure 13.

This result looks reasonable but, in the light of the best grammar found in Example 1,
one may wonder why the terminal ‘s’ of ‘r u n s’ and ‘w a l k s’ has not been identified as
a discrete entity, separate from the verb stems ‘r u n’ and ‘w a l k’.

In the pattern-generation phase of processing, SP70 does form alignments like this

0 t h a t b o y w a l k s 0
| | | | | | | |

1 < %1 9 t h a t b o y r u n s > 1

which clearly recognises the verb stems and ‘s’ as distinct entities. But for reasons that are
still not entirely clear, the program does not build these entities into plausible versions of
the full sentence structure. The program isolates the pattern ‘< %25 599 t h a t b o y >’
from the alignment just shown but for some reason it fails to find internal structure within
that pattern—although it recognises ‘t h a t’ and ‘b o y’ in other contexts. This issue is
discussed in Section 7.1, below.

7 Discussion

This section discusses a selection of issues relating to the SP70 model, especially shortcom-
ings of the current version and how they may be overcome.

7.1 Finding Internal Structure

The failure of the model to find some of the internal structure within a sentence in Example
2 seems to be a manifestation of a more general shortcoming. Although the model in
its current form can isolate basic segments and tie them together in an overall abstract
structure, it is not good at finding intermediate levels of abstraction.

What seems to be needed is some kind of additional reprocessing of the patterns in Old,
including the abstract patterns that have been added to Old, to discover partial matches not
detected in the initial processing of the patterns from New. This should allow the system
to detect intermediate levels of structure such as phrases or clauses or structures that may
exist within smaller units such as words.

29

7.2 Finding Discontinuous Dependencies

In the development of the model to date, no attempt has been made to enable the system
to detect discontinuous dependencies such as number dependency between the subject of a
sentence and its main verb (as mentioned in Section 3.4.1 and illustrated in Figure 1) or
gender dependencies in languages like French.

Although this kind of capability may seem like a refinement that we can afford to do
without at this stage of development, a deficiency in this area seems to have an impact on
the program’s performance at an elementary level. Even in quite simple structures, depen-
dencies can exist that bridge intervening structure and, in its current form, the program
does not encode this kind of information in a satisfactory manner.

There do not seem to be any insuperable obstacles to solving this problem within the
ICMAUS framework:

• The format for representing knowledge accommodates these kinds of structure quite
naturally.

• Finding partial matches that bridge intervening structure is bread-and-butter for the
create multiple alignments() function.

What seems to be required is some revision of the way in which patterns are derived from
alignments.

7.3 Generalization of Grammatical Rules and the Correction of Overgen-
eralizations

A well-documented phenomenon in the way young children learn language is that they say
things like “The ball was hitted” or “Look at the gooses”, apparently applying general rules
for constructing words but applying them too generally. How is it that children eventually
learn to avoid these kinds of overgeneralizations? It is tempting to suppose that children
are corrected by parents or other adults but the weight of empirical evidence is that, while
such corrections may be helpful, they are not actually necessary for language learning.

MLE principles provide an elegant solution to this puzzle. Without the kind of feedback
or supplementary information postulated by Gold [1967], it is possible to search for gram-
mars that are good in MLE terms and these are normally ones that steer a path between
generalizations that are, intuitively, ‘correct’ and others that appear to be ‘wrong’. This
kind of effect has been demonstrated with the SNPR model [Wolff, 1982].

When SP70 is run on the first three of the four patterns shown in Figure 9, the best
grammar found is exactly the same as before (Figure 10 (b)). This grammar generates the
missing sentence (‘m a r y w a l k s’) as well as the other three sentences, but it does not
generate anything else.

In this example, the model generalizes in a way that seems intuitively to be correct
and avoids creating overgeneralizations that are glaringly wrong. However, relatively little
attention has so far been given to this aspect of the model and further work is required. In
particular, a better understanding is needed of alternative ways in which grammatical rules
may be generalized.

30

7.4 Other Developments

Other areas where further work is planned include:

• As was indicated in Section 4.6, it is anticipated that the program will be developed
so that it processes patterns from New in batches, purging bad patterns from Old at
the end of each batch.

• As was noted in Section 4.5.2, it is possible for two or more context-defined classes
to be the same. The program needs to check for this possibility and merge identical
classes whenever they are found.

• At present, the program applies the create multiple alignments() function twice to
each PFN, once as part of the process of generating patterns to be added to Old and
once in the sifting and sorting() phase. It seems possible that the two phases could
be integrated so that the create multiple alignments() function need only be applied
once to each PFN.

• As was suggested in Section 4.5, there may be a case for introducing a ‘null’ pattern
to allow for the encoding of optional elements in a syntactic structure.

• Although the computational complexity of the model on a serial machine is within
acceptable limits, improvements in that area, and higher absolute speeds, may be
obtained by the application of parallel processing. If or when residual problems in
the model have been solved, it is envisaged that the system will be developed as a
software virtual machine on existing high-parallel hardware or perhaps on new forms
of hardware dedicated to the needs of the model. It may be possible to exploit optical
techniques to achieve high-parallel matching of patterns in the core of the model.

7.5 Motivation and emotion

Although learning has been considered in this article primarily as an engineering problem,
the theory that has been described may be viewed as a possible theory of learning in people
and other animals.

We tend to remember things best that are significant for us in terms of our motivations
and emotions. How would this fit in with the kinds of learning mechanisms that have been
described?

The tentative suggestion here is that motivations and emotions may have an impact
when patterns are purged from the system. Other things being equal, we may suppose that
MLE principles govern the choice of which patterns should be retained and which should
be discarded. But any pattern that represents something that has special significance may
be retained by the system even if it does not score well in terms of MLE measures.

8 Conclusion

Although SP70 is still some way short of an ‘industrial strength’ system for unsupervised
learning, the results obtained so far are good enough to show that the general approach is
sound. Problems that have been identified appear to be soluble.

31

A particular attraction of this approach to learning is that the ICMAUS framework
provides a unified view of a variety of issues in AI thus facilitating the integration of learning
with other aspects of intelligence.

References

L. Allison, C. S. Wallace, and C. N. Yee. Minimum message length encoding, evolutionary
trees and multiple-alignment. In Proceedings of the Hawaii International Conference on
Systems Science, HICCS-25, January 1992.

N. Chater. Reconciling simplicity and likelihood principles in perceptual organisation. Psy-
chological Review, 103(3):566–581, 1996.

N. Chater. The search for simplicity: a fundamental cognitive principle? Quarterly Journal
of Experimental Psychology, 52 A(2):273–302, 1999.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley, New York,
1991.

F. Denis. Learning regular languages from simple positive examples. Machine Learning, 44
(1/2):37–66, 2001.

C. C. Fries. The Structure of English. Harcourt, Brace & World, New York, 1952.

K. S. Fu and T. L. Booth. Grammatical inference - introduction and survey 1. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(3):343–359, 1986a.

K. S. Fu and T. L. Booth. Grammatical inference - introduction and survey 2. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(3):360–375, 1986b.

M. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

Z. S. Harris. Methods in Structural Linguistics. University of Chicago Press, Chicago, 1951.

M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, New York, 1997.

C. G. Nevill-Manning and I. H. Witten. Compression and explanation using hierarchical
grammars. Computer Journal, 40(2/3):103–116, 1997.

A. L. Oliveira and A. Sangiovanni-Vincentelli. Using the minimum description length prin-
ciple to infer reduced ordered decision graphs. Machine Learning, 25(1):23–50, 1996.

P. E. Rapp, I. D. Zimmerman, E. P. Vining, N. Cohen, A. M. Albano, and M. A. Jimenez-
Montano. The algorithmic complexity of neural spike trains increases during focal
seizures. Journal of Neuroscience, 14(8):4731–4739, 1994.

J. Rissanen. Modelling by the shortest data description. Automatica-J, IFAC, 14:465–471,
1978.

32

D. Sankoff and J. B. Kruskall. Time Warps, String Edits, and Macromolecules: the Theory
and Practice of Sequence Comparisons. Addison-Wesley, Reading, MA, 1983.

R. J. Solomonoff. A formal theory of inductive inference. parts I and II. Information and
Control, 7:1–22 and 224–254, 1964.

R. J. Solomonoff. The discovery of algorithmic probability. Journal of Computer and System
Sciences, 55(1):73–88, 1997.

C. S. Wallace and D. M. Boulton. An information measure for classification. Computer
Journal, 11(2):185–195, 1968.

J. G. Wolff. An algorithm for the segmentation of an artificial lan-
guage analogue. British Journal of Psychology, 66:79–90, 1975. Copy:
www.informatics.bangor.ac.uk/∼gerry/lang learn.html#wolff 1975.

J. G. Wolff. The discovery of segments in natural lan-
guage. British Journal of Psychology, 68:97–106, 1977. Copy:
www.informatics.bangor.ac.uk/∼gerry/lang learn.html#wolff 1977.

J. G. Wolff. Language acquisition and the discovery of phrase
structure. Language & Speech, 23:255–269, 1980. Copy:
www.informatics.bangor.ac.uk/∼gerry/lang learn.html#wolff 1980.

J. G. Wolff. Language acquisition, data compression and gener-
alization. Language & Communication, 2:57–89, 1982. Copy:
www.informatics.bangor.ac.uk/∼gerry/lang learn.html#wolff 1982.

J. G. Wolff. Learning syntax and meanings through optimization and distributional analysis.
In Y. Levy, I. M. Schlesinger, and M. D. S. Braine, editors, Categories and Processes in
Language Acquisition, pages 179–215. Lawrence Erlbaum, Hillsdale, NJ, 1988. Copy:
www.informatics.bangor.ac.uk/∼gerry/lang learn.html#wolff 1988.

J. G. Wolff. Computing, cognition and information com-
pression. AI Communications, 6(2):107–127, 1993. Copy:
www.informatics.bangor.ac.uk/∼gerry/sp summary.html#AICOMM93.

J. G. Wolff. A scaleable technique for best-match retrieval of sequential information us-
ing metrics-guided search. Journal of Information Science, 20(1):16–28, 1994. Copy:
www.informatics.bangor.ac.uk/∼gerry/sp summary.html#scaleable technique.

J. G. Wolff. Probabilistic reasoning as information compression by multiple alignment,
unification and search. Technical report, School of Informatics, University of Wales at
Bangor, 1998. Copy: www.informatics.bangor.ac.uk/∼gerry/sp summary.html#PrbRs.

J. G. Wolff. ‘Computing’ as information compression by multiple alignment, unifica-
tion and search. Journal of Universal Computer Science, 5(11):777–815, 1999a. Copy:
www.jucs.org/jucs 5 11.

33

J. G. Wolff. Probabilistic reasoning as information compression by multiple alignment,
unification and search: an introduction and overview. Journal of Universal Computer
Science, 5(7):418–462, 1999b. Copy: www.jucs.org/jucs 5 7. The three articles on which
this article is based may be obtained from www.iicm.edu/wolff/1998a, b, c.

J. G. Wolff. Syntax, parsing and production of natural language in a framework of infor-
mation compression by multiple alignment, unification and search. Journal of Universal
Computer Science, 6(8):781–829, 2000. Copy: www.jucs.org/jucs 6 8. Three articles that
are the basis of this article may be obtained from www.iicm.edu/wolff/1998d1, d2, d3.

J. G. Wolff. Information compression by multiple alignment, unification and search
as a framework for human-like reasoning. Logic Journal of the IGPL, 9(1):205–222,
2001a. First published in the Proceedings of the International Conference on Formal
and Applied Practical Reasoning (FAPR 2000), September 2000, ISSN 1469–4166. Copy:
www.informatics.bangor.ac.uk/∼gerry/prob reason.htm#FAPR2000.

J. G. Wolff. Information compression by multiple alignment, unification and search
as a unifying principle in computing and cognition. Technical report, School of In-
formatics, University of Wales at Bangor, 2001b. Submitted for publication. Copy:
www.informatics.bangor.ac.uk/∼gerry/docs/overview long.htm.

J. G. Wolff. Mathematics and logic as information compression by multi-
ple alignment, unification and search. Technical report, School of Informat-
ics, University of Wales at Bangor, 2001c. Submitted for publication. Copy:
www.informatics.bangor.ac.uk/∼gerry/comp maths logic.htm#maths logic.

34

