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Abstract

This article is about how the SP theory of intelligence and its re-
alisation in the SP machine may, with advantage, be applied to the
management and analysis of big data. The SP system—introduced
in the article and fully described elsewhere—may help to overcome
the problem of variety in big data: the great diversity of formalisms
and formats for knowledge and the many different ways in which they
are processed. It has potential as a universal framework for the rep-
resentation and processing of diverse kinds of knowledge (UFK). It
has strengths in the unsupervised learning or discovery of structure in
data, in pattern recognition, in the parsing and production of natural
language, in several kinds of reasoning, and more. It lends itself to
the analysis of streaming data, helping to overcome the problem of
velocity in big data. Central in the workings of the system is lossless
compression of information—making big data smaller—reducing the
problem of volume in big data and with additional benefits. There
is potential for substantial economies in the transmission of data, for
big cuts in the use of energy in computing, for faster processing, and
for smaller and lighter computers. The system provides a handle on
the problem of veracity in big data, with potential to assist in the
management of errors and uncertainties in data. It lends itself to
the visualisation of knowledge structures and inferential processes. A
high-parallel, open-source version of the SP machine would provide a
means for researchers everywhere to explore what can be done with
the system and to create new versions of it.
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1 Introduction

Big data—the large volumes of data that are now produced in many fields—
can present problems in storage, transmission, and processing, but their anal-
ysis may yield useful information and useful insights.

This article is about how the SP theory of intelligence and its realisation
in the SP machine (Section 2) may, with advantage, be applied to big data.

Problems associated with big data are reviewed quite fully in Frontiers
in Massive Data Analysis [4] from the US National Research Council, and
there is another useful perspective, from IBM, in Smart Machines: IBM’s
Watson and the Era of Cognitive Computing [8]. These and other sources
are referenced at appropriate points throughout the article.

Naturally, in an area like big data, problems will not be solved in one
step. The ideas described in this article provide a foundation and framework
for further research (Section 12).

In broad terms, the potential benefits of the SP system, as applied to big
data, are in these areas:

• Overcoming the problem of variety in big data. Harmonising diverse
kinds of knowledge, diverse formats for knowledge, and their diverse
modes of processing, via a universal framework for the representation
and processing of knowledge.

• Learning and discovery. The unsupervised learning or discovery of
‘natural’ structures in data.

• Interpretation of data. The system has strengths in areas such as pat-
tern recognition, information retrieval, parsing and production of nat-
ural language, translation from one representation to another, several
kinds of reasoning, planning and problem solving.

• Velocity: analysis of streaming data. The SP system lends itself to an
incremental style, assimilating information as it is received, much as
people do.

• Volume: making big data smaller. Reducing the size of big data via
lossless compression can yield several benefits.

• Transmission of data. There is potential for substantial economies
in the transmission of data by judicious separation of ‘encoding’ and
‘grammar’.
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• Energy, speed, and bulk. There is potential for big cuts in the use
of energy in computing, for greater speed of processing with a given
computational resource, and for corresponding reductions in the size
and weight of computers.

• Veracity: managing errors and uncertainties in data. The SP system
can identify possible errors or uncertainties in data, suggest possible
corrections or interpolations, and calculate associated probabilities.

• Visualisation. Knowledge structures created by the system, and infer-
ential processes in the system, are all transparent and open to inspec-
tion. They lend themselves to display with static and moving images.

These topics will be discussed, each in its own section, below. But first,
the SP theory and the SP machine will be introduced.

2 Introduction to the SP theory and SP ma-

chine

The SP theory, which has been under development for several years, aims to
simplify and integrate concepts across artificial intelligence, mainstream com-
puting and human perception and cognition, with information compression
as a unifying theme.

The theory is conceived as an abstract brain-like system that, in an ‘in-
put’ perspective, may receive New information via its senses, and compress
some or all of it to create Old information, as illustrated schematically in
Figure 1. In the theory, information compression is the mechanism both
for the learning and organisation of knowledge and for pattern recognition,
reasoning, problem solving, and more.

In the SP system, all kinds of knowledge are represented with patterns:
arrays of atomic symbols in one or two dimensions.

At the heart of the system are processes for compressing information
by finding good full and partial matches between patterns and merging or
‘unifying’ parts that are the same. More specifically, all processing is done
via the creation of multiple alignments, like the one shown in Figure 2.1

The close association between information compression and concepts of
prediction and probability [10] means that the SP system is intrinsically
probabilistic. Each SP pattern has an associated frequency of occurrence, and

1The concept of multiple alignment in the SP system ([19, Section 4]; [14, Section
3.4]) is borrowed from that concept in bioinformatics, but with important differences.
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Figure 1: Schematic representation of the SP system from an ‘input’ per-
spective. Reproduced from Figure 1 in [19], with permission.
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Figure 2: A multiple alignment created by the SP computer model that
achieves the effect of parsing a sentence (‘t h e a p p l e s a r e s w

e e t’). Reproduced from Figure 1 in [20], with permission.
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for each multiple alignment, the system may calculate associated probabilities
([14, Section 3.7]; reproduced in [19, Section 4.4]). Although the SP system
is fundamentally probabilistic, it can, if required, be constrained to operate
in the clockwork style of a conventional computer, delivering all-or-nothing
results [14, Chapter 10].

An important idea in the SP programme is the DONSVIC principle [19,
Section 5.2]: the conjecture, supported by evidence, that information com-
pression, properly applied, is the key to the discovery of ‘natural’ structures,
meaning the kinds of things that people naturally recognise, such as words,
objects, and classes of objects. Evidence to date suggests that the SP system
does indeed conform to that principle.

The SP theory is realised in a computer model, SP70, which may be
regarded as a first version of the SP machine. It is envisaged that the SP
computer model will provide the basis for the development of a high-parallel,
open-source version of the SP machine, as described in Section 12.

The theory has things to say about several aspects of computing and
cognition, including unsupervised learning, concepts of computing, aspects
of mathematics and logic, the representation of knowledge, natural language
processing, pattern recognition, several kinds of reasoning, information stor-
age and retrieval, planning and problem solving, and aspects of neuroscience
and of human perception and cognition.

There is a relatively full account of the SP system in [14], an ex-
tended overview in [19], an account of its existing and expected benefits
and applications in [20], a description of its foundations in [17], and an
introduction to the system in [18]. More information may be found via
www.cognitionresearch.org/sp.htm.

3 Overcoming the problem of variety in big

data

“The manipulation and integration of heterogeneous data from
different sources into a meaningful common representation is a
major challenge.” [4, p. 76].

“Over the past decade or so, computer scientists and mathemati-
cians have become quite proficient at handling specific types of
data by using specialized tools that do one thing very well. ... But
that approach doesn’t work for complex operational challenges
such as managing cities, global supply chains, or power grids,
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where many interdependencies exist and many different kinds of
data have to be taken into consideration.” [8, p. 48].

The many different kinds of data include: the world’s many languages,
spoken or written; static and moving images; music as sound and music in its
written form; numbers and mathematical notations; tables; charts; graphs;
networks; trees; grammars; computer programs; and more. With many of
these kinds of data, there are several different computer-based formats, such
as, with static images: JPEG, TIFF, WMF, BMP, GIF, EPS, PDF, PNG,
PBM, and more. And, normally, each kind of data, and each different format,
needs to be processed in its own special way.

Some of this diversity is necessary and useful. For example:

• The cultural life of a community is often intimately connected with the
language of that community.

• Notwithstanding the dictum that “A picture is worth a thousand
words”, natural languages, collectively, have special strengths.

• Ancient texts are of interest for historical, cultural and other reasons.

• With techniques and technologies as they have developed to date, it
often makes sense to use different formalisms or formats for different
purposes.

• Over-zealous standardisation may stifle creativity.

Nevertheless, there are several reasons, described in the next subsection,
for trying to develop a universal framework for the representation and pro-
cessing of diverse kinds of knowledge (UFK). Such a system may help to
reduce unnecessary diversity in formalisms and formats for knowledge and
in their modes of processing. But it is likely that many existing systems
would continue in use for the kinds of reasons mentioned above, perhaps
with translations into UFK form, if or when that proves necessary.

3.1 Reasons for developing a universal framework for
the representation and processing of knowledge

Of the reasons described here for developing a UFK, some relate fairly di-
rectly to issues with big data (Sections 3.1.1, 3.1.2, and 3.1.4), while the rest
draw on other aspects of computing, engineering, and biology.
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3.1.1 The discovery of structure in data

If we are trying to discover patterns of association or other structures in
big data (Section 4), a diversity of formalisms and formats is a handicap.
Let us imagine for example how an artificial learning system might discover
the association between lightning and thunder. Detecting that association is
likely to be difficult if:

• Lightning appears in big data as a static image in one of several formats,
like those mentioned above; or in a moving image in one of several
formats; or it is described, in spoken or written form, as any one of such
things as “firebolt”, “fulmination”, “la foudre”, “der Blitz”, “lluched”,
“a big flash in the sky”, or indeed “lightning”.

• Thunder is represented in one of several different audio formats; or it
is described, in spoken or written form, as “thunder”, “gök gürültüsü”,
“le tonnerre”, “a great rumble”, and so on.

The association between lightning and thunder will be most easily de-
tected via the underlying meanings of the forms that have been mentioned.
We may suppose that, at some level, knowledge about lightning has an as-
sociated code or identifier, something like ‘LTNG’, and that knowledge about
thunder has a code or identifier such as ‘THDR’. Encodings like those would
cut through much of the complexity of surface forms and allow underlying
associations, such as ‘LTNG THDR’, to show through.

It seems likely that at least part of the reason that people find it relatively
easy to recognise, without being told, that there is an association between
lightning and thunder is that, in our brains, there is some uniformity in
the way different kinds of knowledge are represented and processed, without
awkward inconsistencies (Section 3.1.7).

3.1.2 The interpretation of data

If we are trying to recognise objects in images, do scene analysis, or otherwise
interpret what the images mean, it would make things simpler if we did
not have to deal with the diversity of formats for images mentioned earlier.
Likewise for other kinds of data.

3.1.3 Data fusion

In many fields, there is often a need to combine diverse sources of information
to create a coherent whole. For example, in a study of the migration of
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whales, we may have, for each animal, a stream of information about the
temperature of the water at each point along its route, another stream of
information about the depths at which the animal is swimming, information
about the weather at the surface at each point, information about dates and
times, and so on.

If we are to weld those streams of information together, it would not be
helpful if the geographical coordinates for different streams of information
were to be expressed in different ways, perhaps using the Greenwich meridian
for temperatures, the Paris meridian for depths, the Universal Transverse
Mercator (UTM) system for weather, and some other scheme for the dates
and times.

In short, there is a clear need to adopt a uniform system for representing
the data—geographical coordinates in this example—that are needed to fuse
separate but related streams of information to create a coherent view.

3.1.4 The understanding and translation of natural languages

In our everyday use of natural languages we recognise that meanings are
different from the words that express them and that, very often, two or
more distinct sequences of words may mean the same thing or have the
same referent: “the first president of the United States” refers to the same
person as “George Washington”; Ursus maritimus means the same as “polar
bear”; and so on. These intuitions, which are reflected in the design of most
artificial systems for understanding natural language, corroborate the need
for a UFK, or something like it, which is independent of the words in any
natural language.

Again, it is widely recognised that, if machine translation of natural
languages is ever to reach the standard of good human translators, it will
be necessary to provide some kind of interlingua—an abstract language-
independent representation—to express the meaning of the source language
and to serve as a bridge between the source language and the target lan-
guage.2 Any such interlingua is likely to be similar to or the same as a
UFK.

3.1.5 The “semantic web”, the “internet of things”, and the “web
of entities”

The need for standardisation in the representation of knowledge is recog-
nised in writings about the semantic web (eg, [1]), the internet of things (eg,

2See, for example, “Interlingual machine translation”, Wikipedia,
hrefhttp://bit.ly/1mCDTs3bit.ly/1mCDTs3, retrieved 2014-01-24.
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[5]), and in the European Union’s Okkam project, aiming to create unique
identifiers for a global web of entities.3

3.1.6 The long-term preservation of data

The continual creation of new formalisms and new formats for information
and their subsequent obsolescence can mean that old data, which may include
data of great value, may become unreadable or otherwise unusable. A UFK
would help to reduce or eliminate this problem.

3.1.7 Knowledge and brains

In keeping with the long tradition in engineering of borrowing ideas from
biology, the structure and functioning of brains provide reasons for trying to
develop a UFK:

• Since brains are composed largely of neural tissue, it appears that neu-
rons and their inter-connections, with glial cells, provide a universal
framework for the representation and processing of all kinds of sensory
data and all other kinds of knowledge.

• In support of that view is evidence that one part of the brain can take
over the functions of another part (see, for example, [21, 22]). This
implies that there are some general principles operating across several
parts of the brain, perhaps all of them.

• Most concepts are an amalgam of several different kinds of data or
knowledge. For example, the concept of a “picnic” combines the sights,
sounds, tactile and gustatory sensations, and the social and logistical
knowledge associated with such things as a light meal in pleasant rural
surroundings. To achieve that kind of seamless integration of different
kinds of knowledge, it seems necessary for the human brain to be or to
contain a UFK.

3See “Okkam: Enabling the Web of Entities. A scalable and sustainable solution
for systematic and global identifier reuse in decentralized information environments”,
project reference: 215032, completed: 2010-06-30, URL: bit.ly/OSjc1b, information re-
trieved 2014-03-24.
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3.2 The potential of the SP system as a universal
framework for the representation and processing
of knowledge

In the SP programme, the aim has been to create a system that, in accor-
dance with Occam’s Razor, combines conceptual simplicity with descriptive
or explanatory power ([14, Section 1.3], [20, Section 2]). Although the SP
computer model is relatively simple—its “exec” file requires less than 500 KB
of storage space—and despite the great simplicity of SP patterns as a vehicle
for knowledge (Section 2), the SP system, without additional programming,
may serve in the representation and processing of several different kinds of
knowledge:

• Syntax and semantics of natural languages. The system provides for the
representation of syntactic rules, including discontinuous dependencies
in syntax, and for the parsing and production of language ([14, Chapter
5]; [19, Section 8]). It has potential to represent non-syntactic ‘mean-
ings’ via such things as class hierarchies and part-whole hierarchies
(next), and it has potential in the understanding of natural language
and in the production of sentences from meanings [14, Section 5.7].

• Class hierarchies and part-whole hierarchies. The system lends itself
to the representation of class hierarchies (eg, species, genus, family,
etc), heterarchies (class hierarchies with cross-classification), and part-
whole hierarchies (eg, [[head [eyes, nose, mouth, ...]], [body ...], [legs
...]]) and their processing in pattern recognition, reasoning, and more
([14, Sections 6.4.1 and 6.4.2]; [19, Section 9.1]).

• Networks and trees. The SP system supports the representation
and processing of such things as hierarchical and network models for
databases [15, Section 5], and probabilistic decision networks and deci-
sion trees [14, Section 7.5]. And it has advantages as an alternative to
Bayesian networks ([14, Section 7.8], reproduced in [19, Sections 10.2,
10.3, and 10.4]).

• Relational knowledge. The system supports the representation of
knowledge with relational tuples, and retrieval of information in the
manner of query-by-example [15, Section 3], and it has some apparent
advantages compared with the relational model as normally conceived
[15, Section 4.2.3].

• Rules and reasoning. The system supports several kinds of reasoning,
with the representation of associated knowledge. Examples include one-
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step ‘deductive’ reasoning, abductive reasoning, chains of reasoning,
reasoning with rules, nonmonotonic reasoning, and causal diagnosis
[14, Chapter 7].

• Patterns and pattern recognition. The SP system has strengths in the
representation and processing of one-dimensional patterns ([14, Chap-
ter 6]; [20, Section 9]), and it may be applied to medical diagnosis,
viewed as a pattern recognition problem [13].

• Images. Although the SP computer model has not yet been generalised
to work with patterns in two dimensions, there is clear potential for the
SP system to be applied to the representation and processing of images
and other kinds of information with a 2D form. This is discussed in
[14, Section 13.2.1] and also in [16].

• Structures in three dimensions. It appears that the multiple alignment
framework may be applied to the representation and processing of 3D
structures via the stitching together of overlapping 2D views [16, Sec-
tion 7.1], in much the same way that 3D models may be created from
overlapping 2D photos,4 or a panoramic photo may be created from
overlapping shots.

• Procedural knowledge. The SP system can represent simple procedures
(actions that need to be performed in a particular sequence), it can
model such things as ‘variables’, ‘values’, ‘types’, ‘function with pa-
rameters’, repetition of operations, and more [20, Section 6.6.1]; and it
has potential to represent sets of procedures that may be performed in
parallel [20, Section 6.6.3]. These representations may serve to control
real-world operations in sequence and in parallel.

As a candidate for the role of UFK, the SP system has other strengths:

• Because of the generality of the concept of information compression via
the matching and unification of patterns, there is reason to believe that
the system may be applied to the representation and processing of all
kinds of knowledge, not just those listed above.

• Because all kinds of knowledge are represented in one simple format
(arrays of atomic symbols in one or two dimensions), and because all
kinds of knowledge are processed in the same way (via the creation of

4See, for example, “Big Object Base” (bit.ly/1gwuIfa), “Camera 3D”
(bit.ly/1iSEqZu), or “PhotoModeler” (bit.ly/MDj70X.)
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multiple alignments), the system provides for the seamless integration
of diverse kinds of knowledge, in any combination [20, Section 7].

• Because of the system’s existing and potential capabilities in learning
and discovery (Section 4), it has potential for the automatic structuring
of knowledge, reducing or eliminating the need for hand crafting, with
corresponding benefits in terms of speed, cost, and reducing errors.

• For reasons given in Section 11), the SP system may facilitate the
visualisation of structures and processes via static and moving images.

In summary, the relative simplicity of the SP system, its versatility in
the representation and processing of diverse kinds of knowledge, its provision
for seamless integration of different kinds of knowledge in any combination,
the system’s potential for automatic structuring of knowledge, and for the
visualisation of structures and processes, makes it a good candidate for de-
velopment into a UFK.

3.3 Standardisation and translation

The SP system, or any other UFK, may be used in two distinct ways:

• Standardisation in the representation of knowledge. There is poten-
tial, on relatively long timescales, to standardise the representation
and processing of many kinds of knowledge, cutting out much of the
current jumble of formalisms and formats. But for the kinds of reasons
mentioned in Section 3, it is likely that some of those formalisms or
formats will never be replaced or will co-exist with representation and
processing via the UFK.

• Translation into the universal framework. Where a body of information
is expressed in one or more non-standard forms but is needed in the
standard form, it may be translated. This may be done via the SP
system, as outlined in Section 5. Or it may be done using conventional
technologies, in much the same way that the source code for a computer
program may, using a compiler, be translated into object code. The
translation of natural languages is likely to prove more challenging than
the translation of artificial formalisms and formats.

Either way, any body of big data may be expressed in a standard form
that facilitates the unsupervised learning or discovery of structures and asso-
ciations within those data (Section 4), and facilitates forms of interpretation
as outlined in Section 5.
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4 Learning and discovery

“While traditional computers must be programmed by humans
to perform specific tasks, cognitive systems will learn from their
interactions with data and humans and be able to, in a sense,
program themselves to perform new tasks.” [8, p. 7].

In broad terms, learning in the SP system means lossless compression of a
body of information, I, via the matching and unification of patterns (Section
4.1).

The SP computer model (SP70, [14, Chapter 9], [19, Section 5]), has
already demonstrated an ability to discover generative grammars from un-
segmented samples of English-like artificial languages, including segmental
structures, classes of structure, and abstract patterns. As it is now, it has
shortcomings, outlined in [19, Section 3.3]. But I believe these problems
are soluble, and that their solution will clear the path to the unsupervised
learning of other kinds of structures, such as class hierarchies, part-whole hi-
erarchies, and discontinuous dependencies in data. In what follows, we shall
assume that these and other problems have been solved and that the system
is relatively robust and mature.

A strength of the SP system is that it can discover structures in data,
not merely statistical associations between pre-established structures.

As noted in Section 2, evidence to date suggests that the system conforms
to the DONSVIC principle [19, Section 5.2].

4.1 The product of learning

The product of learning from a body of data, I, may be seen to comprise
a grammar (G) and an encoding (E) of I in terms of the grammar. Here,
the term ‘grammar’ has a broad meaning that includes grammars for natural
languages, grammars for static and moving images, grammars for business
procedures, and so on.

As with all other kinds of data in the SP system, G and E are both
represented using SP patterns.

In accordance with the principles of minimum length encoding [11], the
SP system aims to minimise the overall size of G and E.5 Together, G and
E achieve lossless compression of I.

5The similarity with research on grammatical inference is not accidental: the SP
programme of research has grown out of earlier research developing computer models of
language learning (see [12] and other publications that may be downloaded via
bit.ly/JCd6jm). But in developing the SP system, a radical reorganisation has been
needed to meet the goal of simplifying and integrating concepts across artificial
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G is largely about redundancies within I, while E is mainly a record of
the non-redundant aspects of I. Here, any symbol or sequence of symbols
represents redundancy within I if it repeats more often than one would ex-
pect by chance. To reach that threshold, small patterns need to occur more
frequently than large patterns.6

G may be regarded as a distillation of the ‘essence’ of I. Normally, G
would be more interesting than E, and more useful in the kinds of applications
described in Sections 5 and 10.2.

With data that is received or processed as a stream rather than a static
body of data of fixed size (Section 6, below), G may be grown incrementally.
And, quite often, there is likely to be a case for merging Gs from different
sources, with unification of patterns that are the same. In principle, there
could be a single ‘super’ G, expressing the essentials of the world’s knowledge
in a compressed form. Similar remarks apply to Es—if they are needed.

4.2 Unsupervised learning and the problem of variety
in big data

Systems for unsupervised learning may be applied most simply and directly
when the data for learning come in a uniform style as, for example, in DNA
data: simple sequences of the letters A, T, G, and C. But as outlined in Section
3.1.1, it may be difficult to discover recurrent associations or structures when
there is a variety of formalisms and formats.

The discussion here focuses on the relatively challenging area of natural
languages, because the variety of natural languages is a significant part of
the problem of variety in big data, because the SP system has strengths in
that area, and because it seems likely that solutions with natural languages
will generalise relatively easily to other areas.

With natural languages, learning processes in a mature version of the SP
system may be applied in four distinct but inter-related ways, discussed in
the following subsections.

intelligence, mainstream computing, and human perception and cognition. Unlike the
earlier models and other research on grammatical inference, multiple alignment is central
in the workings of the SP computer model, including unsupervised learning. A bonus of
the new structure is potential for the unsupervised learning of such things as class
hierarchies, part-whole hierarchies, and discontinuous dependencies in data.

6G may contain some patterns that do not, in themselves, represent redundancy but
are included in G because of their supporting role [14, Section 3.6.2].
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4.2.1 Learning the surface forms of language

If the data for learning are text in a natural language, then the product
of learning (Section 4.1) will be about words and parts of words, about
phrases, clauses and sentences, and about grammatical categories at all levels.
Likewise with speech.

Even with human-like capabilities in learning, a G that is derived without
the benefit of meanings is likely to differ in some respects from a grammar
created by a linguist who can understand what the text means. This is
because there are subtle interdependencies between syntax and semantics7

which cannot be captured from text on its own, without information about
meanings.

4.2.2 Learning non-syntactic knowledge

The SP system may be applied to learning about the non-syntactic world:
objects and their interactions, scenery, music, games, and so on. These have
an intrinsic interest that is independent of natural language, but they are
also the things that people talk and write about: the non-syntactic meanings
or semantics of natural language. Some aspects of this area of learning are
discussed in [14, Section 13.2.1] and [16].

4.2.3 Connecting syntax with semantics

Of course, for any natural language to be effective, syntax must connect with
semantics. Examples that show how syntax and semantics may work together
in the multiple alignment framework, in both the analysis and production of
language, are presented in [14, Section 5.7]. As noted in Section 3.2, seamless
integration of different kinds of knowledge is facilitated by the use of one
simple format for all kinds of knowledge and a single framework—multiple
alignment—for processing diverse kinds of knowledge.

In broad terms, making the connection between syntax and semantics
means associational learning, no different in principle from learning the as-
sociation between lightning and thunder (Section 3.1.1), between smoke and
fire, between a savoury aroma and a delicious meal, and so on.

For the SP system to learn the connections between syntax and seman-
tics, it will need speech or text to be presented alongside the non-syntactic
information that it relates to, in much the same way that, very often, chil-
dren hear people talking and can see what they are talking about at the same
time.

7See [20, Section 6.2].
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4.2.4 Learning via the interpretation of surface forms

Since speech and text in natural languages are an important part of big data,
it is clear that if the SP system, or any other learning system, is to get full
value from big data, it will need to learn from the meanings of speech or text
as well as from their surface forms.

For any given body of text or speech, I, the first step, of course, will be
to derive its meanings. This can be done via processes of interpretation, as
described in Section 5.

The set of SP patterns that represent the meanings of I may then be
processed as if it was New information, searching for redundancies in the
data, unifying patterns that match each other, and creating a compressed
representation of the data. Then it should be possible to discover such things
as the association between lightning and thunder (Section 3.1.1), regardless
of how the data was originally presented.

5 Interpretation of data

By contrast with unsupervised learning, which compresses a body of infor-
mation (I) to create G and E, the concept of interpretation in this article
means processing I in conjunction with a pre-established grammar (G) to
create a relatively compact encoding (E) of I.

Depending on the nature of I and G, the process of interpretation may
be seen to achieve such things as pattern recognition, information retrieval,
parsing or production of natural language, translation from one representa-
tion to another, several kinds of reasoning, planning, and problem solving.
Some of these were touched on briefly in Section 3.2. Here is a little more
detail:

• Pattern recognition. With the SP system, pattern recognition may be
achieved: at multiple levels of abstraction; with “family resemblance”
or polythetic categories; in the face of errors of omission, commission
or substitution in data; with the calculation of a probability for any
given identification, classification or associated inference; with sensi-
tivity to context in recognition; and with the seamless integration of
pattern recognition with other aspects of intelligence—reasoning, learn-
ing, problem solving, and so on ([19, Section 9]; [14, Chapter 6]). As
previously mentioned, the system may be applied in computer vision
[16] and in medical diagnosis [13], viewed as pattern recognition.

• Information retrieval. The SP system lends itself to information re-
trieval in the manner of query-by-example and, with the provision of
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SP patterns representing relevant rules, there is potential to create the
facilities of a query language like SQL [15].

• Parsing and production of natural language. As can be seen in Figure
2, the creation of a multiple alignment in the SP system may achieve
the effect of parsing a sentence in a natural language (see also [14,
Section 3.4.3 and Chapter 5]). It may also function in the production
of sentences [14, Section 3.8].

• Translation from one representation to another. There is potential
with the SP system for the integration of syntax and semantics in
both the understanding and production of natural language [14, Sec-
tion 5.7], with corresponding potential for the translation of any one
language into an SP-style interlingua and further translation into any
other natural language [20, Section 6.2.1]. Probably less challenging, as
mentioned earlier, would be the translation of artificial formalisms and
formats—JPEG, MP3, and so on—into an SP-style representation.

• Several kinds of reasoning. The SP system accommodates several kinds
of reasoning, including one-step ‘deductive’ reasoning, abductive rea-
soning, reasoning with probabilistic networks and trees, reasoning with
‘rules’, nonmonotonic reasoning, Bayesian reasoning and “explaining
away”, causal diagnosis, and reasoning that is not supported by evi-
dence [14, Chapter 7].

• Planning. With SP patterns representing direct flights between cities,
the SP system can normally work out one or more routes between any
two cities that are not connected directly, if such a route exists [14,
Section 8.2].

• Problem solving. The system can also solve textual versions of geomet-
ric analogy problems, like those found in puzzle books and IQ tests [14,
Section 8.3].

6 Velocity: analysis of streaming data

“Most of today’s computing tasks involve data that have been
gathered and stored in databases. The data make a station-
ary target. But, increasingly, vitally important insights can be
gained from analyzing information that’s on the move. ... This ap-
proach is called streams analytics. Rather than placing data in a
database first, the computer analyses it as it comes from a variety
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of sources, continually refining its understanding of the data as
conditions change. This is the way humans process information.”
[8, pp. 49–50].

Although, in its unsupervised learning, the SP system may process in-
formation in batches, it lends itself most naturally to an incremental style.
In the spirit of the quotation above, the SP system is designed to assim-
ilate New information to a steadily-growing body of relatively-compressed
Old information, as shown schematically in Figure 1.

Likewise, in interpretive processes such as pattern recognition, processing
of natural language, and reasoning, the SP system may be applied to streams
of data as well as the processing of data in batches.

7 Volume: making big data smaller

“Very-large-scale data sets introduce many data management
challenges.” [4, p. 41].

“In addition to reducing computation time, proper data repre-
sentations can also reduce the amount of required storage (which
translates into reduced communication if the data are transmitted
over a network).” [4, p. 68].

Some of the problems associated with big data may be relieved if we can
reduce its size. In that connection, the SP system looks promising because
information compression is central in how the system works.

Although comparative studies have not yet been attempted, the system
has potential to achieve relatively high levels of lossless compression for two
main reasons: it is designed so that, if required, it can perform a relatively
thorough search for redundancies in data; and there is potential to tap into
discontinuous dependencies in data, a type of redundancy that appears to
be outside the scope of other systems for compression of information [20,
Section 6.7].

In summary, potential benefits of information compression via the SP
system include:

• Reducing the need for storage, with associated benefits in the manage-
ment of big data.

• Easing problems of transmission, both via reduced volumes of data and,
potentially, via the separation of ‘encoding’ and ‘grammar’ (Section 8).
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• Increasing computational efficiency, with associated benefits in the use
of energy and in the speed of processing (Section 9).

• Managing errors and uncertainties in data (Section 10).

8 Transmission of data

“One roadblock to using cloud services for massive data analysis
is the problem of transferring the large data sets. Maintaining
a high-capacity and wide-scale communications network is very
expensive and only marginally profitable.” [4, p. 55].

“To control costs, designers of the [DOME] computing system
have to figure out how to minimize the amount of energy used for
processing data. At the same time, since so much of the energy in
computing is required to move data around, they have to discover
ways to move the data as little as possible.” [8, p. 65].

Although the second of these two quotes may refer in part to movements
of data such as those between the CPU and the memory of a computer, the
discussion here is about transmission of data over longer distances such as,
for example, via the internet.

There is potential with the SP system for very substantial economies
in the transmission of data [20, Section 6.7.1]. Any body of data, I, may
be compressed by encoding it in terms a ‘grammar’ (G), provided that G
contains the kinds of structures that are found in I (Section 4.1). Then I
may be sent from A to B by sending only the ‘encoding’ (E). Provided that
B has a copy of G, I may be recreated with complete fidelity by means of
the SP system ([19, Section 4.5]; [14, Section 3.8]). Since E would normally
be very much smaller than the I from which it was derived, it seems likely
that there would be a net gain in efficiency, allowing for the computational
costs of encoding and decoding.

Since a copy of G must be transmitted to B, any savings will be rela-
tively small if it is used only for the decoding of a single instance of E. But
significant savings are likely if, as would normally be the case, one copy of G
may be used for the decoding of many different instances of E, representing
many different Is.

In this kind of application, it would probably make sense for there to be
a division of labour between creating a grammar and using it in the encoding
and decoding of data. For example, the computational heavy lifting required
to build a grammar for video images may be done by a high-performance

19



computer. But that grammar, once constructed, may serve in relatively low-
powered devices—smartphones, tablet computers, and the like—for the much
less demanding processes of encoding and decoding video transmissions.

9 Energy, speed, and bulk

“... we’re reaching the limits of our ability to make [gains
in the capabilities of CPUs] at a time when we need even
more computing power to deal with complexity and big data.
And that’s putting unbearable demands on today’s computing
technologies—mainly because today’s computers require so much
energy to perform their work.” [8, p. 9].

“The human brain is a marvel. A mere 20 watts of energy are
required to power the 22 billion neurons in a brain that’s roughly
the size of a grapefruit. To field a conventional computer with
comparable cognitive capacity would require gigawatts of elec-
tricity and a machine the size of a football field. So, clearly,
something has to change fundamentally in computing for sensing
machines to help us make use of the millions of hours of video, bil-
lions of photographs, and countless sensory signals that surround
us. ... Unless we can make computers many orders of magni-
tude more energy efficient, we’re not going to be able to use them
extensively as our intelligent assistants.” [8, p. 75, p. 88].

“Supercomputers are notorious for consuming a significant
amount of electricity, but a less-known fact is that supercom-
puters are also extremely ‘thirsty’ and consume a huge amount
of water to cool down servers through cooling towers ....”8

It is now clear that, if we are to do meaningful analyses of more than
a small fraction of present and future floods of big data, substantial gains
will be needed in the computational efficiency of computers, with associated
benefits:

• Cutting demands for energy, with corresponding cuts in the need for
cooling of computers.

• Speeding up processing with a given computational resource.

8From “How can supercomputers survive a drought?”, HPC Wire, 2014-01-26,
bit.ly/LruEPS.
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• Consequent reductions in the size and weight of computers.

With the possible exception of the need for cooling, these things are
particularly relevant to mobile devices, including autonomous robots.

The following subsections describe how the SP system may make what is
potentially a substantial contribution to computational efficiency, via infor-
mation compression and probabilities, and via a synergy with ‘data-centric’
computing.

9.1 Computational efficiency via information compres-
sion and probabilities

In the light of evidence that the SP system is Turing-equivalent [14, Chapter
4], and since information processing in the SP system means compression of
information via the matching and unification of patterns (Section 2), anything
that increases the efficiency of searching for good full and partial matches
between patterns will also increase the efficiency of information processing.

It appears that information compression and associated probabilities can
themselves be a means of increasing the efficiency of searching, as described
in the next two subsections.

9.1.1 Reducing the sizes of data to be searched and of search
terms

As described in [20, Section 6.7.2], if we wish to search a body of information,
I, for instances of a pattern like “Treaty on the Functioning of the European
Union,” the efficiency of searching may be increased:

• By reducing the size of I so that there is less to be searched. The size
of I may be reduced by replacing all but one of the instances of “Treaty
on the Functioning of the European Union” with a relatively short code
or identifier like “TFEU”, and likewise with other recurrent patterns.
More generally, the size of I may be reduced via unsupervised learning
in the SP system. It is true that the compression of I is a computational
cost, but this investment is likely to pay off in later processing.

• By searching with a short code like “TFEU” instead of a relatively
large pattern like “Treaty on the Functioning of the European Union”.
Other things being equal, a smaller search pattern means more efficient
searching.
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With regard to the second point, there is potential to cut out some search-
ing altogether by creating direct connections between each instance of a code
(“TFEU” in this example) and the thing that it represents (“Treaty on the
Functioning of the European Union”). In SP-neural (Section 9.2.1), there are
connections of that kind between “pattern assemblies”, as shown schemati-
cally in Figure 3.

9.1.2 Concentrating search where good results are most likely to
be found

If we want to find some strawberry jam, our search is more likely to be
successful in a supermarket than it would be in a hardware shop or a car-
sales showroom. This may seem too simple and obvious to deserve comment
but it illustrates the extraordinary knowledge that most people have of an
informal ‘statistics’ of the world that we inhabit, and how that knowledge
may help us to minimise effort.9

Where does that statistical knowledge come from? In the SP theory, it
flows directly from the central role of information compression in our per-
ceptions, learning and thinking, and from the intimate relationship between
information compression and concepts of prediction and probability [10].

Although the SP computer model may calculate probabilities associated
with multiple alignments (Section 2), it actually uses levels of information
compression as a guide to search. Those levels are used, with heuristic search
methods (including escape from ‘local peaks’), to ensure that searching is
concentrated in areas where it is most likely to be fruitful [14, Sections 3.9,
3.10, and 9.2]. This not only speeds up processing but yields Big-O values
for computational complexity that are within acceptable limits [14, Sections
3.10.6, 9.3.1, and A.4].

9.1.3 Potential gains in computational efficiency

No attempt has yet been made to quantify potential gains in computational
efficiency from the compression of information, as described in Sections 9.1.1,
9.1.2, and 8, but they could be very substantial:

• Since information compression is fundamental in the workings of the
SP system, there is potential for corresponding savings in all parts and
levels in the system.

9See also G. K. Zipf’s Human Behaviour and the Principle of Least Effort [23].
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• The entire structure of knowledge that the system creates for itself is
intrinsically statistical, with potential on many fronts for corresponding
savings in computational costs and associated demands for energy.

It may be argued that, since object-oriented programming already pro-
vides for compression of information via class hierarchies and inheritance
of attributes, the benefits of information compression are already available
in conventional computing systems. In response, it may be said that, while
there are undoubted benefits from object-oriented programming, existing OO
systems run on conventional computers and suffer from the associated inef-
ficiencies.

Realising the full potential of information compression as a means of
improving computational efficiency will probably mean new thinking about
computer architectures, probably in conjunction with the development of
data-centric computing (next).

9.2 A potential synergy with data-centric computing

“What’s needed is a new architecture for computing, one that
takes more inspiration from the human brain. Data processing
should be distributed throughout the computing system rather
than concentrated in a CPU. The processing and the memory
should be closely integrated to reduce the shuttling of data and
instructions back and forth.” [8, p. 9].

“Unless we can make computers many orders of magnitude more
energy efficient, we’re not going to be able to use them extensively
as our intelligent assistants. Computing intelligence will be too
costly to be practical. Scientists at IBM Research believe that
to make computing sustainable in the era of big data, we will
need a different kind of machine—the data-centric computer. ...
Machines will perform computations faster, make sense of large
amounts of data, and be more energy efficient.” [8, p. 88].

The SP concepts may help to integrate processing and memory, as de-
scribed in the next two subsections.

9.2.1 SP-neural

Although the main emphasis in the SP programme has been on developing
an abstract framework for the representation and processing of knowledge,
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the theory includes proposals—called SP-neural—for how those abstract con-
cepts may be realised with neurons [14, Chapter 11].

Figure 3 shows in outline how an SP-style conceptual structure would
appear in SP-neural. It is envisaged that SP patterns would be realised
with pattern assemblies—groupings of neurons like those shown in the figure
within broken-line envelopes.

The whole scheme is quite different from ‘artificial neural networks’ as
they are commonly conceived in computer science.10 It may be seen as a
development of Donald Hebb’s [7] concept of a ‘cell assembly’, with more
precision about how structures may be shared, and other differences.11

In SP-neural, what is essentially a statistical model of the world is re-
flected directly in groupings of neurons and their interconnections, as shown
in the figure. It is envisaged that such things as pattern recognition would be
achieved via the transmission of impulses between pattern assemblies, and
via the transmission of impulses between neurons within each pattern assem-
bly. In keeping with what is known about the workings of brains and nervous
systems, it is likely that there would be important roles for both excitatory
and inhibitory signals.

In short, neurons in SP-neural serve for both the representation and pro-
cessing of knowledge, with close integration of the two—in accordance with
the concept of data-centric computing. One architecture may promote com-
putational efficiency by combining the benefits of information compression
and probabilistic knowledge with the benefits of data-centric computing.

9.2.2 Computing with light or chemicals

The SP concepts appear to lend themselves to computing with light or
chemicals, perhaps by-passing such things as transistors or logic gates that
have been prominent in the development of electronic computers [20, Section
6.10.6].12

10See, for example, “Artificial neural network”, Wikipedia,
en.wikipedia.org/wiki/Artificial neural network, retrieved 2013-12-23.

11In particular, unsupervised learning in the SP system ([19, Section 5]; [14, Chapter
9]) is radically different from the “Hebbian” concept of learning (see, for example,
“Hebbian theory”, Wikipedia, http://en.wikipedia.org/wiki/Hebbian learning, retrieved
2013-12-23), described by Hebb [7] and adopted as the mechanism for learning in most
artificial neural networks. By contrast with Hebbian learning, the SP system, like a
person, may learn from a single exposure to some situation or event. And, by contrast
with Hebbian learning, it takes time to learn a language in the SP system because of the
complexity of the search space, not because of any kind of gradual strengthening or
“weighting” of links between neurons [14, Section 11.4.4].

12“The most promising means of moving data faster is by harnessing photonics, the
generation, transmission, and processing of light waves.” [8, p. 93].

24

http://en.wikipedia.org/wiki/Artificial_neural_network


A …

AV …

VM …
purrs
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tabby white bib
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Figure 3: An example showing schematically how SP-neural may represent
class-inclusion relations, part-whole relations, and their integration. Key:
‘C’ = cat, ‘D’ = dog, ‘M’ = mammal, ‘V’ = vertebrate, ‘A’ = animal, ‘...’
= further structure that would be shown in a more comprehensive example.
Pattern assemblies are surrounded by broken lines and each neuron is repre-
sented by an unbroken circle or ellipse. Lines with arrows show connections
between pattern assemblies and the flow of sensory signals in the process of
recognising something (there may also be connections in the opposite direc-
tion to support the production of patterns). Connections between neurons
within each pattern assembly are not marked. Reproduced from Figure 11.6
in [14], with permission.

At the heart of the SP system is a process of finding good full and partial
matches between patterns. This may be done with light, with the poten-
tial advantage that light beams may cross each other without interference.
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Another potential advantage is that, with collimated light, there may be
relatively small losses over distance—although distances should probably be
minimised to save on transmission times and to minimise the sizes of com-
puting devices. There appears to be potential to create an optical or opti-
cal/electronic version of SP-neural.

Finding good full and partial matches between patterns may also, poten-
tially, be done with chemicals such as DNA,13 with potential for high levels
of parallelism, and with the attraction that DNA can be a means of storing
information in a very compact form, and for very long periods [6].

With both light and chemicals, the SP system may help realise data-
centric integration of knowledge and processing. As before, there is potential
for gains in computational efficiency via one architecture that combines the
benefits of information compression and probabilistic knowledge with the
benefits of data-centric computing.

10 Veracity: managing errors and uncertain-

ties in data

“In building a statistical model from any data source, one must
often deal with the fact that data are imperfect. Real-world data
are corrupted with noise. Such noise can be either systematic (i.e.,
having a bias) or random (stochastic). Measurement processes
are inherently noisy, data can be recorded with error, and parts
of the data may be missing.” [4, p. 99].

“Organizations face huge challenges as they attempt to get
their arms around the complex interactions between natural and
human-made systems. The enemy is uncertainty. In the past,
since computing systems didn’t handle uncertainty well, the ten-
dency was to pretend that it didn’t exist. Today, it is clear that
that approach won’t work anymore. So rather than trying to
eliminate uncertainty, people have to embrace it.” [8, pp. 50–51].

The SP system has potential in the management of errors and uncertain-
ties in data as described in the following subsections.

13See, for example, “DNA computing”, Wikipedia, bit.ly/1gfEP4p, retrieved
2013-12-30.
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10.1 Parsing or pattern recognition that is robust in
the face of errors

As mentioned in Section 2, the SP system is inherently probabilistic. Every
SP pattern has an associated frequency of occurrence, and probabilities may
be derived for each multiple alignment ([19, Section 4.4]; [14, Section 3.7 and
Chapter 7]).

The probabilistic nature of the system means that, in operations such as
parsing natural language or pattern recognition, it is robust in the face of
errors of omission, of commission, or of substitution ([19, Section 4.2.2]; [14,
Section 6.2.1]). In the same way that we can recognise things visually despite
disturbances such as falling leaves or snow (and likewise for other senses),
the SP system can, within limits, produce what we intuitively judge to be
‘correct’ analyses of inputs that are not entirely accurate.

Figure 4 shows how the SP system may achieve a ‘correct’ parsing of
the same sentence as in Figure 2 but with errors: the addition of ‘x’ within
‘t h e’, the omission of ‘l’ from ‘a p p l e s’, and the substitution of ‘k’
for ‘w’ in ‘s w e e t’. In effect, the parsing identifies errors in the sentence
and suggests corrections for them: ‘t h x e’ should be ‘t h e’, ‘a p p e s’
should be ‘a p p l e s’, and ‘s k e e t’ should be ‘s w e e t’.

0 t h x e a p p e s a r e s k e e t 0

| | | | | | | | | | | | | | |

1 | | | N Nr 6 a p p l e #N | | | | | | | | 1

| | | | | | | | | | | | | |

2 | | | N Np N Nr #N s #N | | | | | | | 2

| | | | | | | | | | | | |

3 D 17 t h e #D | | | | | | | | | | 3

| | | | | | | | | | | |

4 NP 0a D #D N | #N #NP | | | | | | | 4

| | | | | | | | | |

5 | | | V Vp 11 a r e #V | | | | 5

| | | | | | | | | |

6 S Num ; NP | #NP V | #V A | | | | #A #S 6

| | | | | | | | | |

7 | | | | A 21 s w e e t #A 7

| | | |

8 Num PL ; Np Vp 8

Figure 4: A parsing via multiple alignment created by the SP computer
model, like the one shown in Figure 2, with the same sentence as before but
with errors of omission, commission, and substitution as described in the
text.

The system’s ability to fill in gaps—such as the missing ‘l’ in ‘a p p l e

s’—is closely related to the system’s ability to make probabilistic inferences—
going beyond the information given—discussed in some detail in [14, Chapter
7] and more briefly in [19, Section 10].
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10.2 Unsupervised learning with errors and uncertain-
ties in data

Insights that have been achieved in research on language learning and gram-
matical inference ([19, Section 5.3]; [12]; [14, Sections 2.2.12 and 12.6]) may
help to illuminate the problem of managing errors and uncertainties in big
data.

The way we learn a first language has some key features:

• We learn from a finite sample of the language, normally quite large.14

This is represented by the smallest of the envelopes shown in Figure 5.

• It is clear that mature knowledge of a given language, L, includes an
ability to interpret and, normally, to produce an infinite number of
utterances in L.15 It also includes an ability to distinguish sharply be-
tween utterances that belong in L—represented by the middle-sized
envelope in Figure 5—and those that don’t—represented by the area
between the middle-sized envelope and the outer-most envelope in the
figure.

• The finite sample of language from which we learn includes many utter-
ances which are not correct—false starts, incomplete sentences, garbled
words, and so on. These utterances are marked dirty data in the figure.

From these key features, two main questions arise, described here with
putative answers provided by unsupervised learning via information com-
pression:

• Learning with dirty data. How is it that we can develop a keen sense
of what does or does not belong in our native language or languages,
despite the fact that much of the speech that we hear as children con-
tains the kinds of haphazard errors mentioned above, and in the face of

14An alternative view, promoted most notably by Noam Chomsky, is that we are born
with a knowledge of ‘universal grammar’—structures that appear in all the world’s lan-
guages. But despite decades of research, there is still no satisfactory account of what that
universal grammar may be or how it may function in the learning of a first language.
Notice that the concept of a universal grammar is different from that of a UFK because
the former means linguistic structures hypothesised to exist in all the world’s languages,
while the latter means a framework for the representation and processing of diverse kinds
of knowledge.

15Exceptions in the latter case are people who can understand language but, because of
physical handicap or other reason, may not be able to produce language (more below).
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All possible
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Figure 5: Categories of utterances involved in the learning of a first language,
L. In ascending order size, they are: the finite sample of utterances from
which a child learns; the (infinite) set of utterances in L; and the (infinite) set
of all possible utterances. Adapted from Figure 7.1 in [12], with permission.

evidence that language learning may be achieved without the benefit
of error correction by a teacher, or anything equivalent.16

It appears that the principle of minimum length encoding (Section 4.1)
provides an answer. In a learning system that seeks to minimise the
overall size of the ‘grammar’ (G) and the ‘encoding’ (E), most of the
haphazard errors that people make in speaking—rare individually but
collectively quite common—would be recorded largely in E, leaving G
as a relatively clean expression of the language.

Anything that is comparatively rare but exceeds the threshold for re-
dundancy (Section 4.1) may appear in G, perhaps seen as a linguistic
irregularity—such as ‘bought’ (not ‘buyed’) as the past tense of ‘buy’—
or as a dialect form.

• Generalisation without over-generalisation. How is it that, in learning
a first language, L, we can generalise from the finite sample of lan-

16In brief, the evidence is that people with a physical handicap that prevents them
producing intelligible speech can still learn to understand their native language [9, 2]. If
such a child is saying nothing that is intelligible, there is nothing for adults to correct.
Christy Brown [2] went on to become a successful author, using his left foot for typing,
and drawing on his knowledge of language learned by listening.
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guage which is the basis for learning to the infinite set of utterances
that belongs in L, without overgeneralising into the region between the
middle-sized envelope and the outer-most envelope in Figure 5. As be-
fore, there is evidence, discussed in the sources referenced above, that
language learning does not depend on error-correction by a teacher or
anything equivalent.

As with learning with dirty data, it appears that generalisation without
over-generalisation may be understood in terms of the principle of min-
imum length encoding. It appears that a learning process that seeks
to minimise the overall size of G and E normally results in a gram-
mar that generalises beyond the data in I but does not over-generalise.
Both under-generalisation and over-generalisation results in a greater
overall size for G and E.

These principles apply to any kind of data, not just linguistic data. With
unsupervised learning from a body of big data, I, the SP system provides
two broad options:

• Users may focus on both G and E, taking advantage of the system’s
capabilities in lossless information compression, and ignoring the sys-
tem’s potential with dirty data and the formation of generalisations
without over-generalisation. This would be the best option in areas of
application where the precise form of the data is important, including
any ‘errors’.

• By focussing on G and ignoring E, users may see the redundant features
in I and exclude everything else. As a rough generalisation, redundant
features are likely to be ‘important’. They are likely to exclude most
of the haphazard errors in I such as typos, misprints and other rari-
ties that users may wish to ignore (but see Section 10.3). And G is
likely to generalise beyond what is in I—filling in apparent gaps in the
data—and to do so with generalisations that are sensitive to the sta-
tistical structure of I, and excluding over-generalisations without that
statistical support.

These two options are not mutually exclusive. Both would be available
at all times, and users may adopt either or both of them according to need.

10.3 Rarity, probabilities, and errors

Some issues relating to what has been said in Sections 10.1 and 10.2 are
considered briefly here.
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10.3.1 Rarity and interest

It may seem odd to suggest that we might choose to ignore things that are
rare, since antiques that are rare may attract great interest and command
high prices, and conservationists often have a keen interest in animals or
plants that are rare.

The key point here is that there is an important difference between a
body of information to be mined for its recurrent structures and things like
antiques, animals, or plants. The latter may be seen as information objects
that are themselves the products of learning processes designed to extract
redundancy from sensory data. Like other real-world objects, an antique
chair is a persistent, recurrent feature of the world, and it is the recurrence
of such an entity in different contexts that allows us to identify it as an
object.

10.3.2 The flip side of probabilities

As we have seen (Sections 10.1 and 10.2), a probabilistic machine can help
to identify probable errors in big data. But contradictory as it may seem, a
consequence of working with probabilities—for both people and machines—
is that mistakes may be made. We may bet on “Desert King” but find that
“Midnight Lady” is the winner. In the same way that people can be misled
by a frequently-repeated lie, probabilistic machines are likely to be vulnerable
to systematic distortions in data.

These observations may suggest that we should stick with computers in
their traditional form, delivering precise, all-or-nothing answers. But:

• There are reasons to believe that computing and mathematics are fun-
damentally probabilistic: “I have recently been able to take a further
step along the path laid out by Gödel and Turing. By translating a
particular computer program into an algebraic equation of a type that
was familiar even to the ancient Greeks, I have shown that there is
randomness in the branch of pure mathematics known as number the-
ory. My work indicates that—to borrow Einstein’s metaphor—God
sometimes plays dice with whole numbers.” [3, p. 80].

• As noted in Section 2, the SP system can be constrained to deliver
all-or-nothing results in the manner of conventional computers. But
“constraint” is the key word here: it appears that the comforting cer-
tainties of conventional computers come at the cost of restrictions in
how they work, restrictions that may have been motivated originally
by the low power of early computers [14, p. 28].
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11 Visualisation

“... methods for visualization and exploration of complex and
vast data constitute a crucial component of an analytics infras-
tructure.” [4, p. 133].

“[An area] that requires attention is the integration of visual-
ization with statistical methods and other analytic techniques in
order to support discovery and analysis.” [4, p. 142].

In the analysis of big data, it is likely to be helpful if the results of analysis,
and analytic processes, can be displayed with static or moving images.

In this connection, the SP system has three main strengths:

• Transparency in the representation of knowledge. By contrast with sub-
symbolic approaches to artificial intelligence, there is transparency in
the representation of knowledge with SP patterns and their assembly
into multiple alignments. Both SP patterns and multiple alignments
may be displayed as they are or, where appropriate, translated into
other graphical forms such as tree structures, networks, tables, plans,
or chains of inference.

• Transparency in processing. In building multiple alignments and de-
riving grammars and encodings, the SP system creates audit trails.
These allow the processes to be inspected and could, with advantage,
be displayed with moving images to show how knowledge structures
are created.

• The DONSVIC principle. As previously noted, the SP system aims to
realise the DONSVIC principle [19, Section 5.2] and is proving success-
ful in that regard. This means that structures created or discovered
by the system—entities, classes of entity, and so on—should be ones
that people regard as natural. Those kinds of structures are also likely
to be ones that are well suited to representation with static or moving
images.

12 A road map

As mentioned in Section 2, it is envisaged that the SP computer model will
provide the basis for the development of a new version of the SP machine.
How things may develop is shown schematically in Figure 6. It is envisaged
that this new version will be realised as a software virtual machine, hosted
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on an existing high-performance computer, that it will employ high levels
of parallelism, that it will be accessible via a user-friendly interface from
anywhere in the world, that all software will be open source, and that users
will be able to create new versions of the system. This high-parallel, open
source version of the SP machine will be a means for researchers everywhere
to explore what can be done with the system and to create new versions of
it.

Figure 6: Schematic representation of the development and application of
the SP machine. Reproduced from Figure 2 in [19], with permission.

As argued persuasively in [8, Chapters 5 and 6], and echoed in this article
in Sections 9.1.3 and 9.2, getting a proper grip on the problem of big data
will probably require the development of new architectures for computers.

But there is plenty that can be done with existing computers. Most of the
developments proposed in this article may be pursued without waiting for the
development of new kinds of computer. Likewise, many of the potential ben-
efits and applications of the SP system, described in [20] and including such
things as intelligent databases [15] and new approaches to medical diagnosis
[13], may be realised with existing kinds of computer.

13 Conclusion

The SP system, designed to simplify and integrate concepts across artificial
intelligence, mainstream computing, and human perception and cognition,
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has potential in the management and analysis of big data.
The SP system has potential as a universal framework for the represen-

tation and processing of diverse kinds of knowledge (UFK), helping to reduce
the problem of variety in big data: the great diversity of formalisms and for-
mats for knowledge, and how they are processed. The system may discover
‘natural’ structures in big data, and it has strengths in the interpretation of
data, including such things as pattern recognition, natural language process-
ing, several kinds of reasoning, and more. It lends itself to the analysis of
streaming data, helping to overcome the problem of velocity in big data.

Since information compression is at the heart of the system, it may reduce
the size of big data and thus help overcome the problem of volume in big
data. Information compression may also yield other benefits. The system
has potential for substantial economies in the transmission of data, and for
substantial gains in computational efficiency, with consequent benefits in
energy efficiency, greater speed of processing with a given computational
resource, and reductions in the size and weight of computers. The system
provides a handle on the problem of veracity in big data, with potential to
assist in the management of errors and uncertainties in data. It may help,
via static and moving images, in the visualisation of knowledge structures
created by the system and in the visualisation of processes of discovery and
interpretation.

The creation of a high-parallel, open-source version of the SP machine,
as outlined in Section 12, would be a means for researchers everywhere to
explore what can be done with the system and to create new versions of it.
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