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ABSTRACT This paper aims to highlight distinctive features of the SP theory of intelligence, realized in
the SP computer model, and its apparent advantages compared with some AI-related alternatives. Perhaps
most importantly, the theory simplifies and integrates observations and concepts in AI-related areas, and
has potential to simplify and integrate of structures and processes in computing systems. Unlike most other
AI-related theories, the SP theory is itself a theory of computing, which can be the basis for new architectures
for computers. Fundamental in the theory is information compression via the matching and unification of
patterns and, more specifically, via a concept of multiple alignment. The theory promotes transparency in the
representation and processing of knowledge, and unsupervised learning of natural structures via information
compression. It provides an interpretation of aspects of mathematics and an interpretation of phenomena in
human perception and cognition. Abstract concepts in the theory may be realized in terms of neurons and
their inter-connections (SP-neural). These features and advantages of the SP system are discussed in relation
to AI-related alternatives: the concept of minimum length encoding and related concepts, how computational
and energy efficiency in computing may be achieved, deep learning in neural networks, unified theories of
cognition and related research, universal search, Bayesian networks and some other models for AI, IBM’s
Watson, solving problems associated with big data and in the development of intelligence in autonomous
robots, pattern recognition and vision, the learning and processing of natural language, exact and inexact
forms of reasoning, representation and processing of diverse forms of knowledge, and software engineering.
In conclusion, the SP system can provide a firm foundation for the long-term development of AI and related
areas, and at the same time, it may deliver useful results on relatively short timescales.

INDEX TERMS Artificial intelligence, information compression, multiple alignment, perception, cognition,
neural networks, deep learning, unsupervised learning, reasoning, mathematics.

I. INTRODUCTION
The SP theory of intelligence is designed to simplify and inte-
grate observations and concepts across artificial intelligence,
mainstream computing, mathematics, and human perception
and cognition, with information compression via multiple
alignment as a unifying theme. It is realized in the SP com-
puter model which may be regarded as an early version of
the SP machine. The theory and some of its potential benefits
and applications are described in outline in Appendix I, with
pointers to where fuller information may be found.

The name ‘SP’ stands for simplicity and power,
two ideas which are equivalent to information compression
(Appendix I-E) and thus central in the workings of the
SP system, and also in Occam’s Razor and the evaluation of
scientific theories, as described in Appendix II.

The SP theory is one of many theories, systems, or schemes
that are vying for the attention of researchers in AI and

related areas. Since it takes a fair amount of work to fully
understand any one of these competing systems, researchers
are naturally selective about where they will concentrate their
efforts. Accordingly, the main aim of this paper is to present
a case for the SP theory.

The beginnings of the argument are simply to show poten-
tial benefits and applications of the theory. Much of this
has been done already in previous publications referenced
in Appendix I.

But this paper goes further. Instead of merely describing
what the theory is good for, the paper highlights what is
distinctive about the SP theory compared with alternatives
and, more importantly, it argues, immodestly, that in terms
of the long-term development of AI-related research, the
SP theory has advantages compared with alternatives, and,
at the same time, it has potential in some areas on relatively
short timescales. Some of the pros and cons of long- and
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short-term perspectives in research are discussed briefly
in Appendix III.

In comparing the SP system with others, this paper aims
to avoid unnecessary repetition of material that has already
been published elsewhere. Trying to include, within this
paper, a comprehensive description of the SP system and its
applications would not be feasible or reasonable. But to aid
understanding and readability, some repetition is unavoid-
able. Many aspects of the SP system are described in outline
or summarised. The paper includes several figures, several of
them new, showing output from the SP computer model, with
explanations in the text.

The next section provides a broad-brush view of dis-
tinctive features of the SP theory, and its strengths.
Sections that follow aim to highlight apparent advantages
of the SP concepts compared with AI-related alternatives,
acknowledging intellectual debts of the SP system, and its
shortcomings.

II. OVERVIEW OF DISTINCTIVE FEATURES AND
STRENGTHS OF THE SP THEORY
This section is an expanded and revised version of
[74, Sec. II-G], summarising distinctive features and
strengths of the SP system.

A. SIMPLIFICATION AND INTEGRATION OF
OBSERVATIONS AND CONCEPTS
As noted in the Introduction and Appendix I, the SP theory
aims to simplify and integrate observations and concepts
across a broad canvass. Although the theory is not complete
(Appendix I-J), there is now much evidence that the attempt
is proving successful—that the SP theory, in accordance with
Occam’s Razor (Appendix II-B), combines relative simplicity
with descriptive and explanatory power across awide range of
observations and concepts (Appendix I-H) and across a wide
range of potential benefits and applications (Appendix I-I).

Combining relative simplicity with descriptive and
explanatory power in AI-related areas is perhaps the most
distinctive feature of the SP theory, and its major strength.

B. SIMPLIFICATION AND INTEGRATION
IN COMPUTING SYSTEMS
The provision of one simple format for knowledge
(Appendix I-D), and one framework for the processing of
knowledge (Appendix I-E), promotes an overall simplifi-
cation of computing systems, including both hardware and
software [77, Sec. 5].

Those two things also promote seamless integration of
diverse kinds of knowledge and diverse aspects of intelli-
gence [77, Sec. 7], an integration that appears to be necessary
if we are to achieve human-like versatility and adaptability
in AI [74, Sec. IV-A].

The SP computer model is not yet a rival to some sys-
tems that are dedicated to specific functions. But its long-
term potential is likely to be greater than dedicated systems
because of its strong theoretical foundations, and because it

is designed for the simplification and integration of diverse
forms of knowledge, diverse kinds of processing, and diverse
aspects of intelligence.

C. THE SP THEORY IS ITSELF A THEORY OF COMPUTING
Most other AI-related systems are founded on the concept
of ‘computing’ as the workings of the universal Turing
machine [61] or equivalent models such as lamda calculus [2]
or Post’s canonical system [47].1

By contrast, the SP theory is itself theory of com-
puting which appears to be Turing-equivalent as argued
in [70, Chapter 4]. The gist of the argument is that the
SPmachine can domuch the same as a Post canonical system,
a type of computing system which is recognised as being
equivalent to a universal Turing machine.

Another reason for believing that the SP system is likely to
have the generality of a universal Turing machine is that the
main elements of computer programming can be modelled by
the multiple alignment concept, which is itself central in the
workings of the SP system (Section XI-F).

What is distinctive about the SP theory as a theory of com-
puting is that it provides much of the human-like intelligence
that is missing from earlier models (Appendices I-H and I-I.
See also Appendix II-B).

D. NEW ARCHITECTURES FOR COMPUTERS
The SP theory may provide the foundations for two new
architectures for computers:

• The multiple alignment framework (Section II-F and
Appendix I-E2) may itself provide the basis for a new
kind of computer.

• SP-neural—the realisation of the multiple alignment
framework in terms of neurons and their inter-
connections (Section II-L andAppendix I-G)—may pro-
vide the basis for a different but related new architecture
for computers.

The potential significance of these architectures in terms
of the computational and energy efficiency of computers is
outlined in Section IV.

E. INFORMATION COMPRESSION VIA THE MATCHING
AND UNIFICATION OF PATTERNS
In trying to cut through some of the mathematical com-
plexities associated with information compression, the SP
research programme focuses on a simple, ‘primitive’ idea:
that information compression may be understood as a search
for patterns that match each other, with the merging or ‘uni-
fication’ of patterns that are the same. This will be referred
to as ‘ICMUP’ meaning ‘‘information compression via the
matching and unification of patterns’’. The potential advan-
tage of this approach is that it can help us avoid old tramlines,
and open doors to new ways of thinking ([76, Sec. 2],
Appendix I-E1).

1An apparent exception is the concept of a ‘‘neural Turing machine’’ [14].
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F. INFORMATION COMPRESSION VIA
MULTIPLE ALIGNMENT
More specifically, ICMUP provides the basis for a concept of
multiple alignment, borrowed and adapted from that concept
in bioinformatics (Appendix I-E2). Developing this idea as a
framework for the simplification and integration of concepts
across a broad canvass has been a major undertaking. Some
of the versatility of this concept may be seen in multiple
alignments shown in this paper (Figures 1, 2, 3, 4, 6, 8, 10,
and 11) and in other publications about the SP system.
Multiple alignment is a distinctive and powerful idea in

the SP programme of research. This concept, as it has been
developed in the SP programme of research, has the potential
to be as significant in computing and cognition as the double
helix has proved to be in biological sciences.

Because of the significance of ICMUP and multiple align-
ment in the SP theory, no attempt has been made in this
paper to review or consider the vast literature on information
compression via other techniques.

As a general rule, applications in which information com-
pression has a role to play have been developed for specific
purposes and do not aspire to simplify and integrate concepts
across a broad canvass as the SP system is intended to do.

Section III discusses how the SP system relates to min-
imum length encoding and related topics, and Section V-I
makes some remarks about information compression in deep
learning with artificial neural networks.

G. THE SP SYSTEM IS INTRINSICALLY PROBABILISTIC
For reasons outlined in Appendix I-F, the SP system is prob-
abilistic at its deepest levels, but the all-or-nothing nature of
conventional systems may be imitated if required.

H. TRANSPARENCY IN THE REPRESENTATION
AND PROCESSING OF KNOWLEDGE
By contrast with sub-symbolic approaches to artificial intel-
ligence, and notwithstanding objections to symbolic AI,2

knowledge in the SP system is transparent and open to inspec-
tion, and likewise for the processing of knowledge.

I. UNSUPERVISED LEARNING AND
THE DONSVIC PRINCIPLE
A related point is that unsupervised learning in the cur-
rent version of the SP computer model conforms to the
‘DONSVIC’ principle—The Discovery of Natural Structures
Via Information Compression [72, Sec. 5.2]. Evidence to
date suggests that, by contrast with sub-symbolic approaches
to artificial intelligence, structures created via unsupervised
learning in the SP system will normally be structures that
people regard as natural and comprehensible.

J. MATHEMATICS
By contrast with other approaches to artificial intelligence,
mainstream computing, or human perception and cognition,

2See, for example, ‘‘Hubert Dreyfus’s views on artificial intelligence’’,
Wikipedia, http://bit.ly/1hGHVm8, retrieved 2014-08-19.

the SP theory has quite a lot to say about the nature of mathe-
matics. In brief, it appears that several aspects of mathematics
may be understood in terms of ICMUP and, potentially, in
terms of multiple alignment ([70, Ch. 10], [76]). Although
logic has received less attention in the SP programme of
research, it seems likely that similar principles will apply
there [70, Ch. 10].

K. HUMAN PERCEPTION AND COGNITION
The SP theory draws extensively on research on human
perception and cognition. In particular, it is founded, in
part, on research developing computer models of the learn-
ing of natural language, underpinned by empirical evidence.
This research is summarised in [68] and in the web page
‘‘Language learning’’ in http://www.cognitionresearch.org,
with download links to papers.

L. SP-NEURAL
The SP theory includes proposals—SP-neural—for how
abstract concepts in the theory may be realized in terms
of neurons and neural processes. The SP-neural proposals
(Appendix I-G) are significantly different from artificial neu-
ral networks as commonly conceived in computer science,
and arguably more plausible in terms of neuroscience.

III. MINIMUM LENGTH ENCODING, ALGORITHMIC
INFORMATION THEORY, AND KOLMOGOROV
COMPLEXITY
This section and the ones that follow consider how the SP the-
ory relates to a selection of AI-related concepts, emphasising
distinctive features of the theory and its apparent advantages
compared with alternatives, but also acknowledging short-
comings in the SP system as it is now, and where it has drawn
inspiration from earlier work.

As mentioned in Appendix I-E, information compression
in the SP theory may be seen as an example of the princi-
ple of minimum length encoding (MLE) [56, 65, 48]. Also,
information compression and MLE are closely related to
algorithmic information theory (AIT), and Kolmogorov com-
plexity (KC) [35].
Amongst these inter-related areas of study, distinctive fea-

tures of the SP theory are:
• Most research on information compression, MLE,
AIT, and KC, is founded on the assumption that
‘computing’ is defined by the universal Turing machine.
By contrast, the SP theory is itself a theory of computing
(Section II-C).

• By contrast with most research in these areas, there is a
central role in the SP theory for ICMUP (Section II-E)
and,more specifically, the concept ofmultiple alignment
(Section II-F).

IV. COMPUTATIONAL AND ENERGY EFFICIENCY
OF COMPUTERS
The book SmartMachines from IBM [26] argues persuasively
that much of the value of big data will be lost because of
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shortcomings in today’s computers,3 and that, while some
gains in efficiency may be achieved with optimisations in
the design of present-day computers, radically new, brain-
like kinds of computer will be needed that are ‘‘many
orders of magnitude more energy efficient’’ than existing
computers:

‘‘The human brain is a marvel. A mere 20 watts
of energy are required to power the 22 billion
neurons in a brain that’s roughly the size of a
grapefruit.4 To field a conventional computer
with comparable cognitive capacity would require
gigawatts of electricity and a machine the size of a
football field. So clearly something has to change
fundamentally in computing for sensing machines
to help us make use of the millions of hours of
video, billions of photographs, and countless
sensory signals that surround us. . . . Unless we
can make computers many orders of magnitude
more energy efficient, we’re not going to be able to
use them extensively as our intelligent assistants.’’
[26, pp. 75, 76, and 88].

The two architectures outlined in Section II-D are,
together, a fundamentally new approach to the design of
computers that draw extensively on research in human cogni-
tion and neuroscience, with clear potential to make comput-
ers ‘‘many orders of magnitude more energy efficient’’ and
very much smaller, as described in [74, Sec. III] (see also
[75, Sec. IX] and Sec. X-A). It appears that there are very
few alternatives with that kind of potential.

In brief, the arguments are as follows. Since computa-
tion in the SP framework is largely a matter of search-
ing for patterns that match each other, gains in efficiency
may be achieved by increasing the efficiency of search.
This can be done in four main ways that are not mutually
exclusive:

• Compression of information, which is at the heart of the
SP system, reduces the size of the data to be searched.

• Potentially very large gains in efficiency may be
achieved by concentrating searches in areas where suc-
cess is most likely, exploiting the statistical information
that the SP system gathers as a by-product of how it
works (Appendix I-F).

• With SP-neural (Appendix I-G), there is potential to cut
out a lot of searching altogether by making direct con-
nections to structures that are already known (somewhat
like making URL links to known web pages in a list
of bookmarks or favourites), instead of using search for
everything, whether or not it is already known (rather
like using an internet search engine to find web pages

3In this connection, it has been reported (‘‘Big data: 20 mind-
boggling facts everyone must read’’, Forbes, 2015-09-30, http://onforb.
es/1YOdT2K) that only about 0.5% of all data is ever analysed.

4As noted in [74], the brain’s power consumption is probably about
12.6 watts (‘‘Does thinking really hard burn more calories?’’, Scientific
American, 2012-07-18, bit.ly/1qJmCBG), and it may contain as many as
86 billion neurons [18].

on all occasions, without taking advantage of shortcuts
in a list of bookmarks or favourites).

• There is also potential to integrate processing and data
in the manner of ‘datacentric’ computing [26, Ch. 5].

The potential of the SP system to make deep cuts in
the energy consumption of computers contrasts sharply with
the large computational resources used by artificial neural
networks with deep learning (Section V-E).

V. DEEP LEARNING IN NEURAL NETWORKS
This section, about deep learning (DL) in artificial neural
networks (ANNs), draws extensively on a review by
Schmidhuber [52], who has achievements and long
experience in the field.

Without in any way wishing to diminish the undoubted
successes of DL in ANNs (both of which, together, will be
referred to as NNs for short), the aim here is to highlight
potential advantages of the SP system. This may seem unduly
presumptious since the SP system, unlike some NNs, has
not won any competitions and has not been adopted or pro-
moted by any company or incorporated in any products. But
for reasons given in the subsections that follow, it appears
that the SP system is built on firmer foundations than the
current generation of NNs, and its long-term prospects are
better.

The great variety of NNs makes it difficult to say things
that are true of all of them. For that reason, the subsections
that follow attempt to say things that are at least true of the
majority.

A. SCOPE FOR ADAPTATION
There is a superficial resemblance between NNs and multiple
alignments (especially if the latter are realized as SP-neural,
as outlined in Appendix I-G) because they both have layers
or levels and they both have connections between the levels.
But NNs are not multiple alignments and provide much less
scope for adaptation:

• Standardly, the number of layers of an NN and the size
of each layer are pre-defined, whereas the number of
columns or rows in a multiple alignment, and their sizes,
depend entirely on the incoming and stored information
from which it is built.5

• Normally, there is just one set of layers in an NN with
a structure that is fixed, although its behaviour may be
changed via the creation of new links within the struc-
ture, or changes in the strengths of links. By contrast,
the SP system works by building what is normally a
great diversity multiple alignments, each one created by
drawing patterns from what is normally quite a small
pool of New patterns and what may be a very large pool
of Old patterns.

5But in the ‘Group Method of Data Handling’ (GMDH), the number of
layers and the number of neurons in each layer depend on the problem being
solved [52, Sec. 5.3]. However, it is evident from a review of research in this
area [23] that NNs of this type are quite different from multiple alignments
in the SP system, and they appear to be much less versatile and adaptable.

VOLUME 4, 2016 219



J. G. Wolff: SP Theory of Intelligence: Distinctive Features and Advantages

• Standardly, any given layer in an NN connects only with
the layer immediately above (if any) and immediately
below (if any).6 By contrast, any given column or row
in a multiple alignment may have connections with any
other column or row, depending on what the multiple
alignment represents.

• Perhaps most importantly, learning in the SP system
(Appendix I-E3) is quite different from gradualist styles
of learning in an NN (Section V-D). Instead of varying
the strengths of links between neurons in a pre-defined
structure, the SP system learns by creating Old patterns,
which may be derived directly from New patterns or,
more commonly, from multiple alignments containing
New and Old patterns ([70, Ch. 9 and Sec. 3.9.2],
[72, Sec. 5]). There is potential for the creation of large
numbers of different Old patterns, with a corresponding
potential for the learning of diverse kinds of knowledge
and skills.

B. BIOLOGICAL VALIDITY
It is generally recognised that NNs are only vaguely related
to biological systems. For example: ‘‘‘Neural networks
are actually very loosely inspired by the brain,’ says
Oren Etzioni, CEO of the Allen Institute for Artificial
Intelligence in Seattle. ‘They are distributed computing
elements, but they’re very simple as compared with neurons;
the connections are extremely simple as compared with a
synapse.’’’7

Although there are still big gaps in our knowledge about
neural structures in the brain, and their functions, it appears
that the organisation and workings of the SP system is better
supported by available evidence:

• Models of language learning. As noted in Section II-K,
the SP programme of research derives largely from ear-
lier research developing computer models of language
learning in children, drawing extensively on relevant
empirical evidence.

• Avoidance of over- or under-fitting. A related point is
that the solution to the problem of over-generalisation
and under-generalisation that has been developed in
research on language learning is likely to provide a better
solution to the problems of over-fitting and under-fitting
in NNs than other proposals in that area (Section V-H).

• Cell assemblies. In SP-neural (Appendix I-G,
[70, Ch. 11]), abstract concepts in the SP theory
map neatly into structures that are quite similar to
Hebb’s [17] concept of a ‘‘cell assembly’’, itself derived
from neurophysiological evidence.

• One-trial learning. By contrast with gradualist styles of
learning in NNs, the way in which unsupervised learning
is done in the SP system provides an explanation for the
phenomenon of one-trial learning and, at the same time,

6An exception would be a fully-recurrent neural network.
7‘‘A robot finds its way using artificial ‘GPS’ brain cells’’, MIT Technol-

ogy Review, 2015-10-19, http://bit.ly/1RVwsxc.

explains why it takes time to learn complex knowledge
or skills (Section V-D).

• Grandmother cells. In SP-neural, a concept such as
one’s grandmother would be represented by a ‘pattern
assembly’—the neural equivalent of an SP pattern.
By contrast, the organisation and workings of NNs
suggest that the neural representation of a concept such
as one’s grandmother would normally be distributed
across many widely-dispersed neurons and many
connections amongst neurons (see also Section V-J1).
On balance, available evidence suggests that
grandmother cells, or something like them, do exist in
mammalian brains: 1) it is sometimes suggested that
the concept of a grandmother cell or cells is implausible
because death of the cell or cells would mean that
one could no longer recognise one’s grandmother. But
that is exactly the kind of thing that can happen with
people who have suffered a stroke or are suffering
from dementia; and 2) there is relatively direct
neurophysiological evidence for the existence of
grandmother cells in the brain [16].

Although the ‘simple’ and ‘complex’ types of neuron dis-
covered by Hubel [20] appear to have provided some inspi-
ration for DL concepts [52, Sec. 5.2], they may also be seen
to provide empirical support for hierarchical structures in the
SP system, especially SP-neural (Appendix I-G).

C. LEARNING PARADIGMS
Supervised learning, unsupervised learning, and reinforce-
ment learning—three forms of learning with NNs—are, in
that connection, normally treated as alternatives with equal
status.8

By contrast, in the SP perspective, unsupervised learning is
seen as a foundation for all other forms of learning, including
such things as learning by being told and learning by imitation
[74, Secs. V-A.1, V-A.2, and V-J], and the learning of minor
and major skills [74, Secs. V-G to V-I]. The main reasons are,
in brief, that:

• As a matter of ordinary observation, much learning
occurs without the benefit of labelled examples, help
from a teacher, or carrots and sticks9: ‘‘Human and
animal learning is largely unsupervised: we discover the
structure of the world by observing it, not by being told
the name of every object.’’ [30, p. 442].

• Extraction of redundancy from data, which is central
in the SP theory, may be seen to operate not only
in unsupervised learning but also in supervised
learning—where there is redundancy in the associations
between labels and corresponding examples—and in
reinforcement learning—where there is redundancy in

8Although Schmidhuber acknowledges that unsupervised learning may
facilitate supervised learning and reinforcement learning [52, Sec. 4.2].

9With regard to the last point, it is clear that motivations have an influence
on learning—we tend to learn things best if they interest us and if we give
them attention. But, contrary to the central dogma of Skinnerian learning
theory, it is unlikely that motivations are fundamental in learning.
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the associations between actions and corresponding
rewards or punishments.

Overall, the SP system promises to provide a unifying
framework for learning of all kinds, potentially more sat-
isfactory than when different forms of learning are treated
separately.

D. LEARNING FROM A SINGLE
OCCURRENCE OR EXPERIENCE
Most NNs incorporate some variant of the idea, proposed by
Hebb [17] and known as ‘Hebbian’ learning, that neurons that
repeatedly fire at about the same time will tend to become
connected, or for existing connections between them to be
gradually strengthened.

This kind of ‘gradualist’ mechanism for learning leads to
slow changes in the behaviour of NNs, in keeping with the
observation that it normally takes time to learn things like
how to talk, or how to play the piano. That correspondence
between the workings of NNs and a familiar feature of how
we learn may strengthen the belief that NNs are psychologi-
cally valid.

But this feature of NNs conflicts with the undoubted fact
that we can and often do learn things from a single occur-
rence or experience. Getting burned once will teach us to be
careful with fire. We may retain memories for many years
of significant events in our lives that occurred only once.
And we may recognise a face that we have seen only briefly,
wemay recognise music that we have heard only once before,
and likewise for films. It is true that we may rehearse things
mentally but often it seems that, with little or no rehearsal, we
remember things that have been seen or heard only once.

Because the slow strengthening of links between neurons
does not account for our ability to remember things after a
single exposure, Hebb adopted a ‘reverberatory’ theory for
this kind of memory [17, p. 62]. But, as Milner has pointed
out [39], it is difficult to understand how this kind of mech-
anism could explain our ability to assimilate a previously-
unseen telephone number: for each digit in the number, its
pre-established cell assembly may reverberate, but this does
not explain memory for the sequence of digits in the number.
We may add that it is unclear how the proposed mechanism
would encode a phone number in which one or more of the
digits is repeated.

The SP theory provides an explanation, both for learning
from a single experience, and for the fact that some kinds of
learning are slow:

• Learning from a single experience. Learning in the
SP system (sketched in Appendices I-A and I-E3)
starts by assimilating New information directly, fol-
lowed by a possible encoding of the information in
terms of any existing Old patterns, and the creation of
newly-minted Old patterns via information compression
[70, Secs. 3.9.2 and 9.2.2], [72, Sec. 5.1]. The taking
in of New information, with or without its encoding in
terms of existing Old patterns, means that the system can

learn from a single exposure to a pattern or event, much
like an electronic recording system. This is essentially
what is sometimes called ‘episodic memory’.

• Slow learning of complex knowledge or skills. Learn-
ing something like a natural language is much more
complicated than remembering one’s first day at school
or when one had a ride on a camel. With the learning
of complex knowledge or skills, the main challenge
is heuristic search through the vast abstract space of
possible knowledge structures to find one or two that
are reasonably good (Appendix I-E4). The learning of
this kind of knowledge—sometimes called ‘semantic
memory’—is necessarily a gradual process.

E. COMPUTATIONAL RESOURCES, SPEED OF
LEARNING, AND VOLUMES OF DATA
In addition to apparent problems with learning from a single
experience, there seem to be related issues with NNs con-
cerning the computational resources and volumes of data they
require for learning, and their speed of learning. For example:

• One news report10 describes how an NN with
‘‘16,000 computer processors’’ and ‘‘one billion
connections’’ was exposed to ‘‘10 million randomly
selected YouTube video thumbnails’’, ‘‘over the course
of three days’’. Then, ‘‘after being presented with a
list of 20,000 different items’’, it began to recognize
pictures of cats.

• Another report [9] refers to ‘‘. . . billions or even hun-
dreds of billions of connections that have to be processed
for every image’’ and ‘‘Training such a large network
requires quadrillions of floating point operations . . ..’’.

• And ‘‘. . . the new millennium brought a DL break-
through in [the] form of cheap, multiprocessor graphics
cards or GPUs. . . .GPUs excel at the fast matrix and vec-
tor multiplications required . . . for NN training, where
they can speed up learning by a factor of 50 and more.’’
[52, Sec. 4.5].

Although it is true that it takes time for a person to learn
his or her native language or languages (Section V-D) and
the human brain contains billions of neurons, the current
generation of NNs appears to overlook what can be achieved
with ICMUP (Section II-E and Appendix I-E1), with small
amounts of data, and quite modest computational resources:

• In accordance with the theory developed by Marr and
Poggio [37] in which ICMUP may be seen to play a
central role, a computer program developed by Grimson
could discover the hidden image in a random-dot stere-
ogram ([25], [73, Sec. 5.1]) with performance on a
late-1970s computer that ‘‘coincides well with that of
human subjects’’ [15, Sec. 5]. Although Grimson does
not give run times, it looks as if his program finds the
hidden image in a random-dot stereogram about as fast
as people—normally in less than a minute.

10‘‘Google’s artificial brain learns to find cat videos’’,Wired, 2012-06-26,
http://wrd.cm/18YaV5I.
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• With run times of only a few minutes on a PC, the
SP computer model, founded on ICMUP, demonstrates
unsupervised learning of plausible generative gram-
mars for the syntax of English-like artificial languages
(Section XI-C). Similar results have been obtained with
earlier models of language learning [68], also founded
on ICMUP.

• In a similar vein, Joshua Tenenbaum of MIT has been
quoted as saying ‘‘With all the progress in machine
learning, it’s amazing what you can do with lots of
data and faster computers, . . . But when you look at
children, it’s amazingwhat they can learn from very little
data. . . .’’11

It is true that what is being attempted with many NNs is
relatively ambitious, but we should not forget that biological
neurons are very much slower than electronic components.
On balance, there appear to be problems with NNs relating
to the computational efficiency of their learning and the
volumes of data they require to obtain useful results.

Although researchers with NNs do not normally record the
amount of energy required to run them, it is clear that, with
the large computational resources and large volumes of data
described in the quotes above, the current generation of NNs
consume very much more energy than the ca. 13 watts of
the human brain, and the trend appears to be upwards. NNs,
as currently conceived, do nothing to solve the problems of
energy consumption in computing outlined in Section IV.
By contrast, there is potential, via information compression
and the exploitation of statistical information which the SP
system gathers as a by-product of how it works, for very sub-
stantial reductions in the amount of energy consumed in AI
and, more generally, in computing (Section IV, [74, Sec. III]).

F. RECOGNITION OF IMAGES AND SPEECH
With some qualification (Sections V-E, V-G, and V-H), NNs
do well in tasks such as the recognition of images (eg, [79])
or speech (eg, [4]). A particular strength of NNs in this
connection is that they may be applied to ‘raw’ digitised
data without the need for pre-processing to discover such
features as edges or angles [30, p. 436]. But the SP system
has potential for the discovery of such features, as discussed
in [73, Sec. 3].

Notwithstanding the strengths of NNs just mentioned,
it appears that the SP system provides a firmer founda-
tion for the development of human-like capabilities in com-
puter vision, and perhaps also in the processing of speech.
As outlined in Section XI-A, the SP system has relative
strengths and potential in several different aspects of pattern
recognition and vision.

G. DEEP NEURAL NETWORKS ARE EASILY FOOLED
A recent report describes how ‘‘We can cause [a deep neural
network] to misclassify an image by applying a certain hardly

11From ‘‘A learning advance in artificial intelligence rivals human abili-
ties’’, New York Times, 2015-12-10.

perceptible perturbation.’’ [60, Abstract]. For example, the
NN may correctly recognise a picture of a car but may fail
to recognise another slightly different picture of a car which,
to a person, looks almost identical (ibid., Figure 6).

Another report [46] describes how one kind of deep neural
network can be fooled quite easily into assigning an image
with near certainty to a recognisable class of objects such
as ‘guitar’ or ‘penguin’, when people judge the given image
to be something like white noise on a TV screen or an
abstract pattern containing nothing that resembles a guitar or
a penguin or any other object.

Of course, these kinds of failures are a potential prob-
lem in any kind of application where recognition needs to
be reliable. And without a good theory for how NNs work
(Section V-M), they may be difficult to weed out.

With regard to the first kind of error—failing to recog-
nise something that is almost identical to what has been
recognised—there is already evidence that the SP computer
model would not make that kind of mistake. It can recog-
nise words containing errors of omission, commission and
substitution (Section XI-A, [70, Sec. 6.2.1]), and likewise
for diseases in medical diagnosis viewed as pattern recog-
nition [69, Sec. 3.6] and in the parsing of natural language
[72, Sec. 4.2.2].

No attempt has been made to test experimentally whether
or not the SP computer model is prone to the second kind
of error—recognising abstract patterns as ordinary objects—
but a knowledge of how it works suggests that it would
not be.

H. UNDER-GENERALISATION AND
OVER-GENERALISATION
An issue with any learning system is its ability to gener-
alise from the data (I) that is the basis of its learning, with-
out under-generalisation (‘overfitting’) or over-generalisation
(‘underfitting’). If, for example, the system has learned the
concept ‘horse’, it should, in its later recognition of horses,
not be too closely constrained to recognise only horses
that are identical to or very similar to those in I (under-
generalisation) and, at the same time, it should not make such
mistakes as assigning cows, sheep or dogs to the category
‘horse’ (over-generalisation).

1) UNDER-GENERALISATION IN NNS
It is widely recognised that NNs may suffer from overfit-
ting, and various solutions have been proposed. For example,
Srivastava and colleagues [58] suggest that some neurons
in an NN, together with their connections, may be ran-
domly dropped from the NN during training, to prevent them
co-adapting too much; while Zeng and colleagues [81] sug-
gest that, in a multi-stage classifier, unsupervised pre-training
and specially-designed stage-wise supervised training can
help to avoid overfitting; and Wiesler and colleagues [66]
say that they have found that a ‘‘factorized structure’’ can be
effective against overfitting.
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2) OVER-GENERALISATION IN NNS
The problem of underfitting in NNs has also drawn attention.
For example, Dauphin and Bengio [5] show how underfit-
ting may arise from the failure of some big neural networks
to take full advantage of their computational capacity, and
they make suggestions for overcoming the problem; and
Ganin and Lempitsky [12] describe how a ‘‘two-stage archi-
tecture’’ can help overcome problems of underfitting.

3) ALMOST CERTAINLY, INFORMATION COMPRESSION
SOLVES BOTH PROBLEMS
Without attempting a detailed comparison with alternative
accounts of overfitting and underfitting in NNs, the sugges-
tion here is that, in the SP theory, information compression
provides a simple, elegant solution for both problems.

In connection with how children learn their first lan-
guage or languages, information compression can explain
how they learn to generalise correctly beyond the language
that they have heard—not too little and not too much
([70, Sec. 9.5.3], [72, Sec. 5.3]). This includes correction
of the over-generalisations (such as ‘‘hitted’’ or ‘‘gooses’’)
that are prominent in the early stages of a child’s learning of
language. There is evidence that these things can be achieved
without the need for correction by a ‘teacher’ or anything
equivalent.

In brief, the argument depends on the idea that, when
a body of information, I, is compressed, the result com-
prises a grammar, which we may refer to as G, and an
encoding of I in terms of G, which we may refer to as E
(Appendix I-E5). The two things together represent a lossless
compression of I, without any generalisation. But G by itself
represents the recurrent or redundant features of I, without
the non-redundant parts of I. As such, it appears to provide for
generalisation beyond I, without either over-generalisation or
under-generalisation.

It seems likely that the same principles would apply to
the learning of grammars for the recognition of such things
as images or speech, thus solving two problems—the prob-
lems of overfitting and underfitting—with one over-arching
principle.

The SP system may also help to solve the problem of over-
fitting in the way that it can recognise patterns via multiple
alignment in the face of errors of omission, commission, and
substitution (Section XI-A, [72, Sec. 4.2.2]).

I. INFORMATION COMPRESSION
Schmidhuber’s review [52] contains a short section (4.4)
about ‘‘Occam’s Razor: compression and minimum descrip-
tion length (MDL)’’, and it mentions information com-
pression in some other sections. Although he suggests
(in Section 5.10) that ‘‘much of machine learning is essen-
tially about compression’’, the overall thrust of the review
is that information compression is merely one of several
‘‘recurring themes’’ in deep learning, without any great
significance.

By contrast, information compression is fundamental in the
SP theory, running through it like Blackpool in a stick of rock,
in its foundations ([76], Appendix I-B), in the matching and
unification of patterns (Appendix I-E1), in the building of
multiple alignments (Appendix I-E2), and in unsupervised
learning (Appendix I-E3).

In view of evidence for the importance of information
compression in intelligence, computing, and mathematics
(Appendix I-B), it appears that the peripheral status of
information compression in the design and operation of
NNs weakens them conceptually in comparison with the
SP system.

J. TRANSPARENCY IN THE REPRESENTATION
AND PROCESSING OF KNOWLEDGE
A problem with NNs is that there is considerably uncer-
tainty about how they represent knowledge and how they
process it:

‘‘. . . we actually understand surprisingly little of
why certain models work and others don’t. . . . One
of the challenges of neural networks is understand-
ing what exactly goes on at each layer.’’ [41].
‘‘. . . no one knows how neural networks come
up with their answers. . . . A programmer need
adjust only the number of nodes and layers to opti-
mise how it captures relevant features in the data.
However, since it’s impossible to tell exactly how a
neural network does what it does, this tweaking is
a matter of trial and error.’’12

With regard to the first quote, it is true that, as described in
the blog, NNs can be made to reveal some of their knowledge.
But, while many of the resulting images have artistic appeal,
they are not transparent representations of knowledge (see
also Section V-J2), it’s not clear how they are learned or how
they function in such tasks as recognition, and they certainly
do not conform to the DONSVIC principle (Section II-I).

By contrast with these uncertainties:
• In the SP system, all kinds of knowledge, including those
detailed in Section XI-E, are represented transparently
as SP patterns.

• In the SP computer model, an audit trail can be provided
for all processing, including the building of multiple
alignments and the creation of grammars.

• In the SP system, it is anticipated that unsupervised
learning will conform to the DONSVIC principle
(Section II-I, [72, Sec. 5.2]), and this is confirmed by
evidence from the SP computer model. To the extent
that this remains true in future versions of the model,
structures created via unsupervised learning in the SP
model are likely to be transparent and comprehensible
by people.

12‘‘The rapid rise of neural networks andwhy they’ll rule our world’’,New
Scientist, 2015-07-08, http://bit.ly/1IkbbuC.
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1) DISTRIBUTED OR LOCALIST ENCODINGS
There is further uncertainty about whether knowledge in
an NN is represented and processed in a ‘distributed’ or
‘localist’ scheme. The dominant view is that, in neural net-
works, knowledge of a concept such as one’s grandmother
is encoded in neurons that are widely-distributed, with links
between them (Section V-B). In this ‘sub-symbolic’ view,
it would not be possible to identify any single neuron or local
cluster of neurons that represent any given concept: ‘‘there is
no distinction between individual high level units and random
linear combinations of high level units, according to various
methods of unit analysis’’, suggesting that ‘‘it is the entire
space of activations, rather than the individual units, that
contains the bulk of the semantic information’’ [60, Abstract].

But some researchers suggest that ‘‘it is possible to
train [artificial] neurons to be selective for high-level
concepts . . . In our experiments, we obtained neurons that
function as detectors for faces, human bodies, and cat
faces by training on random frames of YouTube videos.’’
[29, Conclusion]. This research appears to support the
‘localist’ or ‘symbolic’ view that a concept such as one’s
‘grandmother’ may be represented by a single neuron or,
perhaps, a small cluster of neurons (cf. Section V-B).
Although the SP theory may turn out to be wrong

empirically, it is at least clear on this issue. As noted
in Section V-B, it is very much in the localist camp.
In SP-neural, it is envisaged that knowledge of concepts in
the form of SP patterns is recorded on the cortex very much
like writing on a sheet of paper (Appendix I-G). As with
writing on a sheet of paper, any one section or paragraph, in
one location, may be seen to describe a concept, although it
may contain pointers to supporting information elsewhere.

2) CLASS-INCLUSION HIERARCHIES AND
PART-WHOLE HIERARCHIES
With regard to hierarchical structures, there is further
uncertainty about whether NNs discover:

• Class-inclusion hierarchies:
‘‘Deep-learning methods are representation-
learning methods with multiple levels of
representation, obtained by composing simple
but non-linear modules that each transform the
representation at one level (starting with the raw
input) into a representation at a higher, slightly
more abstract level.’’ [30, p. 436].
‘‘Hidden layers: these learnmore abstract represen-
tations as you head up.’’13

• Or part-whole hierarchies:
‘‘An image . . . comes in the form of an array
of pixel values, and the learned features in the
first layer of representation typically represent
the presence or absence of edges at particular

13Slide 3 in ‘‘Deep learning for NLP (without magic)’’, slide show
by R. Socher and C. Manning, dated 2013, http://stanford.io/1bmBsKK,
retrieved 2015-07-25.

orientations and locations in the image. The
second layer typically detects motifs by spotting
particular arrangements of edges, regardless
of small variations in the edge positions. The
third layer may assemble motifs into larger
combinations that correspond to parts of familiar
objects, and subsequent layers would detect objects
as combinations of these parts.’’ [30, p. 436].
‘‘. . . the first layer maybe looks for edges or
corners. Intermediate layers interpret the basic
features to look for overall shapes or components,
like a door or a leaf. The final few layers assemble
those into complete interpretations . . . such as
entire buildings or trees.’’ [41].

and, either way, the representation is obscure.
While it is clear that a human face is part of a human body

(Section V-J1), it seems reasonable to assume that, in either a
distributed or localist scheme (Section V-J1), a concept such
as ‘horse’, ‘cow’, or ‘sheep’, would be most fully encoded in
the highest layer of an NN. If that is accepted, the question
arises how the NN would encode knowledge of something
like an agricultural exhibition which is likely to contain rep-
resentations of all three of the concepts mentioned, and with
multiple instances of each one of them. Likewise, we may ask
how such concepts may be encoded as examples of abstrac-
tions such as ‘mammal’ or ‘vertebrate’. It is not clear how
concepts that are most fully encoded in the top layer of an NN
could ever be part of something that is larger or more abstract.

By contrast with these uncertainties with NNs about
the representation of class-inclusion hierarchies or part-
whole hierarchies, the SP system can represent both types
of hierarchy, with a clear distinction between the two.
This can be seen in the class hierarchies in Figure 1 and
in [70, Fig. 6.7], and in the part-whole hierarchies in
Figure 2 and in [70, Fig. 6.8]). At the same time it provides
for seamless integration of both kinds of hierarchy, as illus-
trated in [72, Fig. 16]. Any concept, of any size or level of
abstraction, may always be embedded in something larger or
more abstract.

The SP system also provides the means of representing
class-inclusion heterarchies (cross-classification) and part-
whole heterarchies. It appears that this is well beyond any-
thing that can be done with NNs.

Figure 1 shows how the SP computer model may recognise
a car at multiple levels of abstraction. The figure shows the
best multiple alignment created by the SP computer model—
the one yielding most compression—with a New pattern
(column 0) and a set of Old patterns representing categories
related to cars (columns 1 to 5). Column 5 shows that the
unknown entity is ‘‘my car’’, and other columns show that
it is a sports car (column 4), a car (column 1), and a vehicle
(column 2). The order of the categories across the columns
has no special significance—it depends purely on how the
multiple alignment was built up.

Figure 2 shows how, in a similar way, the SP system
may, via a multiple alignment, model the recognition of an
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FIGURE 1. A multiple alignment illustrating recognition at multiple levels of abstraction, as described in the text.

unknown entity in terms of its parts and sub-parts. In this
example, the features of the unknown entity are shown in
column 0. That the entity is a car is shown in column 2, with
a match for one of its features—a gearbox. Column 1 shows
one part of a car—the engine—with a match for one of its
parts—the crankshaft. And column 3 represents the body of
the car with a match for one of its parts—the steering wheel.

3) ITERATION AND RECURSION
Related to issues just discussed are questions about how
NNs may encode repeated instances of this or that category
(such as the many instances of horses, cows, and sheep
that one would expect to see at an agricultural exhibition
(Section V-J2)), and how NNs may encode the kinds of
recursive structures that are prominent in natural language,
such as This is the horse and the hound and the horn, That
belonged to the farmer sowing his corn, That kept the rooster
that crowed in the morn, . . ..
At first sight, one might think that ‘recurrent neural net-

works’ would be an appropriatemeans ofmodelling recursion
in natural language. But, as noted in Section V-K1, these
kinds of NNs do not, apparently, respect the word, phrase,
clause and sentence structures in natural language that have
been prominent in generative and computational linguistics
for many years.

By contrast with uncertainties about how NNs may handle
repeated structures, the SP theory provides crisp answers:

• Any given SP pattern may appear one, two, or more
times within any one multiple alignment. One exam-
ple is how the pattern representing a noun phrase
(‘NP’) appears twice in the multiple alignment shown in
Figure 10: once in column 2 and again in column 11.
Another example is shown in Figure 3, below, where the
pattern ‘ri’ appears in columns 5, 7, and 9.
In the interpretation of any given body of data, there
should be no difficulty arising from the occurrence of
multiple instances of any given category. There is more
detail in [70, Sec. 3.4.6] about how a given pattern may
appear more than once in any multiple alignment.

• Multiple alignments can accommodate recursive struc-
tures, as illustrated in Figures 3 and 8.

• Recursion may also be accommodated in SP-neural, as
illustrated in [70, Fig. 11.10].

With regard to Figure 3, native speakers of English know
that, in a phrase like the very . . . expensive jewellery, the
word very may, in principle, be repeated any number of
times—although it would be considered poor style to use it
more than 4 or 5 times. In the figure, this kind of
recursion may be seen in repeated appearances of the
self-referential pattern ‘ri ri1 i #i ri #ri #ri’.
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FIGURE 2. A multiple alignment illustrating recognition of a car via its parts and sub-parts, as described in the text.

It is self-referential because the symbols ‘ri . . . #ri’ at
the beginning and end of the pattern can be aligned with the
symbols ‘ri #ri’ in the body of another appearance of the
pattern.

K. THE PROCESSING OF NATURAL LANGUAGE
A recent review of research in deep learning [30] suggests that
‘‘deep learning has produced extremely promising results for
various tasks in natural language understanding, particularly
topic classification, sentiment analysis, question answering
and language translation.’’ (p. 436). This section first exam-
ines some research in the application of NNs to natural lan-
guage, and then, in Section V-K5, assesses their prospects in
this area in comparison with the strengths and potential of the
SP system.

To anticipate a little, it seems that NNsmay indeed produce
some useful results in the processing of natural language but,
taking a longer view, the SP system promises more precision
and higher standards of performance. As one commenta-
tor has remarked: ‘‘Deep learning’s usefulness for speech
recognition and image detection is beyond doubt, but it’s
still just a guess that it will master language and transform
our lives more radically.’’ [54, p. 73]. It seems unlikely that
NNs will, for example, ever be able to represent and process
the subtle structure of inter-locking dependencies in English
auxiliary verbs, as the SP system can do ([70, Sec. 5.5],
[72, Secs. 8.2 and 8.3]).

1) PARSING AND PRODUCTION OF NATURAL LANGUAGE
In addressing issues in the parsing of natural language by
NNs, Socher and colleagues [55] employ the concept of
‘Compositional Vector Grammar’, but their results are not as
clear or straightforward as one might wish, something which
two of them (Socher and Manning) acknowledge in a slide
show:

‘‘Concern: problemwith model interpretability. No
discrete categories or words, everything is a contin-
uous vector. We’d like have symbolic features like
NP, VP, etc. and see why their combination makes
sense.’’14

Notwithstanding some qualifying remarks, their concern
remains valid.

By contrast, the SP system has several strengths in
both the analysis and production of natural language
(Section XI-B). In particular, the system respects and fully
represents the kinds of hierarchical structure that have long
been recognised in generative linguistics, which are quite
different from the kinds of cyclic representations of language
sequences by recurrent neural networks described in, for
example, [59, 64].

14Slide 201 in ‘‘Deep learning for NLP (without magic)’’, slide show
by R. Socher and C. Manning, dated 2013, http://stanford.io/1bmBsKK,
retrieved 2015-07-27.
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FIGURE 3. A multiple alignment from the SP computer model showing recursion, as described in the text.

2) TRANSLATION BETWEEN LANGUAGES
In some recent work (eg, [24, 53, 59]) NNs have been applied
to the already-established technique of translating between
languages by mapping phrases in the source language to
corresponding phrases in the target language.

The main problem here is that, while phrase-to-phrase
or syntax-to-syntax systems can produce useful translations,
and may generalise usefully from the training data [53],
it is unlikely that they will ever attain the standard of a good
human translator. To reach that ‘Holy Grail’, it appears to be
essential to translate the source language into a representation
of its meaning, and then translate this ‘interlingua’ into the
target language. This appears to be what people do, it is in
any case needed for high-quality ‘understanding’ of natural
language (Sections V-K3 and XI-B), and it can reduce sub-
stantially the number of mappings that are are required.

In the quest for that higher standard of translation,
it appears that the SP system has more potential than NNs:
it has clear potential for the learning of the syntax of natural

language, for the learning of semantic structures, and for
learning syntactic-semantic structures (Section XI-C).

3) UNDERSTANDING OF NATURAL LANGUAGE
Zhang and LeCun [82, Sec. 1] write: ‘‘In this article we
show that text understanding can be handled by a deep learn-
ing system without artificially embedding knowledge about
words, phrases, sentences or any other syntactic or semantic
structures associated with a language.’’ But this claim needs
to be qualified:

• In the examples that are given, what is learned is essen-
tially associations between short pieces of text such as
questions and answers in the Yahoo! Answers website.
This notion of ‘understanding’ falls a long way short
of, for example, the understanding that a motor engineer
would have for an expression like ‘‘gear box’’, or that a
musician would have for an expression like ‘‘Handel’s
Messiah’’. For the great majority of ‘content’ words
or phrases in any language, the full meaning is a rich
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structure of knowledge, and, normally, most of it is not
about words or combination of words.

• With the very simplistic concept of ‘understanding’
that is employed in [82], it may indeed be possible to
find associations between words and ‘meanings’ with-
out worrying about the syntactic and semantic structure
of language. But for a thorough understanding of, for
example, a legal, philosophical or scientific argument, it
seems unlikely that we can by-pass the need for a good
knowledge of such structures.

What is perhaps a better example is described in [64],
where NN techniques for syntax-to-syntax translation are
borrowed and converted to an image-to-syntax scheme,
where ‘‘image’’ means the output of an NN that recognises
images and ‘‘syntax’’ means a natural language caption for
each image. In this case, it is perhaps more reasonable to
describe each image as the ‘meaning’ of the corresponding
caption. But we would still be a long way from the richly-
structured forms of knowledge which provide most of the
meanings for natural language.

In summary, it seems that, compared with NNs, the SP
system provides a much sounder basis for learning those rich,
complex structures of knowledge which are the meanings of
natural language and which need to be in place if we are to
attain anything like human-level ‘understanding’ of natural
language. It seems unlikely that NNs will ever be able to meet
the ‘‘The Winograd Schema Challenge’’ [31].15

4) UNSUPERVISED LEARNING OF NATURAL LANGUAGE
Zhang and LeCun [82, Sec. 1] also write: ‘‘. . . we
hypothesize that when trained from raw characters, temporal
ConvNet is able to learn the hierarchical representations of
words, phrases and sentences in order to understand text.’’
(Section 1). In view of the problems of transparency with
NNs (Section V-J), uncertainties about distributed or localist
encodings (Section V-J1), uncertainties about class-inclusion
hierarchies and part-whole hierarchies (SectionV-J2), and the
failure of NNs to respect the DONSVIC principle
(Section V-J, introduction), this hypothesis appears to
be over-optimistic.

By contrast, the SP system has already demonstrated unsu-
pervised learning of segmental structures, classes of structure,
and abstract patterns, and it has good prospects for further
development (Section XI-C).

5) DISCUSSION
There is little doubt that, in natural language processing,
NNs will yield some useful new applications on short to

15Winograd’s original example [67, p. 33] demonstrates the subtlety
of natural language with two sentences: The city councilmen refused the
demonstrators a permit because they feared violence and The city councilmen
refused the demonstrators a permit because they advocated revolution. In the
first case, we understand that the word they refers to the city councilmen,
while in the second case it seems more reasonable to assume that they
is a reference to the demonstrators. Our understandings in the two cases
depend on extensive knowledge of how things happen in the world and the
psychology of people, including city councilmen and demonstrators.

medium timescales. But, because of the several problems
with NNs, described elsewhere in Section V, it is unlikely
that they canmatch human capabilities with natural language.
In particular, they are unlikely to make much impact on
the difficult problems that need to be solved to reach that
standard: learning syntactic structures, learning the kinds of
knowledge structures that provide the meanings for language,
and learning syntactic-semantic connections.

It appears that, taking a long view, the SP system provides
a much sounder basis for the understanding, production,
translation, and learning of natural language, with firmer
theoretical foundations.

L. REASONING, PROGRAMMING, AND OTHER
KINDS OF ‘SYMBOLIC’ PROCESSING

‘‘As regards knowledge representation in the brain,
one of the key challenges is to understand how
neural activations, which are widely distributed and
sub-symbolic, give rise to behavior that is sym-
bolic, such as language and logical reasoning.’’
[6, Sec. 2].
‘‘[Deep learning techniques] have no obvious ways
of performing logical inferences . . .’’16

This section briefly reviews aspects of AI and other areas of
computing which seem to pose problems for NNs, and where
the SP system is relatively strong. In broad terms, these seem
to be areas where the ‘symbolic’ tradition has proved to be
relatively successful.

Some years ago, there was quite a lively interest in how
NNs might do reasoning (eg, [34]) but that interest seems
to have subsided, probably because NNs really are not well
suited to much more than the relatively simple kinds of infer-
ence that, in pattern recognition, correct errors of omission,
commission, or substitution.

By contrast, the SP system demonstrates several kinds
of reasoning, with clear potential for further development
(Section XI-D).

Similar things may be said about areas of AI which appear
to be problematic for NNs and where symbolic AI and the SP
system are relatively strong, such as planning (see Figure 4,
below, and [70, Ch. 8]), problem solving ([70, Ch. 8])), and
unsupervised learning of language (Section XI-C, [70, Ch. 9],
[72, Sec. 5]).

Again, it is difficult to envisage how NNs might be used
for the kind of ‘programming’ which is the mainstay of
software engineering as it is practiced now. By contrast, the
SP system has clear potential for application in that area
(Section XI-F).

There seem to be three main reasons for the relative
strength of the SP system in the areas mentioned:

• Unlike NNs, there is transparency in both the
representation and processing of knowledge
(Sections II-H and V-J).

16‘‘Is ‘deep learning’ a revolution in artificial intelligence?’’, The New
Yorker, Gary Marcus, 2012-11-25, http://nyr.kr/1Be7S22.
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FIGURE 4. Two multiple alignments produced by the SP computer model
showing how, with appropriate data, the system may plot alternative
routes between two cities, as described in the text. This figure has
been adapted, with permission, from [70, Figs. 8.1 and 8.5].

• Within the multiple alignment framework, it is possible
to model concepts from mainstream computing and the
symbolic tradition ofAI such as variable, value, and type
(Section XI-D).

• The multiple alignment framework is much more
adaptable than the deep learning framework
(Section V-A).

As an example of the kind of thing that the SP system can
do, Figure 4 shows how multiple alignments produced by
the SP computer model may serve to plot alternative routes
between two cities. In each of the two multiple alignments,
the two cities, Beijing and New York in this example, are
shown as a New pattern in column 0. Each of the remaining
columns in each multiple alignment shows an Old pattern,
drawn from a pool of such patterns, showing a one-stop flying
route between another pair of cities.

M. THEORETICAL FOUNDATIONS
Several things point to deep problems with NNs—theoretical
foundations that are weak or absent. These include: doubts
about their biological validity (Section V-B), failure to
account for learning from a single experience (Section V-D),
concerns about the computational resources required by
NNs (Section V-E), failures in recognition (Section V-G),
weaknesses in under-generalisation and over-generalisation
(Section V-H), problems of transparency in the representation
and processing of knowledge (Section V-J), problems with
the processing of natural language (Section V-K), and prob-
lems in modelling reasoning and other ‘symbolic’ kinds of
processing (Section V-L).

That there are deficiencies in theory for NNs is also sug-
gested by their many different versions: ‘time-delay’ neural
networks, ‘gradient-based deep learners with alternating con-
volutional and down-sampling layers’, ‘weight-sharing feed-
forward’, ‘nonlinear auto-regressive with exogenous inputs
recurrent’, ‘max-pooling convolutional’, ‘multi-column GPU
max-pooling convolutional’, ‘bi-directional long short-term
memory recurrent’, and more [52]. Although these many
versions indicate high levels of interest in NNs, they are also
an indication that researchers are still not happy with the NN
framework.

VI. UNIFIED THEORIES OF COGNITION
AND RELATED RESEARCH
As mentioned in Appendix II, ‘unified theories of cognition’
and ‘artificial general intelligence’ are honourable exceptions
to the rather marked tendency for research in AI and in human
perception and cognition to have become fragmented into
many subfields, without much communication between them.
This section will not attempt to review all the projects in these
and related areas. It will say something briefly about two of
them: Soar and CogPrime.

The first of these, Soar [28], was originally developed
as a response to Allen Newell’s call for ‘unified theories
of cognition’, in his book of the same name [44]. Up to
and including Soar 8 (ca. 2004), ‘‘. . . there has been a sin-
gle framework for all tasks and subtasks (problem spaces),
a single representation of permanent knowledge (produc-
tions), a single representation of temporary knowledge
(objects with attributes and values), a single mechanism for
generating goals (automatic subgoaling), and a single learn-
ing mechanism (chunking)’’, in accordance with the principle
that ‘‘. . . the number of distinct architectural mechanisms
should be minimized.’’17

But in later versions of Soar, the stress on ‘‘unified’’ seems
to have diminished: ‘‘We have revisited [the assumption
that architectural mechanisms should be minimised] as
we attempt to ensure that all available knowledge can be
captured at runtime without disrupting task performance.
This is leading to multiple learning mechanisms (chunking,
reinforcement learning, episodic learning, and semantic
learning), and multiple representations of long-term
knowledge (productions for procedural knowledge, semantic
memory, and episodic memory)’’ (ibid.).

Although Newell uses the expression ‘‘cognitive architec-
ture’’ [44, p. xii and elsewhere], an increased willingness
now for Soar to encompass multiple structures and multiple
processes appears to be the reason for an increased emphasis
on the concept of a cognitive architecture rather than that of
a unified theory of cognition.

The variety of structures and mechanisms in the early Soar,
and their expansion in the later Soar, suggests that, despite the
commendable early quest for a unified model of cognition,

17From the home page of the official Soar website at
http://bit.ly/1NXnGP9, retrieved 2015-09-02.
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the system has been and is a kluge (Appendix II-D). It appears
that the SP system scores better in terms of simplicity and
power (Appendix II-B), doing at least as much but with
significantly less structure or mechanism.

Similar things may be said about CogPrime [13]. To be
fair, it does not aspire to be a unified theory of cognition
or intelligence, since ‘‘We have not discovered any one
algorithm or approach capable of yielding the emergence
of [intelligence].’’ (ibid., p. 2). Rather, it is an ‘‘architec-
ture’’ for artificial general intelligence containing a variety
of structures and mechanisms, with ‘‘cognitive synergy: the
fitting together of different intelligent components into an
appropriate cognitive architecture, in such a way that the
components richly and dynamically support and assist each
other . . ..’’ (p. 2, emphasis in the original), based on the
hypothesis that such synergy ‘‘can yield robust intelligence
at the human level and ultimately beyond.’’ (p. 3).

In effect, the argument is that, although CogPrime is a
kluge, ‘‘cognitive synergy’’, also described as ‘‘secret sauce’’
(p. 2), will somehow overcome that handicap. Although [13]
contains outline examples of how cognitive synergy may
be applied, it is difficult to see how, via such applications,
CogPrime’s relatively complex collection of structures and
mechanismsmight yield ‘‘robust intelligence’’, or achieve the
overall simplicity that one would wish to see in any good
theory.

In [13], there is a welcome recognition of the importance
of Occam’s Razor, which is described as ‘‘an overall design
principle that underlies nearly every part of the [CogPrime]
system.’’ (p. 36). But, from an SP perspective, this falls
far short of what is needed: it does not recognise the
importance of ICMUP (Section II-E) or multiple alignment
(Section II-F), and it does not recognise how, via those
two principles, one may achieve an overall simplification
in theory (Section II-A), and an overall simplification in
computing systems (Section II-B), cutting out much of the
complexity that arises when a collection of diverse concepts
and mechanisms, from different areas, are bolted together,
with or without ‘‘secret sauce’’.

It seems that researchers in AI have largely given up on
the quest for a truly unified theory of cognition. The nearest
thing seems to be a relatively large number of ‘cognitive
architectures’ (many of which, up to 2010, are reviewed
in [50]). It appears that the SP system is unique in its attempt
to simplify and integrate concepts across a broad canvass.
As such, it appears to be unusually strong in combining
conceptual simplicity with descriptive or explanatory power
(Section II-A).

VII. UNIVERSAL SEARCH
Some ideas, that may be grouped together loosely under
the heading ‘universal search’, seem, at first sight, to offer
comprehensive solutions to problems in AI and beyond.

Solomonoff [57] has argued that the great majority of
problems in science and mathematics may be seen as either
‘machine inversion’ problems or ‘time limited optimization’

problems, and that both kinds of problem can be solved by
inductive inference using the principle of minimum length
encoding.

In ‘Levin search’ [32], [33], which aims to solve inversion
problems, the system is designed to solve any given problem
by interleaving all possible programs on a universal Turing
machine, sharing computation time equally among them,
until one of the executed programsmanages to solve the target
problem.

Ideas of this kind have been developed by Hutter (eg, [21]),
Schmidhuber (eg, [51]), and others.18 From the perspective of
the SP research programme, the main sources of concern are:

• The apparent difficulty of translating the abstract con-
cepts of universal search into working models that
exhibit aspects of intelligence or are potentially useful.

• The apparent difficulty of squeezing the subtlety and
complexity of human intelligence into the procrustean
bed of ‘well defined problems’ [21]—something that
appears to be a prerequisite for universal search.

• With problems in AI, it is rarely possible to guarantee
solutions that are theoretically ideal—a focus of interest
in research on universal search. Normally, via heuristic
search, we should aim for solutions that are ‘reasonably
good’ and not necessarily perfect (Appendix I-E4).

• In terms of the trade-off between simplicity and power
(Appendix II), it appears that theories in the area of
universal search are running the risk of being too simple
and over-general, and correspondingly weak in terms of
descriptive or explanatory power.
By contrast, the SP system provides mechanisms for
finding good full and partial matches between pat-
terns (Appendix I-E1), for building multiple align-
ments (Appendix I-E2), and for creating grammars
(Appendix I-E3), and it has plenty to say about a range
of observations and concepts in AI and beyond.

VIII. BAYESIAN NETWORKS AND SOME
OTHER MODELS FOR AI
This section considers briefly some other systems or tech-
niques that have been proposed as models for AI, or aspects
of AI: Bayesian networks, support vector machines, hidden
Markov models, Kalman filters, self-organising maps,
Petri nets, cellular automata, pushdown automata, dimension-
ality reduction, and finite-state automata. It is likely that there
are other systems to which the remarks in this section apply.

The suggestion here, which is admittedly a rather sweep-
ing generalisation, is that, while these models are admirably
simple, and while they may have useful applications, they
lack the descriptive and explanatory range of the SP system.
In terms of the quest for a favourable combination of simplic-
ity and power (Appendix II and Section II-A), their descrip-
tive and explanatory range is too limited.

With appropriate data, the SP system provides an alterna-
tive to Bayesian networks in modelling such phenomena as

18For a useful overview, see ‘‘Universal search’’ by Matteo Gagliolo [11].
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‘explaining away’ ([72, Sec. 10.2], [70, Sec. 7.8]). In addition
to its relative strength in terms of simplicity and power, the
SP system, compared with a Bayesian network, has three
apparent advantages:

• Simplicity in the representation of statistical knowledge.
Each node in a Bayesian network contains a table of
conditional probabilities for possible combinations of
inputs, and these tables can be quite large. By contrast,
the SP framework only requires a single measure of fre-
quency for each pattern. Absolute or conditional prob-
abilities can be derived from that frequency measure,
as required.

• Objectivity. Arguably, the SP system has an advantage
compared with Bayesian networks because it derives
‘objective’ probabilities in a straightforward way from
frequencies of occurrence, and it eliminates the subjec-
tivity in Bayes’ theorem in its concept of probability as
a degree of belief.

• Creation of ontologies. Bayes’ theorem assumes that the
categories that are to be related to each other via condi-
tional probabilities are already established. By contrast,
the SP system provides an account of how a knowledge
of categories and entities may be developed via unsuper-
vised learning (Appendix I-E3).

IX. IBM’S WATSON
As is now well known, a team of researchers at IBM devel-
oped a computing system, called Watson, that, in 2011, beat
the best human players at the TV quiz game Jeopardy!19

Of course winning at Jeopardy! is a major achievement,
with potential benefits in terms of ideas and, perhaps, appli-
cations. But there are concerns about aspects of Watson and
its development, described in the following subsections.

A. SIGNIFICANCE OF WATSON FOR AI
Doubt has been expressed about the significance of Watson
for AI:

‘‘. . . systems that seem to have mastered complex
language tasks, such as IBM’s Jeopardy! winner
Watson, do it by being super-specialized to a par-
ticular format. ‘It’s cute as a demonstration, but
not work that would really translate to any other
situation,’ [says Yann LeCun].’’ [54, p. 73].

B. IGNORING RESEARCH ON HUMAN PERCEPTION
AND COGNITION
There is concern about how, in the development of Watson,
research on human perception and cognition was ignored.
Dave Ferrucci, leader of the team that developed Watson, has
been quoted as saying:

‘‘Did we sit down when we built Watson and try
to model human cognition? Absolutely not. We

19See, for example, ‘‘Watson (computer)’’, Wikipedia,
http://bit.ly/1DwVKiC, retrieved 2015-08-12.

just tried to create a machine that could win at
Jeopardy!’’20

An implication of this remark is that, by ignoring the large
body of research into human cognition and the many insights
that have been gained, the developers of Watson have prob-
ably reduced the chances of Watson providing a meaningful
route to ‘cognitive computing’ as described in [26].

C. WATSON AS A KLUGE
The original Watson was created by combining natural lan-
guage understanding with statistical analysis of very large
amounts of text. IBM has now added capabilities in transla-
tion, speech-to-text, and text-to-speech, and they plan to add
capabilities in deep learning,21 with large numbers of medical
images as data for learning.22

Further, Watson was created as a ‘‘holistic combination of
many diverse algorithmic techniques’’ [10, p. 2] or ‘‘hundreds
of different cooperating algorithms’’ [10, pp. 2 and 3] which
are, as Ferrucci remarks, reminiscent of Minsky’s Society of
Mind [40].

In short, Watson was originally developed, and is continu-
ing to be developed, as a kluge: ‘‘a clumsy or inelegant—yet
surprisingly effective—solution to a problem.’’ [36, p. 2].

Does this matter? There are several possible answers to this
question. On the plus side (the kluge is a good thing):

• It is probably possible to create a system that does useful
things and earns money.

• Combining technologies may help to overcome weak-
nesses in individual technologies and it may help to
overcome fragmentation in AI. (‘‘If deep learning can
be combined with other AI techniques effectively, that
could produce more rounded, useful systems.’’23)

• Since the human mind is a kluge [36], it should
not matter if AI systems are the same (but see
Appendix II-D).

But on the minus side:
• Creating a kluge may yield short-term gains but
is unlikely to be satisfactory on longer timescales
[77, Secs. 2, 6, and 7].

• Creating a kluge may be a distraction from the long-term
goal of developing ‘cognitive computing’:

‘‘The creation of this new era of [cognitive] com-
puting is a monumental endeavor . . . no company
can take on this challenge alone. So we look to
our clients, university researchers, government pol-
icy makers, industry partners, and entrepreneurs—
indeed the entire tech industry—to take this journey
with us.’’ [26, Preface].

20‘‘The man who would teach machines to think’’, The Atlantic,
November 2013, http://theatln.tc/1fi9AFv.

21‘‘IBM pushes deep learning with a Watson upgrade’’, MIT Technology
Review, 2015-07-09, http://bit.ly/1Nq0bMg.

22‘‘Why IBM just bought billions of medical images for Watson to look
at’’, MIT Technology Review, 2015-08-11, http://bit.ly/1P6lcvQ.

23‘‘IBM pushes deep learning with a Watson upgrade’’, MIT Technology
Review, 2015-07-09, http://bit.ly/1Nq0bMg.

VOLUME 4, 2016 231



J. G. Wolff: SP Theory of Intelligence: Distinctive Features and Advantages

On balance, a two-pronged strategy is probably best: take
advantage of short-term gains that may accrue from develop-
ing applications such as Watson as kluges and, at the same
time, develop cleaner and more elegant solutions to problems
in AI, drawing on insights gained from kluges (Appendix III).
The SP system is a good candidate for inclusion in the second
strand of research.

D. WATSON AND ENERGY CONSUMPTION
Apart from the concerns outlined above, a major objec-
tion is that Watson does nothing to solve the problem of
energy consumption in the processing of big data, outlined
in Section IV. Indeed, the projected addition of deep learning
to Watson, mentioned in Section IX-C, is likely to make
things worse owing to inefficiencies with deep learning and
artificial neural networks, outlined in Section V-E.

E. A POSSIBLE CONTRIBUTION FROM THE SP SYSTEM
In keeping with the two-pronged strategy mention
in Section IX-C, there is probably a case for recasting
Watson in the SP framework. There is potential to create
a system that combines the strengths of Watson with the
strengths of the SP system: in aspects of AI, in its origins in
research on human perception and cognition, in its potential
to simplify and integrate diverse kinds of knowledge and
diverse kinds of processing, and in its potential for very
substantial cuts in energy consumption.

X. BIG DATA AND AUTONOMOUS ROBOTS
Potential benefits and applications for the SP theory are
summarised in Appendix I-I. This section gives a bit more
detail about two areas of potential application: big data and
autonomous robots.

A. BIG DATA
The paper ‘‘Big data and the SP theory of intelligence’’ [75]
describes how the SP theory may help to solve nine problems
with big data:

• Helping to overcome the problem of variety in big data.
The SP system may serve as a universal framework for
the representation and processing of knowledge (UFK),
helping to tame the great variety of formalisms and
formats for data, each with its own mode of processing
(Section XI-E).

• Learning and discovery. In accordance with the
DONSVIC principle (Section II-I, [72, Sec. 5.2]), the
system has strengths in the unsupervised learning or
discovery of ‘natural’ structures in data, with potential
for further development.

• Interpretation of data. The SP system has strengths
in areas such as pattern recognition, information
retrieval, parsing and production of natural language,
translation from one representation to another,
several kinds of reasoning, planning and problem
solving.

• Velocity: analysis of streaming data. The SP system
lends itself to an incremental style, assimilating infor-
mation as it is received, much as people do.

• Volume: making big data smaller. Reducing the size
of big data via lossless compression can yield direct
benefits in the storage, management, and transmission
of data, and indirect benefits in several of the other areas
outlined in this subsection and discussed in [75].

• Supercharging the transmission of data. In addition to
economies in the transmission of data via simple reduc-
tions in volume, there is potential for additional and
very substantial economies in the transmission of data
by judicious separation of ‘encoding’ and ‘grammar’.

• Computational and energy efficiency. There is potential
for large gains in the computational efficiency of com-
puters, with corresponding savings in the use of energy
in computing, and for reductions in the size and weight
of computers (Section IV).

• Veracity: managing errors and uncertainties in data.
The SP system can identify possible errors or uncertain-
ties in data, suggest possible corrections or interpola-
tions, and calculate associated probabilities.

• Visualisation. Knowledge structures created by the sys-
tem, and inferential processes in the system, are all trans-
parent and open to inspection. They lend themselves to
display with static and moving images.

Considering these proposed solutions collectively, and in
several cases individually, it appears that there are no alterna-
tives that can rival the potential of what is described in [75].

B. AUTONOMOUS ROBOTS
The paper ‘‘Autonomous robots and the SP theory of intel-
ligence’’ [74] describes how the SP theory may help in the
design of the information-processing ‘brains’ of autonomous
robots:

• Computational and energy efficiency. This is a revised
version of the discussion in [75, Sec. IX].

• Towards human-like versatility in intelligence. The
strengths of the SP system in diverse areas, summarised
in Appendix I-H, can help in the development of human-
like versatility in autonomous robots.

• Towards human-like adaptability in intelligence.
It appears that unsupervised learning in the SP
framework has potential as a key to human-like
adaptability in intelligence, both directly and as a basis
for other kinds of learning.

This approach to the development of intelligence in
autonomous robots is quite different from others, and
arguably more promising.

XI. DISTINCTIVE FEATURES AND ADVANTAGES
OF THE SP SYSTEM IN COMPARISON WITH SOME
SYMBOLIC ALTERNATIVES
This section summarises distinctive features and advantages
of the SP system in symbolic kinds of computing. A key
advantage of the SP system in these areas (and others
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discussed elsewhere in this paper) is that it provides for
the seamless integration of each function with other aspects
of intelligence (Section II-B). This applies in each of the
subsections below but will not be constantly repeated.

A. PATTERN RECOGNITION AND VISION
The main strengths and potential of the SP system in pattern
recognition are described in [70, Ch. 6] and [72, Sec. 9].
In brief, these are: recognition at multiple levels of abstrac-
tion (Figure 1) and via hierarchies of parts and sub-parts
(Figure 2); recognition of ‘family resemblance’ or polythetic
categories; recognition that is robust in the face of errors
of omission, commission or substitution (Section XI-A); for
each act of recognition, calculation of associated probabil-
ities; modelling the way in which context may influence
recognition.

In addition to the strengths just mentioned, there is, in com-
puter vision [73], potential in the SP system in: scene analysis
via the parsing of an image; the learning of visual entities and
classes of entity; the creation of 3D models of objects and of
their surroundings; explaining how we can see things that are
not objectively present (Section XI-A2); providing insights
into the phenomena of size constancy, lightness constancy,
and colour constancy; and finding alternative interpretations
of images and scenes.

The two subsections that follow amplify some of the points
above.

1) RECOGNITION IN THE FACE OF ERRORS OF OMISSION,
COMMISSION, AND SUBSTITUTION
Figure 5 shows how, via the creation of multiple alignments,
the SP systemmay recognisewords despite errors of omission
((a) in the figure), commission (b), and substitution (c).24

These examples are very simple but this capability of the
SP system applies in muchmore complex examples of pattern
recognition and also in other areas such as the processing of
natural language (Section XI-B).

2) AMODAL PERCEPTION AND COMPLETION
‘‘A remarkable property of human perception is
the ease with which our visual system interpo-
lates information not directly visible in an image.
A particularly prominent example of this . . . is
amodal perception: the phenomenon of perceiving
the whole of a physical structure when only a por-
tion of it is visible’’ ([83, pp. 1 and 2], emphasis in
the original).

A familiar example of amodal perception is how we can
recognise something like a vase with flowers even when it is
partly hidden or ‘occluded’ by something like a mug. Here,
we have no difficulty with ‘amodal completion’: imagining
the parts of the vase and flowers that we would see if the mug
was removed.

24By contrast with most multiple alignments shown in this paper, the ones
in this figure and also in Figures 6 and 11 have been rotated by 90◦, replacing
columns with rows. The choice between these two representations, which are
equivalent, depends on what fits best on the page.

FIGURE 5. Three multiple alignments illustrating recognition with errors
of omission (a), commission (b), and substitution (c), as described in the
text.

FIGURE 6. Two multiple alignments modelling perception and occlusion,
as described in the text. (a) This is a one-dimensional analogue of how a
vase containing flowers may be recognised despite its partial occlusion
by a mug. (b) This shows how the previously-mentioned mug may be
recognised in the multiple alignment framework.

Figure 6 shows how the SP computer model may
solve a one-dimensional analogue of this perceptual
problem. Row 0 in each of the two multiple alignments
contains the pattern ‘v a s e - w i t m u g l
o w e r s’, which is an analogue of a vase with
flowers which is partly obscured by a mug. The first
multiple alignment (a) shows how the vase with flowers—
represented by the pattern ‘OBJ obj1 v a s e - w

FIGURE 7. Kanizsa’s triangle.
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i t h - f l o w e r s #OBJ’ in row 1—may
be recognised despite its partial occlusion by ‘m u g’,
and how the missing characters (‘h - f’) may be
interpolated. The second multiple alignment (b) shows
how the mug (represented by the pattern ‘OBJ obj2 m u
g #OBJ’ in row 1) may be recognised as a separate entity.
This example does not model the way we perceive the mug

to lie in front of the vase with flowers. But, as described in
[73, Secs. 6.1 and 6.2], the SP system has potential for the
building of 3D models. If that potential can be realized, the

capability may potentially bemarried with amodal perception
of one object that is partly obscured by another.

A popular example of amodal completion is Kanizsa’s
triangle, shown in Figure 7. Here, we ‘see’ a white equilateral
triangle in the middle of the figure with its apex at the bottom,
although it is marked only with a minimum of features: three
corners, each in a black disk, and breaks in the sides of
another equilateral triangle with its apex at the top.

Figure 8 shows how the SP computer model may recognise
a one-dimensional analogue of such a figure via the building

FIGURE 8. A multiple alignment modelling a one-dimensional analogue of how Kanizsa’s triangle may be perceived, as described
in the text.
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of a multiple alignment, using the features that are available.
Column 0 shows a New pattern representing the minimal
features: each ‘corner’ in the multiple multiple alignment
represents a corner in a black disk in Figure 7, and each
‘point’ in the multiple alignment is a point on a side of the
target triangle where there is break in the side of the other
triangle.

In this example, recognition is achieved via the parsing of
the New pattern in terms of Old patterns representing ele-
ments of the triangle: the pattern ‘TR’ in column 11 represents
the whole triangle, ‘SG’ in columns 4, 9, and 15 represents
a segment of the triangle comprising a corner (‘CR’) and a
line (‘LN’) which is itself a sequence of points.

In this example, there is recursion (like that shown in
Figure 3) at two levels: the triangle is a recursive grouping of
segments (so that, strictly speaking, it represents a polygon,
not a triangle), and the line is built from a recursive sequence
of points.

The example illustrates amodal completion because a mere
two points on each side of the Kanizsa triangle are cues for
what is potentially an infinite sequence of points between one
corner and another.

B. THE PROCESSING OF NATURAL LANGUAGE
With the processing of natural language, the main strengths
and potential of the SP system are described in [70, Ch. 5] and
[72, Sec. 8]. In brief: it can model the parsing of natural lan-
guage directly and transparently, as illustrated in Figure 10;
it provides a simple, direct means of encoding discontinuous
dependencies in syntax; in parsing, it can accommodate syn-
tactic ambiguities, and the resolution of ambiguities via the
provision of appropriate context; parsing may be achieved
via recursive structures in syntax (Figure 3); parsing is robust
against errors of omission, commission, or substitution (much
as in pattern recognition—Section XI-A); and one mecha-
nism may achieve both the parsing and production of natural
language.

A key advantage of the SP system compared with most
other systems for the processing of natural language is
that, because all kinds of knowledge—both syntactic and
semantic—are represented in one simple format (SP patterns)
and because all kinds of knowledge are processed in the
same way (via the formation and processing of multiple
alignments), the system has clear potential to facilitate the
seamless integration of syntax and semantics. In a similar
vein, the processing of natural language may be integrated
seamlessly with other aspects of intelligence.

C. UNSUPERVISED LEARNING OF NATURAL LANGUAGE
Although grammatical inference has been the subject of
research for many years, automatic learning of the syntax
of a natural language remains a major challenge. Even more
difficult is unsupervised learning of the rich structure of
non-linguistic knowledge which provides the ‘meanings’ for
language, and unsupervised learning of the kinds of syntactic-
semantic structures that are needed for such things as inter-
preting the meaning of natural language, the production of

speech or writing from meanings, and, when it is done at
a high standard, translation from one language to another
(Section V-K2).

As mentioned in Appendix I, the SP programme of
research grew out of earlier research developing computer
models of language learning, but it has required a radical
reorganisation of earlier models to meet the new goals of
the programme. Now, the SP computer model demonstrates
unsupervised learning of plausible generative grammars for
the syntax of English-like artificial languages, including
the learning of segmental structures, classes of structure,
and abstract patterns [70, Ch. 9], in accordance with the
DONSVIC principle (Section II-I).

A key insight from this research, discussed briefly in
Section V-H3, is that information compression appears to
solve the problems of both over- and under-generalisation in
the learning of language ( [70, Sec. 9.5.3], [72, Sec. 5.3]).
This appears to be a significant advantage compared with, for
example, deep learning in neural networks (Section V-H3).

It appears that, with some further work, the potential is
considerable: in the learning of syntactic structures, in the
learning of semantic structures, and in the learning of
syntactic-semantic structures. The potential of the SP system
in these areas appears to be a major advantage of the system
compared with alternatives.

D. EXACT AND INEXACT FORMS OF REASONING
From the General Problem Solver [45], through Prolog [3],
to such systems as Description Logics [19], concepts derived
from classical logic have been prominent in AI and related
fields such as the semantic web.

Although the all-or-nothing certainties of classical logic
can be useful, it has been recognised for some time that much
of human thinking and reasoning revolves around judgements
that may have varying levels of certainty. This has led to
several proposals for systems that, in one way or another,
combine exact or ‘logical’ reasoning with inexact, ‘fuzzy’
or ‘probabilistic’ kinds of reasoning (eg, [27], [80]). Some
recent developments are described in [49].

As described in [70, Ch. 7], a distinctive feature and appar-
ent advantage of the SP system is that it is fundamentally
probabilistic (Appendix I-F) but levels of confidence may be
increased by gathering more evidence, or by concentrating
on probabilities that are close to 0 or 1, or both those things.
And the SP system can model several of the concepts that are
familiar in logic and mathematics (such as variable, value,
and type), as described in [70, Ch. 10] and [77, Sec. 6.6].
There is clear potential for the system to model both prob-
abilistic and exact forms of reasoning and to switch between
them according to need.

The SP system also demonstrates several more spe-
cific kinds of reasoning within one unified framework
([70, Ch. 7 and 10, Secs. 6.4], [72, Sec. 10]): one-step
‘deductive’ reasoning; abductive reasoning; reasoning with
probabilistic decision networks and decision trees; reasoning
with ‘rules’; nonmonotonic reasoning and reasoning with
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default values; reasoning in Bayesian networks, including
‘explaining away’ (Section VIII); causal diagnosis; reason-
ing which is not supported by evidence; and inheritance of
attributes in an object-oriented class hierarchy or heterarchy.
There is also potential for spatial reasoning [74, Sec. IV-F.1]
and what-if reasoning [74, Sec. IV-F.2].

Because these several kinds of reasoning all flow from
one unified framework, they may be used together in any
combination according to need. In the same vein, these sev-
eral forms of reasoning may integrate seamlessly with other
aspects of intelligence: pattern recognition, natural language
processing, unsupervised learning, and so on. This kind of
flexibility is a distinctive feature and apparent advantage of
the SP system compared with alternatives (Section II-B).

E. REPRESENTATION AND PROCESSING OF
DIVERSE FORMS OF KNOWLEDGE
A problem with AI and other areas of computing as they have
developed to date is that knowledgemay be representedwith a
large number of different formalisms, and often, for each one,
there is a large number of different formats. This complexity
is compounded by the fact that, normally, each formalism and
each format has its own mode of processing. Until recently,
this complexity has been easy to ignore. But with the advent
of big data, it has become a major problem, a problem that
the SP system may help to solve (Section X-A).

As described in outline in [75, Sec. III-B], and in more
detail in [70] and [72], the SP system promotes the seamless
integration of a wide a variety of kinds of knowledge, with
seamless integration of their processing. These include: the
syntax of natural language; class hierarchies, part-whole
hierarchies, and their integration; trees and networks,
including Bayesian networks; entity-relationship structures;
relational knowledge (tuples); if-then rules, associations,
and other knowledge in support of reasoning; patterns and
images; structures in three dimensions; and sequential and
parallel procedures.

Since information compression via ICMUP and multiple
alignment is at the heart of how knowledge is represented
in the SP system, since information compression can in
principle be an efficient means of representing any kind
of knowledge, and since the multiple alignment framework
appears to be a very general means of compressing informa-
tion, there is reason to believe that any kind of knowledge—
perhaps including the kind of ‘commonsense’ knowledge that
is described and discussed in [7]—may be represented effec-
tively in the SP system. Similar things may be said, mutatis
mutandis, about reasoning and other kinds of processing of
knowledge in the SP system.

F. SOFTWARE ENGINEERING
Although machine learning is beginning to make an impact,
controlling what computers do is still done largely in the
traditional manner, via the running of programs and their cre-
ation by people. Although machine learning may eventually
become dominant, it is likely that, with all kinds of computing
system, there will be a continuing need for the foreseeable

future, for each system to be controllable by human-created
software.

At first sight, the SP system fails this test. SP patterns don’t
look like a conventional program and the building of multiple
alignments does not look much like the running of a conven-
tional program. But, as noted in Section XI-D, the multiple
alignment framework can model such concepts as variable,
value, and type. More generally, the SP system can model
the kinds of concepts used in software engineering including
procedure, function with parameters, conditional statements,
repetition of procedures, the integration of programs and
data, and elements of object-oriented design, including class
hierarchies and inheritance [77, Sec. 6.6]. The SP system
also has potential for the processing of parallel streams of
information [74, Secs. V-G, V-H, and V-I, and Appendix III].

Because of these features of the SP system, and because
of its strengths in unsupervised learning ( [70, Ch. 9],
[72, Sec. 5]), it has potential for ‘automatic programming’—
the integration of programmingwith unsupervised learning—
as outlined in [77, Sec. 6.6.4]. This is a distinctive feature of
the system and an apparent advantage compared with systems
that are specialised only for learning.

XII. CONCLUSION
Preceding sections of this paper have aimed to highlight dis-
tinctive features of the SP theory of intelligence and its appar-
ent advantages compared with some AI-related alternatives.

Section II summarises distinctive features and strengths of
the SP system:

• Simplification and integration of observations and
concepts;

• Simplification and integration of structures and
processes in computing systems;

• The SP theory is itself a theory of computing;
• The theory provides the basis for new architectures for
computers;

• Information compression via the matching and
unification of patterns is central in the theory;

• More specifically, all processing is done via the building
of multiple alignments, a concept borrowed and adapted
from bioinformatics;

• Transparency in the representation and processing of
knowledge;

• The unsupervised learning of ‘natural’ structures via
information compression (DONSVIC);

• Interpretation of aspects of mathematics in terms of the
SP theory;

• Interpretation of phenomena in human perception and
cognition;

• Realisation of abstract concepts in terms of neurons and
their inter-connections (SP-neural).

In several sections, distinctive features and advantages of
the SP system have been highlighted in comparison with
AI-related alternatives:

• The concept of minimum length encoding and related
concepts;
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• How computational and energy efficiency in computing
may be achieved;

• Deep learning in neural networks;
• Unified theories of cognition and related research;
• Concepts of universal search;
• Bayesian networks and some other models for AI;
• IBM’s Watson;
• Solving problems associated with big data;
• Solving problems in the development of intelligence in
autonomous robots;

• The processing of natural language;
• Unsupervised learning of natural language;
• Exact and inexact forms of reasoning;
• Representation and processing of diverse forms of
knowledge;

• Software engineering.

The main conclusion of the paper is that, while some
alternatives to the SP system may deliver applications fairly
quickly, a strength of the SP system is that it can provide
a firm foundation for the long-term development of AI,
with many potential benefits and applications, and, at the
same time, it may deliver useful results on relatively short
timescales.

It is envisaged that a high-parallel, open-source version
of the SP machine will be created, hosted on an existing
high-performance computer, and derived from the existing
SP computer model (Appendix I-J). This would be a
means for researchers everywhere to explore what can
be done with the system, and to create new versions
of it.

APPENDIX I
OUTLINE OF THE SP THEORY OF INTELLIGENCE
AND SP MACHINE
As noted in the Introduction, the SP theory of intelligence is
designed to simplify and integrate observations and concepts
across artificial intelligence, mainstream computing, mathe-
matics, and human perception and cognition, with informa-
tion compression via multiple alignment as a unifying theme.
As outlined in Appendix I-C, the SP theory is realized in the
SP computer model which may be regarded as a version of
the SP machine.

The SP theory originates in part from an earlier programme
of research on grammatical inference and the unsupervised
learning of natural language, with information compression
at centre stage [68]. However, meeting the goals of the SP
research programme has meant a radical reorganisation of
the system, with the development of a concept of multiple
alignment (Appendix I-E2) as a framework for the simpli-
fication and integration of diverse structures and functions
[74, Sec. V-A.4].

This Appendix is intended to provide readers with suffi-
cient information about the SP system to make the rest of
the paper intelligible. The outline starts with a short infor-
mal account of the SP system, followed by subsections that

describe the main elements of the system in a little more
detail.

A. AN INFORMAL ACCOUNT OF HOW THE
SP SYSTEM WORKS
The SP theory is conceived as an abstract brain-like system
that, in an ‘input’ perspective, may receive New ‘patterns’
via its senses, and compress some or all of it to create Old
‘patterns’, as illustrated schematically in Figure 9.

FIGURE 9. Schematic representation of the SP system from an ‘input’
perspective.

In the early stages, when there is little or no Old informa-
tion in store, the system simply stores New patterns directly
as Old patterns, except that ‘identification’ (‘ID’) symbols are
added to each pattern for use later.

After a while, New patterns are received that are fully or
partially the same as Old patterns. Then, the system builds
multiple alignments as outlined in Appendix I-E2. From the
multiple alignments:

• When a New pattern is exactly the same as a stored Old
pattern, the system records the occurrence of that pattern
in terms of its ID-symbols, not the pattern itself. Since
the ID-symbols are normally relatively short compared
with their associated pattern, the effect is to store the
New pattern in a compressed form.

• When a New pattern is received that is partially the
same as one or more Old patterns, the system constructs
patterns from the parts of the New and Old patterns
that match each other and from the parts that do not
match each other. Each newly-created pattern is assigned
its own ID-symbols and is stored as an Old pattern.
The system also constructs ‘abstract’ patterns that, using
relevant ID-symbols, record the sequential relationship
of the newly-constructed patterns.

• Similar principles applywhen the system buildsmultiple
alignments containing previously-constructed abstract
patterns. And it is envisaged that similar principles will
apply when the SP computer model has been developed
for the representation and processing of 2D patterns.
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Many of the Old patterns that are created in this way may
be seen as ‘good’, but, normally, the system also creates many
that people are likely to regard as ‘bad’. To get rid of the
bad patterns, SP system applies a process for evaluating sets
of Old patterns (called grammars) in terms of their ability
to compress incoming New information. The one or two
grammars that yield high levels of compression are retained
by the system while residual patterns—those not found in the
successful grammars—are discarded.

It is interesting to see that, very often, patterns that are
‘good’ in terms of information compression are also ‘good’
in terms of human judgements, and vice versa. This corre-
spondence between what people regard as ‘natural’ and what
yields high levels of compression is termed the ‘DONSVIC’
principle (Section II-I).

The building of multiple alignments provides the means
by which New information may be encoded economically
in terms of Old information. It also provides much of the
versatility of the system in such functions as unsupervised
learning, the parsing and production of natural language,
pattern recognition, computer vision, information retrieval,
several kinds of reasoning, planning, problem solving, and
information compression.

B. FOUNDATIONS AND SCOPE OF THE SP THEORY
The SP theory is founded on a range of observations suggest-
ing the fundamental importance of information compression
in natural and artificial intelligence, in computing, in mathe-
matics, and in neuroscience ([70, Chapter 2], [76]).

Like most theories, the SP theory is narrower in its scope
than one might wish. It is certainly not a comprehensive
theory of human psychology. For example, it has little to say
about emotions and motivations and their impact, in people,
on such things as perception, learning, and reasoning (but see
[74, Sec. V-A.2]). At some stage, there is likely to be a case
for examining whether or how those kinds of things may be
accommodated in the theory.

C. THE SP COMPUTER MODEL AND THE SP MACHINE
The SP theory is realized in the form of a computer model,
SP71, which may be regarded as a version of the SP machine.
An outline of the organisation and workings

of the SP computer model may be found in
[70, Sec. 3.9], with more detail, including pseudocode, in
[70, Secs. 3.10 and 9.2].25 Fully commented source code for
the SP71 computer model may be downloaded via a link near
the bottom of http://www.cognitionresearch.org/sp.htm, and
via ‘Ancillary files’ under http://arxiv.org/abs/1306.3888.

All the multiple alignments shown in this paper are output
from the SP computer model.

25These sources describe SP70, a slightly earlier version of the model than
SP71 but quite similar to it. The description of SP70 includes a description,
in [70, Secs. 3.9.1 and 3.10], of a subset of the SP70 model called SP61.

D. PATTERNS AND SYMBOLS
In the SP system, knowledge is represented with arrays of
atomic symbols in one or two dimensions called patterns.
The SP71 model works with one-dimensional patterns but it
is envisaged that the system will be generalised to work with
patterns in two dimensions [72, Sec. 3.3].

Each SP pattern has an associated frequency of occurrence
that has a role in the calculation of probabilities, as outlined
in Appendix I-F.

An ‘atomic symbol’ in the SP system is simply a mark that
can be matched with any other symbol to determine whether
it is the same or different—no other result is permitted.

Patterns in two dimensions are likely to have a role in the
processing of images ([70, Ch. 13], [73]) and also in the
processing of sensory or motor streams of information that
occur in parallel [74, Secs. IV-A.4, IV-H, V-G to V-I, and
Appendix III].

In themselves, SP patterns are not particularly
expressive. But within the multiple alignment framework
(Appendix I-E2), they support the representation and
processing of a wide variety of kinds of knowledge
(Section XI-E, Appendix I-H). It appears that the system has
potential as a universal framework for the representation and
processing of knowledge (UFK) [75, Sec. III].

E. INFORMATION COMPRESSION
In the SP system, all kinds of processing is done by com-
pression of information. This is essentially the principle of
minimum length encoding (MLE) [48, 56, 65]26 but with
qualifications described in Section III.

The default assumption in the SP theory is that compres-
sion of information is always lossless, meaning that all non-
redundant information is retained. In particular applications,
there may be a case for discarding non-redundant information
(see, for example, [75, Sec. X-B]) but any such discard is
reversible.

The name ‘SP’ is short for Simplicity and Power, because
compression of any given body of information, I, may be seen
as a process of reducing ‘redundancy’ of information in I
and thus increasing its ‘simplicity’, whilst retaining as much
as possible of its non-redundant descriptive and explanatory
‘power’. As noted in Appendix II, it is no accident that the
same two concepts are prominent in Occam’s Razor as a
touchstone of success for scientific theories.

In the SP system, information compression is achieved
via the matching and unification of patterns, or parts thereof
(see ‘ICMUP’ in Section II-E and Appendix I-E1). More
specifically, it is achieved via the building of multiple
alignments and via the unsupervised learning of grammars.
These three things are described briefly in the following
three subsections.

26MLE is an umbrella term for ‘minimum message length’ encod-
ing (MML), ‘minimum description length’ encoding (MDL), and similar
concepts.
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1) INFORMATION COMPRESSION VIA THE MATCHING
AND UNIFICATION OF PATTERNS
The basis for information compression in the SP system is a
process of searching for patterns that match each other with
a process of merging or ‘unifying’ patterns that are the same:
‘information compression via the matching and unification of
patterns’ or ‘ICMUP’ [76].

At the heart of the SP computer model is a method
for finding good full and partial matches between
sequences, with advantages compared with classical methods
[70, Appendix A].27

The emphasis on ICMUP is motivated partly by evidence
of the importance of such processes in human perception and
cognition, and partly by its potential to cut through much
complexity and to achieve a new perspective on AI, main-
stream computing, and mathematics [76]. Because a goal of
the SP theory is to develop a new perspective on those four
areas, without theoretical ‘baggage’, the theoryminimises the
use of concepts from those disciplines, including mathemat-
ics [76, Sec. 2.1].28

This is not intended to be in any way disrespectful of
mathematics as a discipline or the monumental achievements
of mathematicians. It is merely an observation that, if one
is trying to achieve a new perspective on any discipline,
it is probably best to avoid using too many concepts from
that discipline. With regard to mathematics, it would be
surprising if it had not been shaped, at least in part, by
its exceptionally long history, and the fact that, for most
of its existence, the discipline has depended largely on
human brainpower, with nothing but the simplest kinds of
artificial aid.

2) INFORMATION COMPRESSION VIA THE
BUILDING OF MULTIPLE ALIGNMENTS
The process for finding good full and partial matches between
patterns is the foundation for processes that build multiple
alignments like the one shown in Figure 10. This concept
is similar to multiple alignment in bioinformatics but with
important differences [70, Sec. 3.4]. It is a powerful and
distinctive feature of the SP system.

In Figure 10, the SP pattern in column 0 is a New pat-
tern representing a sentence to be parsed, while each of
columns 1 to 11 contains an Old SP pattern representing
a grammatical form (where ‘grammatical form’ includes
words). This example is the best multiple alignment created
by the SP computer model with the New pattern as shown

27The main advantages are [70, Sec. 3.10.3.1]: 1) That it can match
arbitrarily long sequences without excessive demands on memory; 2) For
any two sequences, it can find a set of alternative matches (each with a
measure of how good it is) instead of a single ‘best’ match; 3) The ‘depth’ or
thoroughness of the searching, which has the effect of controlling the amount
of backtracking, can be controlled by parameters.

28And, bearing in mind that the SP theory should be consistent with the
biological origins of human intelligence, an attempt has been made to ensure
that the frequency information that is stored with each SP pattern, and the
probability calculations that are performed by the SP computer model, are,
potentially, the kinds of things that could bemodelled, at least approximately,
via analogue processes in biological systems.

in column 0 and a set of pre-existing Old patterns, including
those shown in columns 1 to 11 in the figure.

Here, the ‘best’ multiple alignment is the one in which
the New pattern may be encoded most economically in terms
of the Old patterns—and this means a multiple alignment in
which there is a relatively large number of symbols that match
each other from column to column, aligned in rows.

The way in which an encoding is derived from a multiple
alignment is explained in [70, Sec. 3.5] and [72, Sec. 4.1].
Like all other kinds of knowledge in the SP system, encod-
ings derived from multiple alignments are recorded using
SP patterns (Appendix I-D).

The overall effect of this multiple alignment is to analyse
the sentence into its grammatical parts and sub-parts, an
analysis that is, in its essentials, the same as a conventional
parsing.

A point of interest is that the pattern for the whole sentence
in column 6 marks the grammatical dependency between
the singular subject of the sentence (‘a stitch’)—marked
with ‘Ns’—and the singular verb (‘saves’)—marked
with ‘Vs’. Notice how the dependency neatly bridges the
subordinate phrase (‘in time’). This method of encoding
discontinuous dependencies in syntax contributes to the com-
pression that is achieved by this multiple alignment and is,
arguably, simpler than existing techniques for encoding such
dependencies.

3) INFORMATION COMPRESSION VIA
UNSUPERVISED LEARNING
From a set of New patterns, the SP system may, without
assistance from a ‘teacher’ or anything equivalent, derive
one or more plausible context-sensitive grammars, including
segmental structures, classes of structure, and abstract pat-
terns. The learning process is outlined in [70, Sec. 3.9.2] and
[72, Sec. 5.1], and described more fully in [70, Ch. 9].
In that process, multiple alignment has a central role as a
source of SP patterns for possible inclusion in any grammar
([70, Sec. 9,2,5], [72, Sec. 5.1.1]). Although the current
model has some shortcomings (Appendix I-J, [72, Sec. 3.3]),
it appears that these may be overcome.

A key part of the learning process is the formation of
multiple alignments in which there are mismatches between
patterns like those shown in Figure 11.

From the matched and unmatched parts of a multiple align-
ment like this, the system derives such patterns as ‘B 1 t h
a t #B’, ‘C 1 r u n s #C’, ‘D 1 g i r l #D’,
and ‘D 2 b o y #D’, each one with system-generated ID-
symbols at the beginning and end. The system also cre-
ates a pattern like this: ‘E 1 B #B D #D C #C #E’,
that records the sequence of structures in terms of the
ID-symbols. These patterns are the beginnings of a simple
grammar.

In practice, many of the multiple alignments, and
many of the derived segments, are much less tidy than
this example may suggest. But, via heuristic search
(Appendix I-E4) through the space of alternative grammars,
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FIGURE 10. A multiple alignment illustrating parsing of a sentence, as described in the text.

the system is able to derive one or two grammars that
score relatively well in terms of information compres-
sion. Normally, these are also grammars that appear to be
most natural, in accordance with the DONSVIC principle
(Section II-I).

4) HEURISTIC SEARCH
Like most problems in artificial intelligence, each of the
afore-mentioned problems—finding good full and partial
matches between patterns, finding or constructing good mul-
tiple alignments, and inferring one or more good grammars
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FIGURE 11. A simple multiple alignment from which other patterns may
be derived.

from a body of data—is normally too complex to be solved
by exhaustive search.

With intractable problems like these, it is often assumed
that the goal is to find theoretically ideal solutions. But with
these and most other AI problems, ‘‘The best is the enemy
of the good’’. By scaling back one’s ambitions and searching
for ‘reasonably good’ solutions, it is often possible to find
solutions that are useful, and without undue computational
demands.

As with other AI applications, and as with the building
of multiple alignments in bioinformatics, the SP71 model
uses heuristic techniques—‘hill climbing’ or ‘descent’—
in all three cases mentioned above [70, Appendix A;
Secs. 3.9 and 3.10; Ch. 9]. This means searching for solutions
in stages, with a pruning of the search tree at every stage,
guided by measures of compression, and with backtracking
where appropriate to increase the chances of success. With
these kinds of techniques, acceptably good approximate solu-
tions can normally be found without excessive computational
demands and with ‘big O’ values that are within accept-
able limits. Possible alternatives to the heuristic techniques
used in SP71 include ‘simulated annealing’ and ‘genetic
programming’.

5) GRAMMARS AND ENCODINGS, SIMPLICITY AND POWER
In unsupervised learning in the SP system, compression of
a body of information, I, produces two distinct results: a
grammar and an encoding of I in terms of the grammar, both
of them expressed as SP patterns. The two together represent
a lossless compression of I.

The term ‘grammar’ has been adopted because the SP pro-
gramme of research derives largely from earlier research on
models of language learning and grammatical inference [68]
but, because of the versatility of SP patterns in the multiple
alignment framework (Appendix I-D), the term is applied,
in this research, to any kind of knowledge, not just natural
language.

Often but not invariably, there is a trade-off between
the size of the grammar and the size of the encoding: as a
general rule, small grammars yield large encodings and large
grammars yield small encodings. Normally, the greatest
overall compression of I is obtained with grammars that
are not at the extremes of size (small or big), and likewise
for encodings. It appears that this means learning that
avoids both under-generalisation and over-generalisation
(Sections V-H and XI-C).

From the trade-off we can see that there is a direct rela-
tionship between the concepts of ‘grammar’ and ‘encoding’
on the one hand, and the concepts of ‘simplicity’ and ‘power’
on the other: for a given I, there is simplicity in any grammar

when the grammar is small, and the grammar has power when
the encoding is small. Any reasonably thorough compression
of I is likely to yield a good balance between the two.29

F. INFORMATION COMPRESSION, PREDICTION,
AND PROBABILITIES
Owing to the close connection between information com-
pression and concepts of prediction and probability [35],
the SP system is fundamentally probabilistic. As noted in
Appendix I-D, each SP pattern has an associated frequency of
occurrence. Using that frequency information, probabilities
may be calculated for each multiple alignment and for any
inference that may be drawn from any given multiple align-
ment [70, Sec. 3.7].

Although the SP system is fundamentally probabilistic:
it can be constrained to answer only those kinds of questions
where probabilities are close to 0 or 1; and, via the use of
error-reducing redundancy, it can deliver decisions with high
levels of confidence. Contrary to what one may suppose,
there is no conflict between the use of error-reducing redun-
dancy and the notion that ‘computing’ may be understood as
information compression. The two things are independent, as
described in [70, Sec. 2.3.7].

G. SP-NEURAL
Part of the SP theory is the idea, described most fully in
[70, Ch. 11], that the abstract concepts of symbol and pattern
in the SP theory may be realized more concretely in the brain
with collections of neurons in the cerebral cortex.30

The neural equivalent of an SP pattern is called a pattern
assembly. The word ‘assembly’ has been adopted in this
term because the concept is quite similar to Hebb’s [17]
concept of a cell assembly. The main difference is that
the concept of pattern assembly is unambiguously explicit
in proposing that the sharing of structure between two or
more pattern assemblies is achieved by means of ‘references’
from one structure to another, as described and discussed in
[70, Sec. 11.4.1]). Also, learning in the SP system is quite
different from the gradualist ‘Hebbian’ kinds of learning that
are popular in artificial neural networks (see Sections V-A
and V-D).

Figure 12 shows schematically how pattern assemblies
may be represented and inter-connected with neurons. Here,
each pattern assembly, such as ‘< NP < D > < N > >’,
is represented by the sequence of atomic symbols of the
corresponding SP pattern. Each atomic symbol, such as ‘<’
or ‘NP’, would be represented in the pattern assembly by
one neuron or a small group of inter-connected neurons.
Apart from the inter-connections amongst pattern assemblies,
the cortex in SP-neural is somewhat like a sheet of paper
on which knowledge may be written in the form of pattern
assemblies and their inter-connections.

29Here, the qualification, ‘‘reasonably thorough’’ is quite important. Com-
pression algorithms like the popular LZ algorithms are ‘quick and dirty’—
they are designed for speed on low-powered computers. They are not very
thorough and will normally miss quite large amounts of redundancy.

30See also [70, Sec. 2.3.1].
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FIGURE 12. Schematic representation of inter-connections amongst
pattern assemblies as described in the text. Not shown in the figure are
lateral connections within each pattern assembly, and inhibitory
connections elsewhere, as outlined in [70, Secs. 11.3.3 and 11.3.4].
Reproduced, with permission, from [70, Fig. 11.2].

As noted in Section V-B, the hierarchical relations that can
be seen in Figure 12may be seen to be broadly in keepingwith
the hierarchical relations between ‘simple’ and ‘complex’
cells discovered by Hubel [20].

It is envisaged that any pattern assembly may be ‘recog-
nised’ if it receives more excitatory inputs than rival
pattern assemblies, perhaps via a winner-takes-all mech-
anism in which inhibitory processes have a role to play
[70, Sec. 11.3.4]. And, once recognised, any pattern assembly
may itself be a source of excitatory signals leading to the
recognition of higher-level pattern assemblies.

H. EMPIRICAL AND CONCEPTUAL SUPPORT
FOR THE SP THEORY
As noted in Appendix II-B, the SP theory has non-trivial
things to say about a wide range of observations and concepts
in artificial intelligence, mainstream computing, mathemat-
ics, and human perception and cognition. These things are
described most fully in [70], more briefly in [72], and in
extended summaries in [74, Secs. IV and V]. In a bare-bones
summary, the main strengths of the SP system are in:

• Natural language processing ( [70, Ch. 5], [72, Sec. 8]).
• Pattern recognition and vision ([70, Ch. 6],
[72, Sec. 9], [73]).

• Information storage and retrieval ([70, Ch. 6],
[72, Sec. 11], [71]).

• The representation and processing of diverse kinds of
knowledge ( [72, Sec. 7], [75, Sec. III-B] and, more
generally, [70, Ch. 5 to 10]).

• Benefits accruing from the seamless integration of

diverse kinds of knowledge and diverse aspects of intel-
ligence ([77, Secs. 2, 5, and 7]).

• Several kinds of reasoning ([70, Ch. 7], [72, Sec. 10]).
• Planning and problem solving ([70, Ch. 8],
[72, Sec. 12]).

• Unsupervised learning ([70, Ch. 9], [72, Sec. 5],
[74, Sec. V]).

• Implications for our understanding of human per-
ception and cognition, including neural processing
([70, Ch. 11 and 12], [73]).

• Implications for our understanding of the nature of
mathematics ([70, Ch. 10], [76]).

There is more detail about some of these capabilities in the
body of the paper.

I. POTENTIAL BENEFITS AND APPLICATIONS
In summary, potential benefits and applications of the
SP system include:

• Helping to solve nine problems associated with big
data [75] (see also Section X).

• The development of versatility and adaptability in
autonomous robots, with potential for gains in compu-
tational efficiency [74] (see also Section X).

• The development of computer vision and pattern recog-
nition, and the interpretation of aspects of natural vision
([72, Sec. 9], [73]).

• The system may be developed as a versatile database
management system, with intelligence [71].

• The systemmay serve as a repository for medical knowl-
edge and as an aid for medical diagnosis [69].

• There are several other potential benefits and appli-
cations described in [77]: simplification of computing
systems, including software; unsupervised learning; the
processing of natural language; software engineering;
information compression; the semantic web; bioinfor-
matics; the detection of computer viruses; data fusion;
new kinds of computer; the development of scientific
theories; and the seamless integration of diverse kinds
of knowledge and processing.

As describe in Appendix I-J, next, some potential applica-
tions may be developed on relatively short timescales.

J. DEVELOPMENT OF THE SP SYSTEM
Like most scientific theories, the SP system is not complete
[72, Sec. 3.3]. As it is now, the main shortcomings in the
SP computer model are:

• The process for finding good full and partial matches
between one-dimensional patterns needs to be gener-
alised to patterns in two dimensions;

• A better understanding is needed of how the systemmay
be applied to the discovery and recognition of low-level
features in speech and images;

• In unsupervised learning, the model does not learn inter-
mediate levels of abstraction or discontinuous depen-
dencies in data;
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• And a better understanding is needed of how the system
may be applied in the representation and processing of
numbers.

It appears that none of these problems are fatal—that all of
them are soluble.

Apart from this work, developing the core model, there
is much to be done in exploring how the system may be
applied in areas such as pattern recognition, natural language
processing, and so on (Appendix I-H), and in applications
such as medical diagnosis, crime prevention and detection,
and more (Appendix I-I).

Since there are many more avenues to be explored than
could be tackled by any one research group, it is envisaged
that the SP computer model will be the basis for the creation
of a high-parallel, open-source version of the SP machine,
hosted on an existing high-performance computer [78]. This
will be a means for researchers everywhere to explore what
can be done with the system, and to create new versions
of it. If any reader is interested in the possibility of using
such a facility or believes the facility may be useful, it would
be helpful if he or she were to let the author know (via
jgw@cognitionresearch.org).

Some potential applications of the SP system may be
developed on relatively short timescales using existing high-
performance computers or even ordinary computers. These
include the SP system as an intelligent database [71], and
applications in such areas as medical diagnosis [69], pattern
recognition ( [70, Ch. 6], [72, Sec. 9]), information com-
pression [77, Sec. 6.7], highly-economical transmission of
information [75, Sec. VIII], bioinformatics [77, Sec. 6.10.2],
and natural language processing [77, Sec. 6.2].

APPENDIX II
OCCAM’S RAZOR: SIMPLICITY AND POWER
One of the most widely accepted principles in science—
Occam’s Razor—is that a good theory should combine con-
ceptual simplicity with explanatory or descriptive power.
Albert Einstein expressed it thus: ‘‘A theory is more impres-
sive the greater the simplicity of its premises, the more dif-
ferent things it relates, and the more expanded its area of
application.’’31

In these terms, a theory can be weak because it is too
complex—like the Ptolemaic earth-centred system of epicy-
cles as a theory of the movements of the planets and the
sun, or merely redescribing the data that it is meant to
explain. Or a theory can be weak because it is too simple
and too general, explaining everything and nothing—like
the over-enthusiastic use of the concept of ‘instinct’ as an
explanation of animal behaviour. A good theory—like the
Copernicus/Kepler heliocentric theory of the solar system—
strikes a balance between the two. This relates to the issue
of under-generalisation and over-generalisation discussed in
Sections V-H and XI-C.

31Quoted in [22, p. 512].

Alan Turing’s concept of a ‘universal Turing machine’, and
equivalent models such as Post’s [47] ‘canonical system’, are
goodmodels of ‘computing’ in the widest sense. But notwith-
standing Turing’s vision that computers might become intel-
ligent [62], the concept of a universal Turing machine, does
not tell us how!32 Something with more specific capabilities
is needed for AI.

Since the beginnings of electronic computers, several
decades of research in AI have yielded some useful insights
and some impressive applications but I believe it is fair to say
that AI has been and is suffering from an excess of narrow
subfields and, with some honourable exceptions, insufficient
attention to the need to simplify and integrate observations
and concepts across different areas.33 Hence the SP pro-
gramme of research (Appendix II-A).

It is no accident that ‘simplicity’ and ‘power’—key ideas
in evaluating scientific theories—are also prominent in the
SP theory:

• The two terms, together, are equivalent to ‘informa-
tion compression’, which is central in the SP theory
(Appendix I-E);

• Cosmologist John Barrow has written that ‘‘Science is,
at root, just the search for compression in the world’’
[1, p. 247].

A. MOTIVATION
Part of the motivation for developing the SP theory has
been to try to overcome the problems of narrow focus and
over-specialisation, mentioned above and identified by other
authors:

• Neisser [42] writes of the need to avoid ‘microtheories’
in psychology.

• In a similar vein, Newell, in his famous essay ‘‘You
can’t play 20 questions with nature and win’’ [43],
urges researchers to develop theories with wide scope
(pp. 284–289) dealing with ‘‘a genuine slab of human
behaviour’’ (p. 303). This thinking led on to Newell’s
Unified Theories of Cognition [44] and related work,
discussed in Section VI.

• ‘‘Today, as scientists labor to create machine technolo-
gies to augment our senses, there’s a strong tendency to
view each sensory field in isolation as specialists focus
only on a single sensory capability. Experts in each sense
don’t read journals devoted to the others senses, and
they don’t attend one another’s conferences. Evenwithin
IBM, our specialists in different sensing technologies
don’t interact much.’’ [26, location 1004].

• And McCorduck writes ‘‘The goals once articulated
with debonair intellectual verve byAI pioneers appeared
unreachable . . . Subfields broke off—vision, robotics,
natural language processing, machine learning, deci-
sion theory—to pursue singular goals in solitary splen-

32But Turing began to address that problem in a report about ‘‘unorganised
machines’’ [63] and also in [62].

33Honourable exceptions include research aiming to develop ‘unified
theories of cognition’ and ‘artificial general intelligence’.
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dor, without reference to other kinds of intelligent
behaviour.’’ [38, p. 417]. Later, she writes of ‘‘the rough
shattering of AI into subfields . . . and these with their
own sub-subfields—that would hardly have anything to
say to each other for years to come.’’ (ibid., p. 424). She
adds: ‘‘Worse, for a variety of reasons, not all of them
scientific, each subfield soon began settling for smaller,
more modest, and measurable advances, while the grand
vision held by AI’s founding fathers, a general machine
intelligence, seemed to contract into a negligible, prob-
ably impossible dream.’’

B. EVALUATION OF THE SP THEORY IN
TERMS OF SIMPLICITY AND POWER
Although, in comparing one theory with another, we must
rely on relatively informal assessments of simplicity and
power, the SP theory, in those terms, appears to do well
[77, Sec. 4]:

• The key concept of multiple alignment, with associated
processes, are, in the SP computer model, expressed in
an ‘exec’ file that requires less than 500 KB of storage
space.

• The theory has non-trivial things to say about a
wide range of observations and concepts in artifi-
cial intelligence, mainstream computing, mathematics,
and human perception and cognition (Appendix I-H)
and it has many potential benefits and applications
(Appendix I-I).

It appears that the SP theory avoids what are perhaps the
two most common pitfalls in the development of scientific
theories, noted above: it is not over-specific and it is not
over-general. There appears to be a good balance between
simplicity and power.

C. IF IT WORKS, WHO CARES?
Some people may argue that these concerns are misplaced—
that researchers should concentrate on creating things that
work and not worry about the development of good theory.
It is true that a suck-it-and-see approach can produce useful
results and may indeed be helpful in the development of the-
ory. But no theory or bad theory is almost always a handicap:
imagine the difficulties of space travel using Ptolemy’s epicy-
cles as a guide, or the impoverishment of biology without an
understanding of DNA.

D. SINCE THE HUMAN MIND IS A KLUGE, WHY
WORRY ABOUT GOOD THEORY FOR AI?
Marcus has argued persuasively [36] that, as a result of the
way biological evolution builds on what comes to hand, the
human mind is, in many respects, a kluge, without the coher-
ence or elegance of a well-designed piece of engineering.
In keeping with that idea, Minsky [40] writes: ‘‘What magical
trick makes us intelligent? The trick is that there is no trick.
The power of intelligence stems from our vast diversity, not
from any single, perfect principle.’’ (p. 308).

Since human perception and cognition is a source of inspi-
ration and a touchstone of success for AI, some people
may conclude from arguments like those just mentioned that
we need not worry about good theory for AI: just bundle
together a collection of applications from different areas of
AI. But this is really a counsel of despair which should not
distract us:

• Although it is clear that the human mind has many
shortcomings, it also has extraordinary versatility and
adaptability. This is still a major challenge for AI,
a challenge which appears to demand the development
of good theory.

• A kluge of different applications is unlikely to pro-
vide the smooth inter-working of different kinds of
knowledge and different aspects of intelligence that
appears to be essential if, in AI, we are to achieve
human-like versatility and adaptability in intelligence
(Section II-B).

• Much progress in science has depended on a willingness
to look for simplicity within the apparent complexity of
the world, witness Newton’s laws of motion. We should
not give up on the quest for good theory merely because
it is difficult.

Of course, it is known that different areas of the brain
are specialised for different functions. But there is no con-
tradiction between that observation and the likelihood that
human intelligence depends on powerful general princi-
ples. The SP concepts are promising candidates for those
roles.

APPENDIX III
LONG-TERM AND SHORT-TERM PERSPECTIVES
In research and development in ICT, it is often possible
to achieve useful results on relatively short timescales. For
example, Google Translate delivers translations between nat-
ural languages that are often useful even though they nor-
mally fall short of what can be achieved by a good human
translator.

To achieve higher standards and crack harder problems,
an over-enthusiastic focus on short-term results can be more
costly than a more strategic approach. Any one idea that
shows a little promise may turn out to be a blind alley (in
the same way that climbing a tree, while it takes us closer to
the moon, is not a means of reaching the moon [8]). Big bets
on ideas like that can mean big losses. It is probably better
to maintain a broad view unless or until there is sufficient
evidence to justify a narrower focus.

The SP system, itself the product of a 20-year programme
of research, draws on earlier research developing computer
models of language learning. There is now much evidence in
support of the framework but, as noted in Appendix I-J, there
are still many avenues to be explored. Hence the proposal to
create a new research facility to enable researchers anywhere
to explore what can be done with the SP machine and to
create new versions of it. Such a development would be a
relatively inexpensive way of taking things forward on a
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broad front, very much in keeping with the quote from [26]
in Section IX-C: ‘‘The creation of this new era of [cognitive]
computing is a monumental endeavor . . .’’.

REFERENCES
[1] J. D. Barrow, PI in the Sky: Counting, Thinking, and Being.

Harmondsworth, U.K.: Penguin, 1992.
[2] A. Church, The Calculi of Lambda Conversion (Annals of Mathematics

Studies), vol. 6. Princeton, NJ, USA: Princeton Univ. Press, 1941.
[3] W. F. Clocksin and C. S. Mellish, Programming in Prolog: Using the ISO

Standard. Berlin, Germany: Springer-Verlag, 2003.
[4] G. E. Dahl, D. Yu, L. Deng, and A. Acero, ‘‘Context-dependent pre-

trained deep neural networks for large-vocabulary speech recognition,’’
IEEE Trans. Audio, Speech, Language Process, vol. 20, no. 1, pp. 30–42,
Jan. 2012.

[5] Y. N. Dauphin and Y. Bengio, ‘‘Big neural networks waste capac-
ity,’’ Dept. d’informatique Recherche Opérationnelle, Univ. Montréal,
Montréal, QC, Canada, Tech. Rep., Mar. 2013. [Online]. Available:
http://arxiv.org/pdf/1301.3583.pdf

[6] A. d’Avila Garcez et al., ‘‘Neural-symbolic learning and reasoning:
Contributions and challenges,’’ in Proc. AAAI Spring Symp. Knowl.
Represent. Reason., Integr. Symbolic Neural Approaches, Mar. 2015,
pp. 1–4.

[7] E. Davis and G. Marcus, ‘‘Commonsense reasoning and commonsense
knowledge in artificial intelligence,’’ Commun. ACM, vol. 58, no. 9,
pp. 92–103, 2015.

[8] H. L. Dreyfus, What Computers Still Can’t Do—A Critique of Artificial
Reason. New York, NY, USA: MIT Press, 1992.

[9] C. Edwards, ‘‘Growing pains for deep learning,’’ Commun. ACM, vol. 58,
no. 7, pp. 14–16, 2015.

[10] D. A. Ferrucci, ‘‘Introduction to ‘this is Watson,’’’ IBM J. Res. Develop.,
vol. 56, nos. 3–4, pp. 1–15, 2012.

[11] M. Gagliolo, ‘‘Universal search,’’ Scholarpedia, vol. 2, no. 11, p. 2575,
2007.

[12] Y. Ganin and V. Lempitsky, ‘‘N 4-fields: Neural network nearest neighbor
fields for image transforms,’’ presented at the 12th Asian Conf. Comput.
Vis., Singapore, Nov. 2014.

[13] B. Goertzel, ‘‘CogPrime: An integrative architecture for embodied artifi-
cial general intelligence,’’ Open Cognit. Project, Tech. Rep. 2012-10-02,
2012. [Online]. Available: http://bit.ly/1EyOOlb

[14] A. Graves, G.Wayne, and I. Danihelka, ‘‘Neural turing machines,’’ Google
DeepMind, London, U.K., Tech. Rep., Dec. 2014. [Online]. Available:
http://arxiv.org/pdf/1410.5401.pdf

[15] W. E. L. Grimson, ‘‘A computer implementation of a theory of human
stereo vision,’’ Philos. Trans. Roy. Soc. London B, Biol. Sci., vol. 292,
no. 1058, pp. 217–253, 1981. [Online]. Available: http://bit.ly/1Jq8zYk

[16] C. G. Gross, ‘‘Genealogy of the ‘grandmother cell,’’’Neuroscientist, vol. 8,
no. 5, pp. 512–518, 2002.

[17] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory.
New York, NY, USA: Wiley, 1949.

[18] S. Herculano-Houzel, ‘‘The remarkable, yet not extraordinary, human
brain as a scaled-up primate brain and its associated cost,’’Proc. Nat. Acad.
Sci. USA, vol. 109, no. 1, pp. 10661–10668, 2012.

[19] I. Horrocks, ‘‘Ontologies and the semantic Web,’’ Commun. ACM, vol. 51,
no. 12, pp. 58–67, 2008.

[20] D. H. Hubel, ‘‘Exploration of the primary visual cortex, 1955–78,’’ in
Cognitive Neuroscience: A Reader, M. S. Gazzaniga, Ed. Oxford, U.K.:
Blackwell, 2000, pp. 58–80.

[21] M. Hutter, ‘‘The fastest and shortest algorithm for all well-defined
problems,’’ Int. J. Found. Comput. Sci., vol. 13, no. 3, pp. 431–443,
2002.

[22] W. Isaacson,Einstein: His Life andUniverse. London, U.K.: Pocket Books,
2007.

[23] A.G. Ivakhnenko andG.A. Ivakhnenko, ‘‘The review of problems solvable
by algorithms of the group method of data handling (GMDH),’’ Pattern
Recognit. Image Anal., vol. 5, no. 4, pp. 527–535, 1995.

[24] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, ‘‘On using very large target
vocabulary for neural machine translation,’’ in Proc. 53rd Annu. Meeting
Assoc. Comput. Linguistics, 7th Int. Joint Conf. Asian Fed. Natural Lang.
Process. (ACL-IJCNLP), 2015, pp. 1–10.

[25] B. Julesz, Foundations of Cyclopean Perception. Chicago, IL, USA:
Chicago Univ. Press, 1971.

[26] J. E. Kelly and S. Hamm, Smart Machines: IBM’s Watson and the Era
of Cognitive Computing. New York, NY, USA: Columbia Univ. Press,
2013.

[27] P. Klinov and B. Parsia, ‘‘Pronto: A practical probabilistic description logic
reasoner,’’ in Uncertainty Reasoning for the Semantic Web II (Lecture
Notes in Computer Science), vol. 7123. Heidelberg, Germany: Springer,
2013, pp. 59–79.

[28] J. E. Laird, The Soar Cognitive Architecture. Cambridge, MA, USA:
MIT Press, 2012.

[29] Q. V. Le et al., ‘‘Building high-level features using large scale unsu-
pervised learning,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2013, pp. 8595–8598.

[30] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[31] H. J. Levesque, E. Davis, and L. Morgenstern, ‘‘The Winograd schema
challenge,’’ in Proc. 13th Int. Conf. Principles Knowl. Represent. Reason.,
2012, pp. 1–6.

[32] L. A. Levin, ‘‘Universal sequential search problems,’’ Problemy Peredachi
Inf., vol. 9, no. 3, pp. 115–116, 1973.

[33] L. A. Levin, ‘‘Randomness conservation inequalities; information and
independence in mathematical theories,’’ Inf. Control, vol. 61, no. 1,
pp. 15–37, 1984.

[34] D. S. Levine and M. Aparicio, IV, Eds., Neural Networks for Knowledge
Representation and Inference. Hillsdale, NJ, USA: Psychology Press,
1994.

[35] M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications, 3rd ed. New York, NY, USA: Springer, 2014.

[36] G. Marcus, Kluge: The Haphazard Evolution of the HumanMind. London,
U.K.: Faber and Faber, 2008.

[37] D. Marr and T. Poggio, ‘‘A computational theory of human stereo vision,’’
Proc. Roy. Soc. London B, Biol. Sci., vol. 204, no. 1156, pp. 301–328,
1979.

[38] P. McCorduck, Machines Who Think: A Personal Inquiry into the His-
tory and Prospects of Artificial Intelligence, 2nd ed. Natick, MA, USA:
A K Peters, Ltd., 2004.

[39] P. M. Milner, ‘‘Neural representations: Some old problems revisited,’’
J. Cognit. Neurosci., vol. 8, no. 1, pp. 69–77, 1996.

[40] M. Minsky, The Society of Mind. New York, NY, USA:
Simon and Schuster, 1986.

[41] A. Mordvintsev, C. Olah, and M. Tyka, ‘‘Inceptionism: Going deeper
into neural networks,’’ Google Inc., Mountain View, CA, USA, Tech.
Rep. 2015-07-13, 2015. [Online]. Available: http://bit.ly/1BkXP09

[42] U. Neisser, Cognitive Psychology. New York, NY, USA:
Appleton-Century-Crofts, 1967.

[43] A. Newell, ‘‘You can’t play 20 questions with nature and win: Projec-
tive comments on the papers in this symposium,’’ in Visual Information
Processing, W. G. Chase, Ed. New York, NY, USA: Academic, 1973,
pp. 283–308.

[44] A. Newell, Unified Theories of Cognition. Cambridge, MA, USA:
Harvard Univ. Press, 1990.

[45] A. Newell and H. A. Simon, Human Problem Solving. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1972.

[46] A. Nguyen, J. Yosinski, and J. Clune, ‘‘Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2015, pp. 427–436. DOI: 10.1109/CVPR.2015.7298640

[47] E. L. Post, ‘‘Formal reductions of the general combinatorial decision
problem,’’ Amer. J. Math., vol. 65, no. 2, pp. 197–215, 1943.

[48] J. Rissanen, ‘‘Modeling by shortest data description,’’ Automatica, vol. 14,
no. 5, pp. 465–471, 1978.

[49] S. Russell, ‘‘Unifying logic and probability,’’ Commun. ACM, vol. 58,
no. 7, pp. 88–97, 2015.

[50] A. V. Samsonovich, ‘‘Toward a unified catalog of implemented cogni-
tive architectures,’’ Biol. Inspired Cognit. Archit., vol. 221, pp. 195–244,
Aug. 2010.

[51] J. Schmidhuber, ‘‘Ultimate cognition à laGödel,’’ Cognit. Comput., vol. 1,
no. 2, pp. 177–193, 2009.

[52] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015.

VOLUME 4, 2016 245



J. G. Wolff: SP Theory of Intelligence: Distinctive Features and Advantages

[53] H. Schwenk, ‘‘Continuous space translation models for phrase-based
statistical machine translation,’’ in Proc. 24th Int. Conf. Comput.
Linguistics (COLING), 2012, pp. 1071–1080.

[54] T. Simonite, ‘‘Teaching machines to understand us,’’ MIT Technol. Rev.,
vol. 118, no. 5, pp. 70–77, 2015.

[55] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, ‘‘Parsing with compo-
sitional vector grammars,’’ in Proc. 51st Annu. Meeting Assoc. Comput.
Linguistics, 2013, pp. 455–465.

[56] R. J. Solomonoff, ‘‘A formal theory of inductive inference. Parts I and II,’’
Inf. Control, vol. 7, pp. 1–22 and 224–254, 1964.

[57] R. J. Solomonoff, ‘‘The application of algorithmic probability to prob-
lems in artificial intelligence,’’ in Uncertainty in Artificial Intelligence,
L. N. Kanal and J. F. Lemmer, Eds. Amsterdam, The Netherlands: Elsevier,
1986, pp. 473–491.

[58] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, pp. 1929–1958,
Jun. 2014.

[59] I. Sutskever, O. Vinyals, andQ. V. Le, ‘‘Sequence to sequence learningwith
neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 27.
2014, pp. 3104–3112.

[60] C. Szegedy et al., ‘‘Intriguing properties of neural networks,’’
Google Inc., Mountain View, CA, USA, Tech. Rep., Feb. 2014. [Online].
Available: http://bit.ly/1elzRGM

[61] A. M. Turing, ‘‘On computable numbers, with an application to the
entscheidungsproblem,’’ Proc. London Math. Soc., vol. 42, no. 2,
pp. 230–265 and 544–546, 1936.

[62] A. M. Turing, ‘‘Computing machinery and intelligence,’’ Mind, vol. 59,
no. 236, pp. 433–460, Oct. 1950.

[63] A. M. Turing, ‘‘Intelligent machinery,’’ in The Collected
Works of AM Turing: Mechanical Intelligence, D. C. Ince, Ed.
Amsterdam, The Netherlands: Elsevier, 1992. [Online]. Available:
http://bit.ly/1SeLmhO

[64] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, ‘‘Show and tell: A neural
image caption generator,’’ in Proc. 31st Int. Conf. Mach. Learn. (ICML),
2014, pp. 3156–3164. DOI: 10.1109/CVPR.2015.7298935

[65] C. S. Wallace and D. M. Boulton, ‘‘An information measure for classifica-
tion,’’ Comput. J., vol. 11, no. 2, pp. 185–195, 1968.

[66] S. Wiesler, A. Richard, R. Schlüter, and H. Ney, ‘‘Mean-normalized
stochastic gradient for large-scale deep learning,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 180–184.

[67] T. Winograd, ‘‘Understanding natural language,’’ Cognit. Psychol., vol. 3,
no. 1, pp. 1–191, 1972.

[68] J. G. Wolff, ‘‘Learning syntax and meanings through optimization and
distributional analysis,’’ in Categories and Processes in Language Acqui-
sition, Y. Levy, I. M. Schlesinger, and M. D. S. Braine, Eds. Hillsdale,
NJ, USA: Lawrence Erlbaum, 1988, pp. 179–215. [Online]. Available:
http://bit.ly/ZIGjyc

[69] J. G. Wolff, ‘‘Medical diagnosis as pattern recognition in a framework of
information compression by multiple alignment, unification and search,’’
Decision Support Syst., vol. 42, pp. 608–625, Nov. 2006. [Online].
Available: http://bit.ly/XE7pRG

[70] J. G. Wolff, Unifying Computing and Cognition: The SP Theory and Its
Applications. Menai Bridge, U.K.: CognitionResearch.org, 2006. [Online].
Available: http://bit.ly/WmB1rs

[71] J. G. Wolff, ‘‘Towards an intelligent database system founded on the SP
theory of computing and cognition,’’ Data Knowl. Eng., vol. 60, no. 3,
pp. 596–624, 2007. [Online]. Available: http://bit.ly/Yg2onp

[72] J. G. Wolff, ‘‘The SP theory of intelligence: An overview,’’
Information, vol. 4, no. 3, pp. 283–341, 2013. [Online]. Available:
http://bit.ly/1hz0lFE

[73] J. G. Wolff, ‘‘Application of the SP theory of intelligence to the under-
standing of natural vision and the development of computer vision,’’
SpringerPlus, vol. 3, no. 1, pp. 552–570, 2014. [Online]. Available:
http://bit.ly/1scmpV9

[74] J. G. Wolff, ‘‘Autonomous robots and the SP theory of intelligence,’’
IEEE Access, vol. 2, no. 1, pp. 1629–1651, Jan. 2014. [Online]. Available:
http://bit.ly/1zrSemu

[75] J. G. Wolff, ‘‘Big data and the SP theory of intelligence,’’ IEEE
Access, vol. 2, no. 4, pp. 301–315, Apr. 2014. [Online]. Available:
http://bit.ly/1jGWXDH

[76] J. G. Wolff, ‘‘Information compression, intelligence, computing, and
mathematics,’’ CognitionResearch.org, Menai Bridge, U.K., Tech.
Rep. 2015-06-04, 2015. [Online]. Available: http://bit.ly/1jEoECH

[77] J. G. Wolff, ‘‘The SP theory of intelligence: Benefits and applica-
tions,’’ Information, vol. 5, no. 1, pp. 1–27, 2014. [Online]. Available:
http://bit.ly/1lcquWF

[78] J. G. Wolff and V. Palade, ‘‘Proposal for the creation of a research
facility for the development of the SP machine,’’ CognitionResearch.org,
Menai Bridge, U.K., Tech. Rep. 2015-11-16, 2015. [Online]. Available:
http://bit.ly/1zZjjIs

[79] Q. Yu, Y. Yang, Y. Song, T. Xiang, and T. Hospedales, ‘‘Sketch-
a-net that beats humans,’’ Queen Mary College, Univ. London,
London, U.K., Tech. Rep., May 2015. [Online]. Available:
http://arxiv.org/pdf/1501.07873v2.pdf

[80] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[81] X. Zeng, W. Ouyang, and X. Wang, ‘‘Multi-stage contextual deep learning
for pedestrian detection,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2013, pp. 180–184.

[82] X. Zhang and Y. LeCun, ‘‘Text understanding from scratch,’’
Dept. Comput. Sci., New York Univ., New York, NY, USA,
Tech. Rep., Jun. 2015. [Online]. Available: http://arxiv.org/
pdf/1502.01710v3.pdf

[83] Y. Zhu, Y. Tian, D. Mexatas, and P. Dollár, ‘‘Semantic amodal segmen-
tation,’’ Dept. Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA,
2015.

JAMES GERARD WOLFF (M’13) received the
Natural Sciences Tripos degree from Cambridge
University, Cambridge, U.K., specializing in
experimental psychology, and the Ph.D. degree in
psychology from the University of Wales, Cardiff.
He has held academic positions with the School
of Informatics, University of Bangor, U.K., the
Department of Psychology, University of Dundee,
U.K., and the University Hospital of Wales,
Cardiff, U.K. He has also held a Research Fellow-

ship with IBM, Winchester, U.K., and has been a Software Engineer with
Praxis Systems plc, Bath, U.K. Since 1987, his research has been focused on
the development of the SP theory of intelligence. He is currently the Director
of CognitionResearch.org., Menai Bridge, U.K. He has numerous publica-
tions in a wide range of academic journals, collected papers, and conference
proceedings. Previously, his main research interests were in developing
computer models of language learning. He is also a Chartered Engineer and
member of the British Computer Society (Chartered IT Professional).

246 VOLUME 4, 2016


