
COMPUTER MAGAZINE, VOL. 00, NO. 0, [MONTH] [YEAR] 1

The curse of variety in computing, and what can be
done about it

J Gerard Wolff, Member, IEEE

Abstract—Excess freedom in how computers are used creates
problems that include: bit rot, problems with big data, problems
in the creation and debugging of software, and problems with
cyber security. To tame excess freedom, “tough love” is needed
in the form of a universal framework for the representation and
processing of diverse kinds of knowledge (UFK). The SP machine,
based on the SP theory of intelligence, has the potential to provide
that framework and to help solve the afore-mentioned problems.
There is potential to reduce the near-4000 different kinds of
computer file to one, and to reduce the hundreds of different
computer languages to one.

Index Terms—artificial intelligence, information compression,
bit rot, big data, representation of knowledge, computer lan-
guages

I. INTRODUCTION

Imagine that, instead of two or three international standards
for electrical plugs and sockets, there were thousands. Imagine
that every town and village had its own standard, that each
standard was incompatible with any other standard, and that
each electrical appliance might come fitted with a plug con-
forming to any one of the many standards. Travelling around
with our smartphones, tablet computers, electric toothbrushes,
and so on, we would have to carry a large bag full of adaptors,
and every shop selling electrical appliances would have to
carry a similarly large range of adaptors.

Although that would be ridiculous, it is exactly the kind
of thing we accept in the world of computing. Wikipedia lists
nearly 4,000 different ‘extensions’ for computer files, each one
representing a distinct type of file. Details may be seen in “List
of filename extensions”, Wikipedia, bit.ly/28LaT4v, retrieved
2016-08-16. A small sample is shown here:

• ASE—Adobe Swatch.
• ART—America Online proprietary format.
• BLP—Blizzard Entertainment proprietary texture format.
• BMP—Microsoft Windows Bitmap formatted image.
• CD5—Chasys Draw IES image.
• CIT—Intergraph is a monochrome bitmap format.
• CPT—Corel Photo-Paint image.
Each application is severely restricted in what kinds of file

it can process—it is often only one—and incompatibilities
are rife, even within one area of application such as word
processing or the processing of images. A program that will
run on one operating system will typically not run on any
other, so normally a separate version of each program is
needed for each operating system.

Dr Gerry Wolff is founder and director of CognitionResearch.org,
Menai Bridge, UK. e-mail: jgw@cognitionresearch.org.

Manuscript received [Month] [day], [year]; revised [Month] [day],
[year].

This kind of variety may also be found within individual
files. In a Microsoft Word file, for example, there may be
text in several different fonts and sizes, information gen-
erated by the “track changes” system, equations, WordArt,
hyperlinks, bookmarks, cross-references, Clip Art, pre-defined
shapes, SmartArt graphics, headers and footers, embedded
Flash videos, images created by drawing tools, tables, and
imported images in any of several formats including JPEG,
PNG, Windows Metafile, and many more.

Variety is also alive and well amongst computer languages.
Several hundred high-level programming languages are listed
by Wikipedia, plus large numbers of assembly languages,
machine languages, mark-up languages, style-sheet languages,
query languages, modelling languages, and more. There
is more information in “List of programming languages”,
Wikipedia, bit.ly/1GTW05W, retrieved 2016-08-16, and also
in “Computer language” and links from there, Wikipedia,
bit.ly/2aZ2kag, retrieved 2016-08-17.

Some of the variety in types of file, in formats for informa-
tion within files, and in computer languages, reflects variety
in the world, and is necessary and useful. But much of the
variety in computing systems is quite arbitrary, without any
real justification, and the source of significant problems in
computing, outlined in Section II. However, despite its harmful
effects, that kind of “excess” variety has become part of the
wallpaper of computing—something that we cease to see or
think about because it is so familiar, in much the same way
that people once thought that applying leeches was a good
way to treat an illness, or how it was accepted that the fastest
way to send a letter was via a courier on horseback, with no
idea that, one day, it might take only seconds to send that kind
of message to the other side of the world.

II. PROBLEMS WITH EXCESS VARIETY

Some people may say that the variety of types of computer
file, and variety in other areas of computing, is to be welcomed
as a sign of vigour and creativity in the computing industry.
But, often, excess variety in computing does little or nothing
in terms of the user’s needs or wishes, and is largely without
the value of variety in art, music or literature, or in human
cultures and natural languages. And excess variety in com-
puting systems contributes to four main kinds of problem: bit
rot, problems with big data, problems in the development and
debugging of software, and problems with safety and cyber
security.

The first of these, bit rot, is when software or data or both
become unusable because technologies have moved on. Vint
Cerf of Google has warned that the 21st century could become

http://bit.ly/28LaT4v
http://bit.ly/1GTW05W
http://bit.ly/2aZ2kag

COMPUTER MAGAZINE, VOL. 00, NO. 0, [MONTH] [YEAR] 2

a second “Dark Age” because so much data is now kept in
digital format, and that future generations would struggle to
understand our society because technology is advancing so
quickly that old files will be inaccessible. See, for example,
“Google’s Vint Cerf warns of ‘digital Dark Age’ ”, BBC News,
2015-02-13, bbc.in/1D3pemp.

With big data—the humongous quantities of information
that now flow from industry, commerce, science, and so on—
excess variety in formalisms and formats for knowledge and in
how knowledge may be processed is one of several problems
that make it difficult or impossible to obtain more than a small
fraction of the value in those floods of data [1], [2]. Most
kinds of processing—reasoning, pattern recognition, planning,
and so on—will be more complex and less efficient than it
needs to be [3, Section III]. In particular, excess variety is
likely to be a major handicap for data mining—the discovery
of significant patterns and structures in big data [3, Section
IV-B].

Excess variety in computing also means inefficiencies in
the labour-intensive and correspondingly expensive process
of developing software and the difficulty of reducing or
eliminating bugs in software.

And excess variety means potentially serious consequences
for such things as the safety of systems that depend on
computers and software, and the security of computer systems.
With regard to cybersecurity, Mike Walker, head of the Cyber
Grand Challenge at DARPA, has said that it counts as a
grand challenge because of, inter alia, the sheer complexity
of modern software. A relevant news report is “Can machines
keep us safe from cyber-attack?”, BBC News, 2016-08-02,
bbc.in/2aLGwOu.

III. SOME REFORMS IN COMPUTING

So what is to be done? Excess variety is a deep-rooted
problem in computing as it is today and will need some radical
rethinking of what computing is and how things are done. But
we can catch some of the flavour of what’s needed by looking
at some reforms that have already been accepted and adopted
in the industry.

Up until the 1970s, it was considered quite acceptable for
programs to contain many of the infamous “go to” statements,
allowing jumps from any part of a program to any other,
and often leading to “spaghetti” programs with complex and
tangled control structures that could be difficult to understand
or to maintain [4]. See also “Spaghetti code”, Wikipedia,
bit.ly/1Q4AgL2, retrieved 2016-08-03.

Gradually, people realised that computers, like wayward
children, should not be given total freedom. “Tough love”
was needed in the shape of “structured programming” [5] to
constrain the forms that programs could take, with benefits
for comprehensibility, maintainability and reductions in cost.
There is more detail in “Structured programming”, Wikipedia,
bit.ly/1RuSABZ, retrieved 2016-08-03.

Later, “super-nanny” in the shape of software gurus insisted
that, for even greater benefits, computers should operate within
the relative straight jacket of “object-oriented” programming,
reflecting the structure of real-world things like warehouses or

factories in the structure of the software that is to help manage
those things. Starting with Simula [6], OO programming de-
veloped through Smalltalk to many other computer languages
including the widely-used C++. There is more information in
“Object-oriented programming”, Wikipedia, bit.ly/20Rx76M,
retrieved 2016-08-11.

IV. HOW THE SP SYSTEM MAY HELP SOLVE THE PROBLEM
OF EXCESS VARIETY IN COMPUTING

These reforms have been very welcome and useful but the
problem of excess variety persists. Some more tough love
is needed but, fortunately, there appears to be a solution,
an unexpected by-product of the SP theory of intelligence,
outlined in the Appendix, that comes with some compensating
benefits including potential for the development of AI—some
sugar to help the medicine go down.

There are three main reasons why the SP theory may
help solve the problem of excess variety in computing: the
versatility of the SP system in the representation of diverse
kinds of knowledge; the versatility of the system in modelling
diverse aspects of intelligence; and the generality of the
principles on which the SP system is based. Versatility and
generality in the system can yield a global simplification in
computing, as described in Section V.

A. Versatility of the SP system in the representation of knowl-
edge

SP patterns, within the multiple alignment framework, have
proved to be an effective means of representing several
different kinds of knowledge, including the syntax of natu-
ral languages, class hierarchies, part-whole hierarchies, dis-
crimination networks and trees, entity-relationship structures,
relational knowledge, rules for reasoning, patterns, images,
structures in three dimensions, and procedural knowledge.
There is more detail throughout [7] and [8], and there are
references to further sources of information in [3, Section III-
B].

B. Versatility of the SP system in aspects of intelligence

The processing of knowledge in the multiple alignment
framework has proved to be a means of modelling several
aspects of intelligence including unsupervised learning, the
processing of natural language, fuzzy pattern recognition,
recognition at multiple levels of abstraction, best-match and
semantic forms of information retrieval, planning, problem
solving, and several kinds of reasoning including: one-step
‘deductive’ reasoning, chains of reasoning, abductive reason-
ing, reasoning with probabilistic networks and trees, reasoning
with ‘rules’, nonmonotonic reasoning, Bayesian reasoning
with “explaining away”, causal reasoning, and reasoning that
is not supported by evidence ([7, Chapters 5 to 9], [8,
Section 10]). The system also has potential in inference via
inheritance of attributes ([8, Section 9.2], [7, Section 6.4]),
spatial reasoning [9, Section IV-F.1], and what-if reasoning
[9, Section IV-F.2].

http://bbc.in/1D3pemp
http://bbc.in/2aLGwOu
http://bit.ly/1Q4AgL2
http://bit.ly/1RuSABZ
http://bit.ly/20Rx76M

COMPUTER MAGAZINE, VOL. 00, NO. 0, [MONTH] [YEAR] 3

C. Generality of the SP system

There is reason to believe that, in addition to its strengths
in the representation of knowledge and in aspects of artificial
intelligence, the SP system may be a vehicle for any kind of
knowledge and any kind of processing:

• The generality of information compression via multiple
alignment. That the SP system should have wide scope
is suggested by:

– The generality of information compression by the
matching and unification of patterns (ICMUP), and,
more specifically, information compression via mul-
tiple alignment, in the representation of knowl-
edge. The DONSVIC principle (described in the
Appendix) helps to ensure that structures created by
the system are ones that people regard as natural.

– The significance of information compression in its
intimate connection with concepts of prediction and
probability [10], mentioned in the Appendix.

• Turing completeness. As described in [7, Chapter 4], the
workings of the SP system may be interpreted in terms
of the operations of a Post canonical system [11]. Since
it is accepted that the Post canonical system is Turing
complete [12, Chapters 10 to 14]—meaning that it can
simulate any single-taped universal Turing machine—the
same is probably true of the SP system.

• Modelling programming concepts in the multiple align-
ment framework. Although multiple alignments like the
one shown in Figure 4 may seem to be far removed from
the programming of ordinary computers, the relationship
is much closer than it may superficially appear. The
SP system with the multiple alignment framework can
not only model “static” kinds of knowledge structure
like class hierarchies and part-whole hierarchies (Section
IV-A) but, as described in [13, Section 6.6], it can also
model most of the concepts that are familiar in ordinary
programming, including procedure, variable, value, type,
function with parameters, conditional statement, itera-
tion or recursion, and the elements of object-oriented
programming. There is also potential for the processing
of parallel streams of information as described in [9,
Sections V-G, V-H, and V-I, and Appendix C].

With regard to the third point—the modelling of program-
ming concepts—there is the possibility that, with further
development, the workings of the SP system would be deter-
mined largely by what it learns via unsupervised learning (an
important feature of the SP system), but also, where necessary,
by a version of “programming” that would be similar in some
respects to how computers are programmed now.

Key differences between SP programming and traditional
programming would be:

• Real-world structures and procedures. That SP program-
ming should be concerned exclusively with structures and
procedures in the world outside the computer—such as
the control of traffic lights or processes in a factory—
whereas traditional programming is concerned partly with
aspects of the world outside the computer and partly with

overcoming deficiencies in computing hardware. We shall
return to the latter point in Section V.

• Parsimony in the representation of knowledge. That SP
programming, in accordance with the principles of object-
oriented programming and the DONSVIC principle (see
the Appendix), should aim to model real-world structures
and processes in an economical manner, whereas tradi-
tional programming, in its concern with the workings of
computing hardware, may lose touch with the need for
parsimony in the representation of knowledge.

D. Towards a universal framework for the representation and
processing of diverse kinds of knowledge

Overall, the three aspects of generality in the SP system
outlined above suggest that it’s potential is not restricted to the
areas mentioned in Sections IV-A and IV-B but may extend to
all kinds of knowledge and all aspects of computation and
human-like intelligence. It has potential to be a universal
framework for the representation and processing of diverse
kinds of knowledge (UFK), as outlined in [3, Section III-A].

As a UFK, the SP system would be “universal” in the sense
that it would provide for the economical representation of any
kind of knowledge and for any kind of computation, including
the kinds of things that are seen as human-like intelligence—
but it would provide more discipline than in present-day
computers, reducing or eliminating unnecessary complexity in
computing and the kinds of excess variety discussed earlier.
It has the potential to reduce the near-4000 different kinds of
computer file to one, and to reduce the hundreds of different
computer languages to one.

An analogy is that, with clay, we can in principle create
any shape. But experts in the creation of ceramics know
that some kinds of shape work better than others. Likewise,
in computing, we should be seeking to avoid the excessive
complexity that features in so much of modern software.

V. HOW A GLOBAL SIMPLIFICATION IN COMPUTING MAY
BE ACHIEVED

Another way of looking at these issues is via an idea that is
already established in computer science as the basis for such
things as database management systems (DBMSs) and shells
for expert systems.

A lot of effort can be saved with DBMSs and a lot of
complexity can be avoided by creating one general-purpose
system for the storage and retrieval of data and loading it
with different kinds of data according to need. Effort can be
saved because there is no need, with each new database, to re-
program the procedures for the storage and retrieval of data
and for managing the user interface. And, correspondingly,
there will be an overall reduction in the complexity of any
collection of several DBMSs. Much the same may be said,
mutatis mutandis, about expert systems.

The SP system is more ambitious than DBMSs and shells
for expert systems because, instead of the fairly narrow range
of capabilities of those systems, the SP system aims to
provide a much wider variety of capabilities, with human-like
versatility and adaptability in intelligence and, where required,

COMPUTER MAGAZINE, VOL. 00, NO. 0, [MONTH] [YEAR] 4

the means of modelling real-world procedures and processes
in the manner of ordinary programming (Section IV-C).

Potential benefits in terms of simplicity are illustrated in
Figure 1 which shows, at the top, a schematic representation
of a conventional computer and, at the bottom, a schematic
representation of the SP machine, expressing the SP theory.

In the conventional computer there is a central processing
unit (CPU), with little or no human-like intelligence—shown
on the left in the figure. On the right, there is “input” to
the computer—a query or some similar smallish piece of
information to be processed; there is also “software” with
elements described in the next paragraph; and, very often,
there is the kind of “data” that may stored in an external file
or database.

The software normally contains two main kinds of informa-
tion:

• Instructions that are designed to make up for the defi-
ciencies in the CPU. These may include procedures for
recognising patterns, procedures for searching for infor-
mation, and procedures for retrieving stored information.
Very often, such procedures, or variants of them, are
repeated again and again within one program or across
many different programs.

• Very often, the software also contains significant knowl-
edge about the world, such as real-world procedures for
applying for a driving licence, booking a seat on a train,
and so on.

It is envisaged that the SP machine will be simpler. All
processing will be done in a CPU, shown on the left in
the figure, which will supply all the human-like intelligence
of the system, including procedures for the building and
manipulation of multiple alignments. The rest of the system,
shown on the right, will be New and Old information as
described in Section A.

The New information is “input” to the system that describes
some aspect of the world, while the Old information is the
system’s pre-established knowledge about the world, including
what would conventionally be called “data” and the kinds of
knowledge mentioned earlier such as real-world procedures
for applying for a driving licence or for booking a seat on a
train.

The key differences between a conventional computer and
the SP machine are that, in the latter, all information about
how to process information would be contained in the CPU
and there would be a single repository of knowledge about the
world, including knowledge about real-world procedures and
processes.

The CPU in the SP machine is shown a bit larger than
the CPU in the conventional computer to suggest that it is
a bit more complex than a conventional CPU. But, despite
this additional complexity, the rectangle representing the SP
machine is shown smaller than the rectangle representing the
conventional computer to indicate that, with the SP system,
there can be a global simplification in computing. This is
because it will not be necessary to add instructions, often with
repetition, to make up for the shortcomings of the CPU in the
conventional computer, and also because all knowledge in the
SP machine will be highly compressed.

Readers may say “Isn’t this simply a reinvention of the
concept of declarative programming, separating information
about ‘what’ a program is to do from the details of ‘how’ the
objectives are to be achieved?” There is relevant information
in “Declarative programming”, Wikipedia, bit.ly/2aVJAIE, re-
trieved 2016-08-15. In answer to this question: “Yes and no”.
The “Yes” answer is because there are some similarities in the
overall concept but the “no” answer is because the SP machine,
with multiple alignment at its core, has the potential to yield
much more human-like versatility and adaptability than logic
programming, functional programming, or the like.

http://bit.ly/2aVJAIE

COMPUTER MAGAZINE, VOL. 00, NO. 0, [MONTH] [YEAR] 5

Fig. 1. Schematic representations of a conventional computer and the proposed SP machine, showing potential benefits in terms of simplification, as discussed
in the text. Adapted from Figure 4.7 in [7], with permission.

VI. CONCLUSION

The SP system was developed mainly to advance AI. But in
addition to its several strengths in that area, it has the potential
to reduce or eliminate the curse of variety in computing.
Although it may seem impossibly ambitious, there is real
potential to cut the variety of file types from nearly 4,000
to one, and to cut the hundreds of computer languages to one.

The multiple alignment framework has the potential to be
a universal framework for the representation and processing
of diverse kinds of knowledge (UFK). It is envisaged that
all kinds of knowledge will be represented with SP patterns
and all kinds of processing will be done via the building and
manipulation of multiple alignments.

Of course, there would still be different kinds of application.
But instead of programs containing a mixture of real-world
knowledge and often-repeated instructions needed to make
good the shortcomings of conventional CPUs, each application
will comprise nothing but knowledge that is relevant to its
area of application, including knowledge about significant real-
world entities, and classes of such entities, and real-world
operations with those things.

Probably, the best way to advance these ideas would be,
firstly, to create a high-parallel version of the SP machine,
based on the SP theory as it has been realised in the SP
computer model, and, secondly, to make the SP machine
available to researchers everywhere to see what can be done

with the SP machine, and to create new versions of it. How
things may develop is shown schematically in Figure 2.

Fig. 2. A schematic view of how the SP machine may develop from the SP
theory and the SP computer model. Adapted, with permission, from Figure 6
in [3].

APPENDIX

The SP theory, and its realisation in the SP computer model,
is the product of a long-term programme of research which
has been aiming, in accordance with Occam’s Razor, to sim-
plify and integrate observations and concepts across artificial
intelligence, mainstream computing, mathematics, and human

COMPUTER MAGAZINE, VOL. 00, NO. 0, [MONTH] [YEAR] 6

perception and cognition [8], [7]. It is a theory of computing,
a successor to Alan Turing’s concept of a “universal Turing
machine” (UTM) as a definition of “computing” but with much
of the human-like intelligence which, as Turing recognised
[14], [15], is missing from the UTM.

Distinctive features and advantages of the SP theory are
described in [16]. Potential benefits and applications of the SP
system are described in several papers, detailed with download
links near the top of bit.ly/1mSs5XT. It is envisaged that the
SP computer model will provide the basis for a new kind of
high-parallel computer, the SP machine.

In brief, the SP theory proposes: 1) that all kinds of
knowledge may be represented with arrays of atomic symbols
in one or two dimensions, called patterns; 2) that all kinds of
processing is done by compressing information—by searching
for patterns, or parts of patterns, that match each other and by
the merging or “unification” of patterns or parts of patterns
that are the same. This idea—“information compression by the
matching and unification of patterns” (ICMUP)—is bedrock in
the theory; 3) more specifically, all kinds of processing is done
by compressing information by the building and manipulation
of multiple alignments, a concept borrowed and adapted from
bioinformatics (more in Section A); 4) Because of the intimate
relationship that exists between information compression and
concepts of prediction and probability [10], the SP system
is fundamentally probabilistic. That said, it has potential, if
required, to imitate the clockwork style of computation in
much of mathematics and logic [7, Section 4.4.4, Chapter 10].

As described elsewhere [8, Section 5.2], an important
principle in the unsupervised learning of new knowledge in
the SP system, is that it should conform to the “DONSVIC”
principle—the discovery of natural structures via information
compression, where “natural” structures are those that people
would regard as natural, much as in object-oriented program-
ming. There is evidence that the representation of knowledge
in accordance with the DONSVIC principle normally achieves
relatively high levels of information compression.

A. Multiple alignments in bioinformatics and in the SP system

In bioinformatics, multiple alignment means an arrangement
of two or more DNA sequences, or amino-acid sequences, so
that, by judicious stretching of sequences, matching symbols—
as many as possible—are brought into line. An example is
shown in Figure 3.

G G A G C A G G G A G G A T G G G G A
| | | | | | | | | | | | | | | | | | |
G G | G G C C C A G G G A G G A | G G C G G G A
| |

A | G A C T G C C C A G G G | G G | G C T G G A | G A
| | | | | | | | | | | | | | | | | |
G G A A | A G G G A G G A | A G G G G A
| | | | | | | | | | | | | | | | |
G G C A C A G G G A G G C G G G G A

Fig. 3. A ‘good’ multiple alignment amongst five DNA sequences.

In the SP system, the multiple alignment concept has been
adapted as illustrated in Figure 4. Here, the pattern in row
0—a simple sentence in this example—is input from the
system’s environment and is classified as “New” information.

The patterns in rows 1 to 8—which, in this example, rep-
resent grammatical structures including words—are part of a
relatively large set of stored patterns which are classified as
“Old”.

The aim is to find a multiple alignment, or sometimes more
than one, that provides a means of encoding the New informa-
tion economically in terms of Old patterns ([8, Section 4.1],
[7, Section 3.5]). In this example, the best multiple alignment,
shown in the figure, may be seen as an analysis or parsing
of the input sentence in terms of the stored grammatical
structures.

The multiple alignment concept, as it has been developed in
the SP programme of research, has proved to be remarkably
versatile in the representation of diverse forms of knowledge
and modelling diverse aspects of intelligence [18, Sections
3, 4, and 5]. It has potential to be the “double helix” of
intelligence—as significant for an understanding of “intelli-
gence” broadly construed as is DNA for biological sciences.

http://bit.ly/1mSs5XT

COMPUTER MAGAZINE, VOL. 00, NO. 0, [MONTH] [YEAR] 7

0 t w o k i t t e n s p l a y 0
| | | | | | | | | | | | | |

1 | | | Nr 5 k i t t e n #Nr | | | | | 1
| | | | | | | | | |

2 | | | N Np Nr #Nr s #N | | | | 2
| | | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3
| | | | | | | | |

4 NP D #D N | #N #NP | | | | 4
| | | | | | |

5 | | | Vr 1 p l a y #Vr 5
| | | | |

6 | | | V Vp Vr #Vr #V 6
| | | | | |

7 S Num ; NP | #NP V | #V #S 7
| | | |

8 Num PL ; Np Vp 8

Fig. 4. The best multiple alignment created by the SP computer model with the sentence ‘t w o k i t t e n s p l a y’ as the New pattern and a set of Old
patterns representing grammatical structures, including words. Reproduced from Figure 1 in [17], with permission.

REFERENCES

[1] J. E. Kelly and S. Hamm, Smart machines: IBM’s Watson and the era
of cognitive computing, Kindle ed. New York: Columbia University
Press, 2013.

[2] National Research Council, Frontiers in Massive Data Analysis. Wash-
ington DC: The National Academies Press, 2013, ISBN-13: 978-0-309-
28778-4. Online edition: bit.ly/14A0eyo.

[3] J. G. Wolff, “Big data and the SP theory of intelligence,” IEEE Access,
vol. 2, pp. 301–315, 2014, bit.ly/1jGWXDH. This article, with minor
revisions, is reproduced in Fei Hu (Ed.), Big Data: Storage, Sharing, and
Security (3S), Taylor & Francis LLC, CRC Press, 2016, pp. 143–170.

[4] E. W. Dijkstra, “Letters to the editor: go to statement considered
harmful,” Communications of the ACM, vol. 11, no. 3, pp. 147–148,
1968.

[5] M. A. Jackson, Principles of Program Design. New York: Academic
Press, 1975.

[6] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard, Simula
Begin. Lund: Studentlitteratur, 1973.

[7] J. G. Wolff, Unifying Computing and Cognition: the SP Theory and
Its Applications. Menai Bridge: CognitionResearch.org, 2006, ISBNs:
0-9550726-0-3 (ebook edition), 0-9550726-1-1 (print edition). Distribu-
tors, including Amazon.com, are detailed on bit.ly/WmB1rs.

[8] ——, “The SP theory of intelligence: an overview,” Information, vol. 4,
no. 3, pp. 283–341, 2013, bit.ly/1hz0lFE.

[9] ——, “Autonomous robots and the SP theory of intelligence,” IEEE
Access, vol. 2, pp. 1629–1651, 2014, bit.ly/1zrSemu.

[10] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications, 3rd ed. New York: Springer, 2014.

[11] E. L. Post, “Formal reductions of the general combinatorial decision
problem,” American Journal of Mathematics, vol. 65, pp. 197–268, 1943.

[12] M. L. Minsky, Computation, Finite and Infinite Machines. Englewood
Cliffs, NJ.: Prentice Hall, 1967.

[13] J. G. Wolff, “The SP theory of intelligence: benefits and applications,”
Information, vol. 5, no. 1, pp. 1–27, 2014, bit.ly/1lcquWF.

[14] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59,
pp. 433–460, 1950.

[15] C. S. Webster, “Alan turing’s unorganized machines and artificial neural
networks: his remarkable early work and future possibilities,” Evolution-
ary Intelligence, vol. 5, pp. 35–43, 2012.

[16] J. G. Wolff, “The SP theory of intelligence: its distinctive features and
advantages,” IEEE Access, vol. 4, pp. 216–246, 2016, bit.ly/21gv2jT.

[17] ——, “Towards an intelligent database system founded on the SP theory
of computing and cognition,” Data & Knowledge Engineering, vol. 60,
pp. 596–624, 2007, bit.ly/Yg2onp, arXiv:cs/0311031 [cs.DB].

[18] ——, “Commonsense reasoning, commonsense knowledge, and the SP
theory of intelligence,” 2016, draft. bit.ly/2eBoE9E.

http://bit.ly/14A0eyo
http://bit.ly/1jGWXDH
http://bit.ly/WmB1rs
http://bit.ly/1hz0lFE
http://bit.ly/1zrSemu
http://bit.ly/1lcquWF
http://bit.ly/21gv2jT
http://bit.ly/Yg2onp
http://bit.ly/2eBoE9E

	Introduction
	Problems with excess variety
	Some reforms in computing
	How the SP system may help solve the problem of excess variety in computing
	Versatility of the SP system in the representation of knowledge
	Versatility of the SP system in aspects of intelligence
	Generality of the SP system
	Towards a universal framework for the representation and processing of diverse kinds of knowledge

	How a global simplification in computing may be achieved
	Conclusion
	Appendix
	Multiple alignments in bioinformatics and in the SP system

	References

