Software engineering and the SP Theory of
Intelligence

J Gerard Wolft*
August 5, 2018

Abstract

This paper describes a novel approach to software engineering derived
from the SP Theory of Intelligence and its realisation in the SP Computer
Model. Despite superficial appearances, it is shown that many of the key
ideas in software engineering have counterparts in the structure and work-
ings of the SP system. Potential benefits of this new approach to soft-
ware engineering include: the automation or semi-automation of software
development, with support for programming of the SP system where neces-
sary; allowing programmers to concentrate on ‘world-oriented’ parallelism,
without worries about parallelism to speed up processing; support for the
long-term goal of programming the SP system via written or spoken natu-
ral language; reducing or eliminating the distinction between ‘design’ and
‘implementation’; reducing or eliminating operations like compiling or in-
terpretation; reducing or eliminating the need for verification of software;
reducing the need for validation of software; no formal distinction between
program and database; the potential for substantial reductions in the num-
ber of types of data file and the number of computer languages; benefits for
version control; and reducing technical debt.

Keywords: SP Theory of Intelligence; software engineering; automatic program-
ming; natural language processing; compiling; interpretation; verification; valida-
tion; parallel processing; version control; technical debt.

*Dr Gerry Wolff, BA (Cantab), PhD (Wales), CEng, MBCS, MIEEE; CognitionResearch.org,
Menai Bridge, UK; jgw@cognitionresearch.org; +44 (0) 1248 712962; +44 (0) 7746 290775; Skype:
gerry.wolff; Web: www.cognitionresearch.org.

mailto:jgw@cognitionresearch.org
http://www.cognitionresearch.org

1 Introduction

This paper is about a novel approach to software engineering with potential ad-
vantages over standard approaches. It is a considerable revision, expansion and
development of preliminary ideas in [Wolfll [2014b, Section 6.6]. There is an out-
line description of the SP system in Appendix [A] with pointers to where fuller
information may be found.

The novelty of the approach is because it derives from the SP Theory of In-
telligence and its realisation in the SP Computer Model. Despite superficial ap-
pearances, it is shown that many of the key ideas in software engineering have
counterparts in the structure and workings of the SP system.

It is envisaged that the SP theory and its realisation in the SP computer model
will be the basis for an industrial-strength SP Machine (Appendix which
would be the vehicle for software engineering as described in this paper.

The workings of the SP system may be classified as natural for three main
reasons:

o Information compression in human learning, perception, and cognition. The
SP system incorporates the principle that much of human learning, percep-
tion, and cognition may be understood as information compression. Relevant
evidence derives from: research by Fred Attneave |1954], Horace Barlow
[1959, [1969], and others, exploring the role of information compression in
human perception and cognition. Much additional evidence is described in
Wolff| [2017].

e Information compression in language learning. A programme of research de-
veloping computer models of language learning (summarised in [Wolff] [1988])
which demonstrates the importance of information compression in learning
artificial analogues of natural language.

e Modelling aspects of human intelligence. Although the SP system is lit-
tle more than the essentially simple concept of SP-multiple-alignment (Ap-
pendix [A.3)), it has proved to be remarkably versatile in modelling several
aspects of human learning, perception, and cognition, as summarised in Ap-
pendix [B] In general, the SP system is strongly oriented towards human and
thus natural forms of computing.

As a preparation for the main body of the paper, the next section relates
concepts in ordinary computers to concepts in the SP system. Sections that follow
describe several potential advantages of the SP system in software engineering. All
sections presuppose some understanding of the structure and workings of the SP
system, as outlined in Appendix [A]

2 How concepts that are familiar in ordinary
computer programming may be seen in the
workings of the SP system

Superficially, the workings of an ordinary computer is quite different from the
workings of the SP system. Ordinary computers are normally seen to work via the
‘execution’ of ‘procedures’ or ‘functions’ but the SP system works entirely via the
compression of information. That the two kinds of processing may be seen to be
equivalent is an important insight from the SP programme of research.

This section demonstrates how several of the concepts that are familiar in the
programming of ordinary computers may be seen in the workings of the SP system.

2.1 ‘Function’, ‘calling of a function’, ‘parameter’, and
‘conditional statement’

We begin with a simple example: the kinds of things that need to be done in
preparing a meal in a restaurant in response to an order from a customer, excluding
any advance preparation of the ingredients.

2.1.1 An outline of C code for preparing meals in a restaurant

In the C programming language, relevant functions for preparing meals in a restau-
rant are shown in outline in Figure [Il Here, the highest level structure is the
‘prepare meal ()’ function at the bottom of the figure, with subordinate functions
above it, in accordance with convention.

The top-level function may be called like this: ‘prepare meal(0, 4, 1)’. This
has the effect of calling the ‘starter()’ function with the parameter ‘0’, the
‘main_course (’ function with the parameter ‘4’; and the ‘pudding ()’ function with
the parameter ‘1’. As can be seen in the subordinate functions, the parameters
have the effect, via conditional statements, of calling the functions ‘mussels()’,
‘salad()’, and ‘apple_crumble()’. Each of these may, in an intelligent robot,
prepare the corresponding dish, or may at least instruct a person to prepare that
dish.

2.1.2 An outline of an SP grammar for preparing meals in a restaurant

Figure[2|shows an SP grammar, comprising a collection of SP-patterns, which may
be seen as a function for the preparation of meals corresponding to the example

in Figure

void starter(int ST)

{
if (ST == 0) mussels() ;
else if (ST == 1) soup() ;
else avocado() ;
}
void main_course(int MC)
{
if (MC == 0) lasagna() ;
else if (MC == 1) beef() ;
else if (MC == 2) nut-roast() ;
else if (MC == 3) kipper() ;
else salad() ;
}
void pudding(int PD)
{
if (PD == 0) ice_cream() ;
else if (PD == 1) apple_crumble() ;
else if (PD == 2) fresh_fruit() ;
else tiramisu() ;
}
void prepare_meal(int ST, int MC, int PD)
{
starter(ST) ;
main_course(MC) ;
putting(PD) ;
}

Figure 1: An outline of C code for preparing a meal in a restaurant.

The first SP-pattern in the figure, ‘PM ST #ST MC #MC PD #PD #PM’, describes
the overall structure of the operation of preparing a meal. It is identified by the
pair of SP-symbols ‘PM ... #PM’ which are mnemonic for “prepare meal”.

As with the example shown in Figure [I} the main steps are the preparation
of a starter (‘ST ... #ST’), the preparation of the main course (‘MC ... #MC’),
and the preparation of a pudding (‘PD ... #PD’). Corresponding SP-patterns are
shown in the second and subsequent rows in the figure.

PM ST #ST MC #MC PD #PD #PM Prepare meal

[
ST O mussels #ST | Starter: prepare a dish of mussels
ST 1 soup #ST | Starter: prepare a bowl of soup
ST 2 avocado #ST | Starter: prepare an avocado dish
MC 0 lasagna #MC | Main course: prepare a lasagna dish
MC 1 beef #MC | Main course: prepare a beef dish
MC 2 nut-roast #MC | Main course: prepare a nut-roast dish
MC 3 kipper #MC | Main course: prepare a kipper
MC 4 salad #MC | Main course: prepare a salad
PD O ice cream #PD | Pudding: prepare ice cream
PD 1 apple_crumble #PD | Pudding: prepare apple crumble
PD 2 fresh_fruit #PD | Pudding: prepare fresh fruit
PD 3 tiramisu #PD | Pudding: prepare tiramisu

Figure 2: An SP grammar comprising a set of SP-patterns representing in outline
the kinds of procedures involved in preparing a meal for a customer in a restaurant.
To the right of each SP-pattern is an explanatory comment, beginning with ‘|’
which is not part of the SP-pattern.

2.1.3 Building SP-multiple-alignments via information compression

To see how this grammar functions in practice, consider the SP-multiple-alignment
shown in Figure

This SP-multiple-alignment is the best one created by the SP Computer Model
with the New SP-pattern, ‘PM 0 4 1 #PM’, processed in conjunction with Old SP-
patterns shown in Figure[2| Here, the New SP-pattern may be seen as an econom-
ical description of what the customer ordered: a starter comprising a dish of mus-
sels, represented by the code ‘0’; a main course chosen to be a salad, represented
by the code ‘4’; and a pudding which in this case is apple crumble, represented by
the code ‘1.

Assuming that each of the SP-symbols ‘mussels’, ‘salad’, and
‘apple_crumble’, represents the execution of instructions for preparing the
corresponding dish, or is at least an instruction to a person to prepare that dish,

! Just to confuse matters, this SP-multiple-alignment has been rotated by 90° compared with
the SP-multiple-alignment shown in Figure These two versions of an SP-multiple-alignment
are entirely equivalent. The choice between them depends entirely on what fits best on the page.

PM -- PM | Prepare meal

ST ——==—————————————- ST | Prepare starter
0 -- ittt 0

mussels

#ST ————————————————— #ST

MC --- - -- MC | Prepare main course
4 - 4

salad

#MC -- - -- #MC

PD -- PD | Prepare pudding
1 = 1

apple_crumble

#PD - #PD
#PM - #PM
0 1 2 3 4

Figure 3: The best SP-multiple-alignment created by the SP Computer Model
with the New SP-pattern, ‘PM 0 4 1 #PM’, and the set of Old SP-patterns shown
in Figure

the whole SP-multiple-alignment may be seen to achieve the effect of preparing
what the customer has ordered, much as with the example discussed in Section

211

2.1.4 How the concepts of ‘function’, ‘calling of a function’, ‘parame-
ter’, and ‘conditional statement’ may be seen in the workings of
the SP system

This example shows how the concepts ‘function’; ‘calling of a function’, ‘parame-
ter’, and ‘conditional statement’ may be seen in the workings of the SP system:

e As mentioned earlier, the whole grammar in Figure [2 may be seen as a
function for preparing a meal to meet a given order, like the outline code
shown in Figure

e Of the remaining SP-patterns in Figure [2, each group of SP-patterns that
begin with the same SP-symbol, such as ‘ST 0 mussels #ST’, ‘ST 1 soup
#ST’, and ‘ST 2 avocado #ST’, may be seen as a subordinate function that
is called from the higher-level function ‘PM ST #ST MC #MC PD #PD #PM.

Although the example does not illustrate the point, it should be clear that
each subordinate function may itself call one or more lower-level functions,
and so on through as many levels as may be required. As we shall see in
Section recursion is also possible.

e Each of the code SP-symbols ‘0’, ‘4’, and ‘1’, in the New SP-pattern ‘PM 0
4 1 #PVM’, may be seen as a parameter to the top-level function.

e Since the code SP-symbol ‘0’ has the effect of selecting the SP-pattern
‘ST 0 mussels #ST’ from the set of SP-patterns ‘ST 0 mussels #ST’, ‘ST
1 soup #ST’, and ‘ST 2 avocado #ST’, the process of selection may be seen
to achieve the effect of a conditional statement or if-then rule in an ordi-
nary computer program, something like the C statement ‘if (ST == 0)
mussels() ;’ in Figure [I] meaning “If the value of ‘ST’ is ‘0’, perform
the subordinate function ‘mussels()’, which itself means “prepare a dish
of mussels”. Much the same may be said, mutatis mutandis, about the code
SP-symbols ‘4’, and ‘1’

2.2 Variables, values, and types

In addition to the programming concepts already considered, the concepts ‘vari-
able’, ‘value’, and ‘type’ may be seen in the workings of the SP system.

Consider, for example, the SP grammar shown in Figure[d] This is an expansion
of the “salad” main course entry in the grammar shown in Figure 2] Instead of
simply giving the name of the dish, this grammar provides for choices of ingredients
in four categories: salad leaves (‘L ... #L’), root vegetables (‘R ... #R’), garnish
(‘G ... #G'), and dressing (‘D ... #D’).

MC salad L #L R #R G #G D #D #MC
lettuce #L
beetroot_leaves #L
water_cress #L
spinach #L

carrot #R

potato #R

parsnip #R

nuts #G

saltanas #G
mayonnaise #D
vinaigrette #D
thousand_island #D

oouovaaaa®Ho- -
NP, OFR,R ONFOWNRO

Figure 4: An SP grammar comprising a set of SP SP-patterns representing in
simplified form the kinds of things that may go in a salad. Key: MC = main
course; L = salad leaves; R = root vegetables; G = garnish; D = dressing.

When the SP Computer Model is run with the New SP-pattern ‘MC 2 1 0 1
#MC’ and Old SP-patterns comprising the SP-patterns shown in Figure [4] the best
SP-multiple-alignment created by the SP Computer Model is the one shown in

Figure [f

0 1 2 3 4 5
MC -- MC

salad

L -————- L
2 ——————————= 2

water_cress

#L --—— #L

R - R
1 - 1

potato

#R - #R

G —— it bte G
0 -—- ———— 0

nuts

#G ————— #G

D - D
1 —-—- e 1

vinaigrette

#D —- —-—- —-—- - #D
#MC - #MC
0 1 2 3 4 5

Figure 5: The best SP-multiple-alignment created by the SP Computer Model
with the New SP-pattern ‘MC 2 1 0 1 #MC’ and the set of Old SP-patterns shown
in Figure [

In this example:

e Within the SP-pattern ‘MC salad L #L R #R G #G D #D #MC’ (column 1),
each of the pair of SP-symbols ‘L #L’, ‘R #R’, ‘G #G', and ‘D #D’, may be
seen to represent the concept wvariable because they are slots where values
may be inserted.

o The effect of the SP-multiple-alignment is to assign ‘water_cress’ to the first
slot, ‘potato’ to the second slot, ‘nuts’ to the third slot, and ‘vinaigrette’
to the fourth slot. Those four things may be seen to be wvalues, each one
assigned to an appropriate variable.

e For each of the four variables, its type—meaning the range of values that
it may take—may be seen to be defined by the grammar shown in Figure
[l For example, possible values for the variable ‘L #L’ may be seen to be
‘lettuce’, ‘beetroot_leaves’, ‘water_cress’, and ‘spinach’. Likewise for
the other three variables.

2.3 Structured programming

An established feature of software engineering today, which is now partly but not
entirely subsumed by object-oriented programming (next), is ‘structured program-
ming’ [Jackson, [1975] in which the central idea is that programs should comprise
well-defined structures which should reflect the structure of the data that is to be
processed and should never use the ‘goto’ statement of an earlier era.

To a large extent, the SP system incorporates the principles of structured
programming, since unsupervised learning in the SP system creates structures
that reflect the structure of incoming data. And other kinds of processing in the
SP system, such as pattern recognition or reasoning, is achieved by recognising
and processing similar structures in new data, without the use of anything like a
‘goto’ statement.

2.4 Object-oriented design or programming

From its introduction in the Simula computer language [Birtwistle, Dahl,
Myhrhaug, and Nygaard, 1973], ‘object-oriented programming’ (OOP) and the
closely-related ‘object-oriented design’ (OOD) have become central in software
engineering and in such widely-used programming languages as C++ and Java.
Key ideas in OOP/OOD are that the structure of each computer program
should reflect the objects to which it relates—people, packages, fork-lift trucks,
and so on—and the classes and subclasses in which each object belongs. This not
only helps to make computer programs easy to understand but it means that the

features of any specific object may be ‘inherited’ from the classes and subclasses
to which it belongs.

Inheritance applies to all the objects in a given class, meaning that there is an
overall saving or compression of information compared with what would be needed
without inheritance. In this respect, OOP/OOD is very much in keeping with the
central importance of information compression in the SP system.

In Figure [6] the SP-multiple-alignment produced by the SP Computer Model,
with the New SP-pattern ‘white-bib eats furry purrs’ and a set of Old SP-
patterns representing different categories of animal and their attributes, shows how
a previously-unknown entity with features shown in the New SP-pattern in column
1 may be recognised at several levels of abstraction: as an animal (column 1), as
a mammal (column 2), as a cat (column 3) and as the specific cat “Tibs” (column
4). These are the kinds of classes used in ordinary systems for OOP/OOD.

From this SP-multiple-alignment, we can see how the entity that has now
been recognised inherits unseen characteristics from each of the levels in the class
hierarchy: as an animal (column 1) the creature ‘breathes’ and ‘has-senses’,
as a mammal it is ‘warm-blooded’, as a cat it has ‘carnassial-teeth’ and
‘retractile-claws’, and as the individual cat Tibs it has a ‘white-bib’ and
is ‘tabby’.

2.5 Recursion

The SP system does not provide for the repetition of procedures via these kinds
of statement: while ..., do ... while ..., for ..., or repeat ... until But the same
effect may be achieved via recursion, as illustrated in Figure

In the figure, the SP-symbols ‘a6 bl bl bl c4 d3’ in the New SP-pattern
in row 0 (‘pg a6 bl bl bl c4 d3 #pg’) may be seen as parameters for the SP
‘program’ or grammar for this example (not shown on this occasion).

One point of interest here is that the SP-pattern ‘ri ril ri #ri b #b #ri’
(which appears in columns 5, 7, and 9) is recursive because it is self-referential—
because the pair of SP-symbols ‘ri #ri’ within the larger SP-pattern ‘ri ril ri
#ri b #b #ri’ may be matched and unified with the same two SP-symbols at
the beginning and end of that larger SP-pattern. Hence, the larger SP-pattern
contains a reference to itself.

Another point of interest is that the recursive SP-pattern ‘ri ril ri #ri b
#b #ri’, and its connected SP-pattern ‘b bl procedure B #b’, each occur 3 times
in the SP-multiple-alignment in Figure |7} although each of them only occurs once
in the grammar for this SP-multiple-alignment. Hence, the grammar is relatively
compressed compared with what would be needed if all possible repetitions were
stored explicitly.

10

11

0 1 2 3 4
T
Tibs
C - C
cat
M- M
mammal
A - A
animal
head -----=----——--——-————- head
carnassial-teeth
#head -- -—= - #head
body --- ettt body
white-bib ettt white-bib
#body ————-——--————m——m oo #body
legs ———————=——=————-——--—- legs
retractile-claws
#legs —- - - #legs
eats ————-- eats
breathes

has-senses

#A ————————- #A
furry ----——---------—- furry
warm-blooded

#M - #M
PUrrS ———————— - - oo purrs
#C - #C
tabby
#T
0 1 2 3 4

Figure 6: The best SP-multiple-alignment found by the SP Computer Model, with
the New SP-pattern ‘white-bib eats furry purrs’shown in column 1, and a set
of Old SP-patterns representing different categories of animal and their attributes

shown in columns 1 to 4. Reproduced with permission from Figure 15 in |Wolff
[2013].

12

0 1 2 3 4 5 6 7 8 9 10
Pg ~TTTTT T Pg
a a
aé aé
procedure_A
#a #a
ri ri
ril
ri ——-—mmmmm e ri
ril
ri ————-——————— - ri
ril
ri
#ri
b ——mmmmmmm— b
bl
#b
#ri
b1
bl
#ri
C —mmm—————— c
c4d -- c4
procedure_C
#c —--m—m———- #c
d---d
d3 ---———mmmmmmmmmmmm 43
procedure_D
#d -- #d
#pg —m-mmmmomomos #pg
0 1 2 3 4 5 6 7 8 9 10

Figure 7: An SP-multiple-alignment produced by the SP Computer Model showing
how, via recursion mediated by a self-referential SP-pattern (which is ‘ri ril ri
#ri b #b #ri’ in this example), the SP system may model the repetition of a
procedure or function, which in this examples is shown as ‘procedure_B’.

With any kind of recursion, something is needed to tell the system when to
stop the repetition. In our example, the number of repetitions is specified explicitly
by the three instances of the SP-symbol ‘b1’ within the New SP-pattern. Other
devices may also be used.

3 The full or partial automation of software de-
velopment

This and the following main sections describe potential advantages of the SP sys-
tem in software engineering compared with software engineering with conventional
computers.

This section considers the full or partial automation of software and the as-
sociated issue of generalisation in software, and how to avoid under- and over-
generalisaton.

3.1 Automation of software development

Assuming that the SP Machine (Appendix has been developed to the stage
where it has robust abilities for unsupervised learning with both one-dimensional
and two-dimensional SP-patterns, and assuming that residual problems in that
area have been solved (Appendix , the SP Machine is likely to prove useful in
both the automatic and semi-automatic creation of software, discussed in this and
the following subsection.

At least two things suggest that such possibilities are credible:

e As noted in Section and Appendix [B.2.2] it has been recognised for
some time, in connection with the concept of “structured programming”,
that the structure of software should mirror the structure of the data that
it is designed to process [Jackson, [1975]. This fits well with the observation
that in forms of unsupervised learning such as grammatical inference, the
structure of the resulting grammar reflects the structure of the data from
which it was derived.

e In the same vein, in connection with “object-oriented design” and “object-
oriented programming” (Section , it is well-established that a well-
structured program should reflect the structure of entities and classes of
entities that are significant in the workings of the program. This fits well
with the observation that unsupervised learning in the SP system appears
to conform to the ‘DONSIC’ principle [Wolft, 2013, Section 5.2: the dis-
covery of natural structures via information compression—where ‘natural’

13

means aspects of our environment such as ‘objects’ which we perceive to be
natural.

3.1.1 Example: learning in an autonomous robot

Perhaps the best example of how the SP system may facilitate automatic pro-
gramming is in autonomous robots that learn continually via their senses, much
as people do [Wolff] 2014a]. Here, the robot’s ever-increasing store of knowledge,
together with any in-built motivations, provide the basis for many potential in-
ferences (Wolff [2006a, Chapter 7], [Wolffl [2013] Section 10]) and, perhaps more
important in the present context, the creation of one or more plans (Wolff [2006a,
Chapter 8], |Wolff] [2013, Section 12]), each one of which may be regarded as a
program to guide the robot’s actions.

The potential for this kind of development raises important issues about how
much autonomy should be granted to any robot and how external controls may be
applied. Pending the resolution of such issues, there is potential in the SP system
for more humdrum kinds of automatic programming, as described in the next two
subsections.

3.1.2 Example: processing data received by the SKA

The fully automatic creation of software should be possible in situations where
there is a body of data that represents the entire problem or a realistically large
sample of it. An example is the large volumes of data that will be gathered by the
Square Kilometre Array (SKA)E] when it is completed.

With data like this, unsupervised learning by the SP Machine should build
grammars that represent entities and classes of entity—such as stars and galaxies—
in two dimensions at least, and possibly in three dimensions. And its grammars
should also embrace ‘procedural” or ‘process’ regularities in the time dimension.

Any such grammar may be seen as a ‘program’ for the analysis of similar kinds
of data in the future. A neat feature of the SP system is that the SP-multiple-
alignment construct serves not only in unsupervised learning but also, without
modification, in such operations as SP-pattern recognition, reasoning, and more
(Appendix [B.1)).

With an area of application like the processing of data received by the SKA,
it may of course happen that significant structures or events—such as supernovas
or gamma-ray bursts—do not appear in any one sample of data. For that reason,
unsupervised learning should be an ongoing process, much as in people, so that

2See, for example, “Square Kilometre Array”, Wikipedia, bit.ly/2t16xxW, retrieved
2017-07-15.

14

http://bit.ly/2t16xxW

the system may gain progressively more knowledge of its target environment as
time goes by.
Some more observations relating to this example are described in Section [3.1.4]

3.1.3 Example: programming by demonstration

Another situation where the SP Machine may achieve fully-automatic creation
of software is with a technique for programming robots called “programming by
demonstration” Pl

As an example, a person who is skilled at some operation in the building
of a car (such as paint-spraying the front of the car) may take the ‘hand’ of
a robot and guide it through the sequence of actions needed to complete the
given operation. Here, signals from sensors in various parts of the robot’s arm,
including the robot’s actuators or ‘muscles’, would be recorded and the record
would constitute a preliminary kind of ‘program’ of the several positions of the
arm and actuators that are needed to complete the operation.

Any such preliminary program may be processed by the SP system to con-
vert it into something that more closely resembles an ordinary program, with the
equivalent of subroutines, repetition of operations, and conditional statements.
To allow for acceptable variations in the task, there should also be appropriate
generalisation from the raw data, as described in Section

Some more observations relating to this example are described next.

3.1.4 Possible augmentations

An assumption behind the two examples just described is that the grammar or
program created via unsupervised learning would do everything that is needed.

In many cases, this would probably be true. This is because of a neat feature
of the SP system: that the SP-multiple-alignment subsystem is not only an im-
portant part of unsupervised learning but is also the key to such operations as
pattern recognition, several kinds of reasoning, retrieval of information, and prob-
lem solving (Appendix [B.1). With the SKA example (Section [3.1.2] these kinds of
operations may be all that is required. With the programming-by-demonstration
example (Section , the program created via unsupervised learning may func-
tion directly in controlling the robot arm.

But the user of the SKA system might want to do such things as showing
stars in red, galaxies in green, and so on. And the user of the programming-by-
demonstration system might want to add some bells and whistles such as playing
musical sounds as the robot works.

3See, for example, “Programming by demonstration”, Wikipedia, bit.ly/2v3phy8, retrieved
2017-07-15.

15

http://bit.ly/2v3phy8

Clearly, such augmentations fall outside what could be created automatically
via unsupervised learning. They take us into to the realm of semi-automatic
creation of software, discussed next.

3.2 Semi-automatic creation of software

With some kinds of application, it seems unlikely that the creation of relevant soft-
ware could be fully automated in the foreseeable future. One example is the kinds
of augmentation to an automatically-created program described in Section [3.1.4]
Another example is the kind of software that is needed to manage a business—with
knowledge of people, vehicles, furniture, packages, warehouses, relevant rules and
regulations, and so on.

With the latter kind of problem, there appears to be potential for the system
to assist in the refinement of human-created software by detecting redundancies in
any draft design, and inconsistencies from one part of the design to another. On
the assumption that the software is developed using SP-patterns and is hosted on
an SP Machine (as outlined in Section [4]), then the SP Machine may be a vehicle
for verification and validation of the software as described in Sections [and [10l

At some point in the future, it is conceivable that knowledge about how a
business operates may, at some stage, be built up by an intelligent autonomous
robot of the kind described in Wolff [2014a] that is allowed to explore different
areas of the business, observing the kinds entity and operation that are involved,
asking questions, and so on. But for the foreseeable future, it seems likely that any
software that may have been created by such a robot would need to be augmented
and refined by people.

3.3 Generalisation and the avoidance of under- and over-
generalisation

As a rule, any given computer program is more general than any set of examples
that it may process. For example, an ordinary spreadsheet program can work with
millions or perhaps billions of different sets of data, far more than it would ever
be used for in practice.

Since we have been considering the possibility that software may be created
automatically or semi-automatically in the manner of unsupervised learning (Sec-
tions |3 and , we need to consider how the system would generalise correctly
from the examples it has been given, without either under-generalisation (some-
times called ‘overfitting’) or over-generalisation (sometimes called ‘underfitting’).

The SP system provides an answer outlined in [Wolff| [2013] Section 5.3][f] with

4That accountcl only mentions over-generalisation but it appears that the same procedure

16

some supporting evidence. In brief, it appears that correct generalisation may be
achieved, without either under- or over-generalisation, like this:

1.

3.

Given a body of raw data, I, compress it as much as possible with the
program for unsupervised learning.

Divide the resulting compressed version of I into two parts: a grammar, G,
which represents the recurring features of I, and an encoding, E, of I in terms

of G.

Discard E and retain G.

Here, G may be seen to be a program for processing I and for processing many
other bodies of data with the same general characteristics as I, without either
under- or over-generalisation.

4

Non-automatic programming of the SP system

If or when the automatic creation of software is not feasible, or if something
more than small revisions are needed with software that has been created semi-
automatically, then something like ordinary programming will be needed.

In principle, this can be done using SP-patterns directly. But, mainly for
reasons of human psychology, some kind of ‘syntactic sugar’ or other aids may be
helpful for programmers. Here are four possibilities:

e With an SP-pattern like ‘NP D #D N #N #NP’ in row 4 of Figure [11], it may

he helpful if, when the first SP-symbol (‘NP’) has been typed in, the program-
ming environment would automatically insert the balancing last SP-symbol
(‘#NP’).

Unless or until programmers become used to how things are done in the SP
system, it may be helpful to create a programming environment in which SP
concepts are presented in a manner that resembles ordinary programming
concepts, as described in Section 2]

Instances of the object-oriented concept of a class-inclusion hierarchy (Sec-
tion [2.4)), and instances of any part-whole hierarchy (dividing an object into
its parts and subparts) may be represented graphically and implemented
with equivalent sets of SP-patterns.

There will also be a need for programmers to specify aspects of parallel and
sequential processing, as described in Section [b| next.

will apply to the avoidance of under-generalisation.

17

5 A potential advantage of the SP Machine in
the application of parallel processing

In the application of parallel processing in the SP Machine, it is important to
distinguish between two kinds of parallelism:

o World-oriented parallelism. World-oriented parallelism means the kind of
parallelism that one might observe in the world, including the activities of
people: it may rain at the same time as the wind blows; the players in a
game of football are all doing different things at the same time; a cook may
prepare the icing for a cake at the same time as the cake is baking; and so
on.

e Machine-oriented parallelism. In the workings of a computer, there may be
parallel processing in the MapReduce model, in pipelining, in SIMD paral-
lelism, in MIMD parallelism, and so on.

In the programming of an ordinary high-parallel supercomputer or high-parallel
computing cluster, both kinds of parallelism may be applied, with little or no dis-
tinction between them. For example, a programmer who is developing a flight
simulator may adopt machine-oriented parallelism for such processing as matrix
multiplication and apply world-oriented parallelism in modelling the many pro-
cesses that are involved, largely in parallel, in a plane’s flight.

A potential advantage of the SP machine is that programmers of such a machine
may be largely relieved of the need to worry about machine-oriented parallelism
and may concentrate on the programming of world-oriented parallelims.

This potential advantage arises because of evidence that the SP system has
potential to serve as a universal framework for the representation and processing
of diverse kinds of knowledge (UFK) [Wolff, 2014c¢| Section III].

The evidence is that, already, one relatively simple conceptual and computa-
tional framework—SP-multiple-alignment—demonstrates versatility in aspects of
intelligence, versatility in the representation of diverse forms of knowledge, with
clear potential for the seamless integration of diverse aspects of intelligence and
diverse forms of knowledge, in any combination (see [Wolff, 2018, Sections 4, 5, and
6] and pointers from there). And there are reasons to believe that that versatility
may be extended.

If or when the SP system can be developed with full human-like versatility, tak-
ing full advantage of machine-oriented parallel processing, then it seems likely that
programmers can largely relieved of concerns about that kind of parallelism and,
for any given area of application, they may concentrate world-oriented parallelism
in that domain.

18

6 Programming via natural language

One of the strengths of the SP system is in the processing of natural language,
mentioned in Appendices and , and described in more detail in Wolff| [2013,
Section 8] and |Wolff] [2006a, Chapter 5].

There is clear potential in the SP system for developing human-level process-
ing of writing, and ultimately speech, but there will be some difficult hurdles to
overcome, probably requiring a two-pronged attack: working on problems in the
processing of natural language together with problems in the unsupervised learning
of syntactic knowledge, semantic knowledge, and syntactic/semantic associations
[Palade and Wolff, [2017, Sections 9 and 10].

If or when these problems are solved, there is potential for programming the
SP system using written or spoken natural language, in much the same way that
people can be given written or spoken instructions. However, achieving human
levels of understanding is an ambitious goal and is not likely to be realised soon.

7 Bringing ‘design’ closer to ‘implementation’

It has been established for some time that, in conventional development of soft-
ware, one should begin with a relatively abstract high-level design (which is often
represented graphically) and then translate that into a working program. There
seem to be three main reasons for this approach:

e With any kind of design, it is often useful to establish a relatively abstract
“big picture” before filling in details.

e For the kinds of reasons described in Section [it may be useful to disguise
the details of a program behind syntactic sugar that is more congenial for
programimers.

e Even with ‘high’ level programming languages such as C+-+, Python, or
Java, or ‘declarative’ systems such as Prolog, it is often necessary to pay
attention to the details of how the underlying machine will run a program,
details that are not relevant to the more abstract ‘design’ of the software,
with its focus on entities and processes that are significant for the user.

The SP system probably makes no difference to the first and second of the
above points, but it is likely to be helpful with the third. This is because, in the
manner of declarative programming systems, it will probably allow programmers
to specify ‘what’ computations are to be achieved, and to reduce or eliminate the
need to consider ‘how’ the computations should be done.

19

8 Possible reductions in the need for operations
like compiling or interpretation

At first sight, the SP system eliminates the need for anything like compiling or
interpretation. This is because it works entirely via searches for full or partial
matches between SP-patterns, or parts of SP-patterns, with corresponding unifi-
cations.

But it is likely that, in the development of the SP Machine, indexing will be
introduced to record the first match between a given SP-symbol and any other
SP-symbol, and thus speed up the later retrieval of the zero or more matching
partners of the given SP-symbol [Palade and Wolff, 2017, Section 3.4]. And it is
likely that similar measures will be introduced into the computer model for SP-
neural [Palade and Wolff, 2017, Section 13.2], a version of the SP Theory expressed
in terms of neurons and their interconnections.

Indexing of that kind is similar in some respects to the use of compiling or
interpretation in a conventional computing system. Hence it would be misleading
to suggest that the SP system would eliminate the need for such operations. But
there are potential gains in this area, especially if, at some later stage, it became
feasible to introduce very fast and highly-parallel searching for matches between
SP-patterns which may reduce or eliminate the need for indexing.

9 Verification

The SP system has potential to reduce the need for ‘verification’ of software—
meaning the process of checking that a software system meets its specifications—
and there is corresponding potential for improvements in the quality of software.
The main reasons for these potential benefits are:

e The potential of the system for automatic or semi-automatic creation of soft-
ware (Sections [and [3.2). To the extent that automatic or semi-automatic
creation of software is possible, it should reduce or eliminate human-induced
errors in software.

e Potential reductions in the sizes of software systems. The potential of the
system for reductions in the overall sizes of software systems (Section
means that there are likely to be fewer opportunities to introduce bugs into
software, and, probably, less searching would be required in the detection of
bugs via static analysis of software.

e Bringing ‘design’ closer to ‘\mplementation’. To the extent that ‘design’ and
‘implementation’ may be merged (Section[7)), and in particular to the extent

20

that SP software may concentrate on ‘what’ the user needs and reduce or
eliminate details of ‘how’ the underlying machine may meet those needs,
there is potential to reduce the numbers of bugs in programs.

10 Validation

In addition to its potential with verification, the SP system has potential to
strengthen the process of “validation” in software development—meaning the pro-
cess of checking that a software system fulfills its intended purpose.

As with verification, the potential of the SP system for the automatic or semi-
automatic creation of software means elimination or reduction of the kinds of
human error that may send a program off track.

Also, the potential of the SP system to bring ‘design’ and ‘implementation’
closer together (Section [7) can mean fewer opportunities for a program to drift
away from its original conception.

11 Seamless integration of ‘software’ with
‘database’

In the SP system, all kinds of knowledge are represented with arrays of atomic
SP-symbols in one or two dimensions (Appendix[A.1)), and all kinds of processing is
achieved via the matching and unification of SP-patterns. For these two reasons,
and because of the system’s potential for universal artificial intelligence (UAI)
(Appendix , there would be no distinction in the SP system between ‘software’
and ‘database’, as there is normally in conventional software engineering projects.

A potential benefit of this kind seamless integration of software and database
is elimination of awkward incompatibilities between different kinds of knowledge
and elimination of the need for translations where incompatibilities exist.

12 An overall simplification of computing appli-
cations

With the SP system, there is potential for an overall simplification of applications
compared with what is required with ordinary computers [Wolff] |2014b| Section
5].

In broad terms, this potential arises because of the way in which conventional
software contains often-repeated procedures for searching amongst data, and sim-
ilar ‘low level” operations needed to overcome shortcomings in conventional CPUs.

21

In an SP system, the ‘CPU’ is relatively complex but with fewer of the shortcom-
ings of conventional CPUs, so that that relative complexity is, probably, more than
offset by simplifications in software with data, as shown schematically in Figure 8]
That relative advantage is likely to grow, roughly in proportion to the numbers of
applications and their sizes.

Without “intelligence”

//
2 _Inptut +t_Softv1akre (oTtedn-reFleated Conventional
a |rcljsétr:c ions + knowledge) computer

New (input) + _
Old (knowledge) SP machine

,CPU

\
With “intelligence”

Figure 8: Schematic representations of a conventional computer and the proposed
SP machine, showing potential benefits in terms of simplification, as discussed in
the text. Adapted from Figure 4.7 in [Wolff| [2006a], with permission.

This kind of idea is not new. In the early days of databases, each database had
its own procedures for searching and for retrieval of information, and it had its own
user interface and procedures for printing, and so on. People soon realised that it
would make better sense to develop a general-purpose system for the management
of data, with a user interface and system for retrieval of data, and to load it with
different bodies of data according to need. There was a similar evolution in expert
systems, from bespoke systems to general-purpose ‘shells’.

22

13 Reducing the variety of formats and for-
malisms in computing

As noted in Section [11], the SP system has potential for universal artificial intel-
ligence (UAI). What this means in the SP programme of research, and how the
concept of a UAI differs from alternatives such as the concept of a universal Turing
machine, is discussed in Appendix [B]

If indeed this expectation is born out, and the evidence is strong, there is
clear potential for use of the SP Machine to clean up the curse of variety in the
thousands of different formats and formalisms which exist for the representation
of data, and the hundreds of different computer languages for describing how data
may be processed (Appendix |C]).

14 Version control

In a typical software engineering project, there is a need to keep track of the parts
and sub-parts of the developing program. At the same time, there is a need to keep
track of a hierarchy of versions and subversions. And, associated with each part or
version, there may be several different kinds of document, including a statement of
requirements, a high-level design, a low-level design, and notes. To avoid awkward
inconsistencies, these things should be smoothly integrated []

The SP system provides a neat solution to the problem of integrating a class-
inclusion hierarchy with a part-whole hierarchy, as described in|Wolff|[2013, Section
9.1] and [Wolff] [2006a), Section 6.4]] Although these sources do not demonstrate
the point, it appears that the SP system also provides for each version or part to
have one or more associated documents, as outlined above.

Also relevant to these issues is a brief discussion of how to maintain multiple
versions and parts of a document or web page in |Wolff] [2014b,, Section 6.10.3].

15 Technical debt

As noted in Wolft [2014b|, Section 6.6.6], the SP system has potential to reduce
or eliminate the problem of ‘technical debt’, meaning the way in which software

5The problem of integrating a class-inclusion hierarchy with a part-whole hierarchy—a
problem that arose in connection with the development of an “Integrated Project Support
Environment” (IPSE) when I was working as a software engineer with Praxis Systems ple—was
one of the main sources of inspiration for the development of the SP system.

5The solution also applies to class-inclusion heterarchies, meaning a class-inclusion
hierarchy with cross-classification.

23

systems can become progressively more unmanageable with the passage of time,
owing to an accumulation of postponed or abandoned maintenance tasks, or a
progressive deterioration in the design quality or maintainability of the software
via the repeated application of ‘fixes’ in response to short-terms concerns, without
sufficient attention to their global and long-term effects.

The SP system may reduce or eliminate the problem of technical debt by
streamlining the process of software development via automatic or semi-automatic
automation of software development, by reducing the gap between design and
implementation, by streamlining processes of verification and validation, and other
facilitations described in preceding sections.

16 Conclusion

This paper describes a novel approach to software engineering derived from the
SP Theory of Intelligence and its realisation in the SP Computer Model. 1t is
anticipated that the SP Theory and the SP Computer Model, together, will be the
basis for the development of an industrial-strength SP Machine. And a mature
version of the SP Machine is seen as the likely vehicle for software engineering as
described in this paper.

Although concepts associated with software engineering may seem far removed
from the structure and workings of the SP system, many of those concepts map
quite neatly into elements of the SP system (Section [2).

Potential benefits of this new approach to software engineering include:

e The automation of semi-automation of software development. Taking ad-
vantage of the SP system’s strengths and potential in unsupervised learning,
there is clear potential for the automation or semi-automation of software
development.

e Non-automatic programming of the SP system. Where it is not possible to
create software automatically, or when human assistance is needed, there is
clear potential for programming the SP system in much the same way as a
conventional system.

e Programming via natural language. An ambitious goal, which is not likely to
be realised soon, is to bring the SP system to a point where it has human
levels of understanding and production of natural language, so that the SP
system may be ‘programmed’ in much the same way that people can be given
written or spoken instructions.

e Reducing or eliminating the distinction between ‘design’ and ‘“@mplementa-
tion’. By contrast with conventional systems, there is potential in the SP

24

system to reduce or eliminate the distinction between ‘design’ and ‘imple-
mentation’. This is because aspects of software design, such as structured
programming and object-oriented programming, may be expressed directly
with SP-patterns.

Reducing or eliminating operations like compiling or interpretation. The
SP system has potential to reduce or eliminate operations like compiling or
interpretation. This is because the system works directly on ‘source’ code
by searching for patterns or parts of patterns that match each other. But
it seems likely that indexing of matches between SP-symbols will speed up
the system, and the compiling of such an index may be seen to be similar to
what is entailed in conventional compiling or interpretation.

Reducing or eliminating the need for verification of software. The need for
verification of SP software may be reduced or eliminated: via the potential
of the SP system for the automatic or semi-automatic creation of software;
because compression of software is likely to reduce the opportunities for bugs
to be introduced; and because there is likely to be a reduced need to bridge
the divide between design and implementation.

Reducing or eliminating the need for validation of software. The SP system
also has potential to help ensure that software fulfills its intended purpose.
This is because of the system’s potential for automatic or semi-automatic
creation of software and because of the way in which design and implemen-
tation may be brought closer together or merged.

No formal distinction between program and database. Unlike conventional
systems, where ‘programs’ and ‘databases’ are distinguished quite sharply,
there is no formal distinction of that kind in the SP system because all kinds
of knowledge are expressed with SP-patterns. This can mean useful simplifi-
cations on occasion, and it can reduce or remove awkward incompatibilities.

Potential for an overall ssmplification of computing applications. Despite the
fact that the processing ‘core’ of the SP system is, almost certainly, more
complex than the CPU of a conventional computer, there is potential with
the SP system for an overall simplification of computing applications, when
hardware and software are considered together.

Potential for substantial reductions in the number of types of data file and
the number of computer languages. Because of the SP system’s potential as a
universal artificial intelligence (UAT), there is potential to reduce the many
thousands of types of data file to one, and to reduce the hundreds of different
computer languages to one.

25

o Allowing programmers to concentrate on ‘world-oriented’ parallelism, without
worries about parallelism to speed up processing. With a mature version of
the SP Machine, it is intended that parallelism that is designed only for
the purpose of speeding up processing will be built into the system, so that
programmers need not worry about it. They would be free to concentrate
on parallelism in the real world, perhaps with assistance from unsupervised
learning.

e Benefits for version control. The SP system has potential to help organise
all the knowledge associated with any given software development project,
with provision for: the representation of versions of the software; the repre-
sentation of parts and sub-parts of the software; the seamless integration of
version hierarchies with part-whole hierarchies; and, for any given version or
part, the representation of the one or more kinds of information associated
with that element. It provides for cross-classification where that is required.

e Reducing technical debt. The potential of the SP system to increase the
efficiency of software development can mean reductions in ‘technical debt’,
meaning the way in which software systems can become progressively more
unmanageable with the passage of time, owing to short-term fixes and the
postponement or abandonment of maintenance tasks.

26

Appendices
A Outline of the SP system

To help ensure that this paper is free standing, the SP system is described here in
outline with enough detail to make the rest of the paper intelligible.

The SP Theory of Intelligence and its realisation in the SP Computer Model
is the product of a unique extended programme of research aiming to simplify
and integrate observations and concepts across artificial intelligence, mainstream
computing, mathematics, and human learning, perception, and cognition, with
information compression as a unifying theme.[]

The latest version of the SP Computer Model is SP71. Details of
where the source code and associated files may be obtained are here:
www.cognitionresearch.org/sp.htm#ARCHIVING.

It is envisaged that the SP Computer Model will provide the basis for the
development of an industrial-strength SP Machine, described briefly in Appendix
[A.5 below.

The SP system is described most fully in \Wolff [2006a] and quite fully but more
briefly in Wolff] [2013]. Other publications from this programme of research are
detailed, many with download links, on www.cognitionresearch.org/sp.htm.

A.1 Overview

The SP Theory is conceived as a brain-like system which receives New information
via its senses and stores some or all of it in compressed form as Old information,
as shown schematically in Figure [0

Both New and Old information are expressed as arrays of atomic SP-symbols
in one or two dimensions called SP-patterns. To date, the SP Computer Model
works only with one-dimensional SP-patterns but it is envisaged that it will be
generalised to work with two-dimensional SP-patterns.

In this context, an ‘SP-symbol’ is simply a mark that can be matched with any
other SP-symbol to determine whether they are the same or different. No other
result is permitted. Apart from some distinctions needed for the internal workings
of the SP system, SP-symbols do not have meanings such as ‘plus’ ("+’), ‘multiply’

"This ambitious objective is in keeping with Occam’s Razor. And as a means of solving the
exceptionally difficult problem of developing general, human-level artificial intelligence, it is in
keeping with “If a problem cannot be solved, enlarge it”, attributed to President Eisenhower; it
chimes with Allen Newell’s exhortation that psychologists should work to understand “a
genuine slab of human behaviour” [Newell, [1973| p. 303] and his work on Unified Theories of
Cognition [Newell, [1990]; and it is in keeping with the quest for “Artificial General Intelligence”
(Wikipedia, bit.ly/1ZxCQPo, retrieved 2017-08-15).

27

http://www.cognitionresearch.org/sp.htm#ARCHIVING
http://www.cognitionresearch.org/sp.htm
http://bit.ly/1ZxCQPo

oid

(compressed)
(Negemd

New
(uncompressed)

Figure 9: Schematic representation of the SP system from an ‘input’ perspective.
Reproduced with permission from Figure 1 in [Wolff [2013].

(‘+7), and so on. Any meaning associated with an SP-symbol derives entirely from
other SP-symbols with which it is associated.

A.2 Multiple sequemce alignments in bioinformatics

At the heart of the SP system is information compression via the matching and
unification of patterns (ICMUP). More specifically, a central part of the SP system
is a concept of SP-multiple-alignment, borrowed and adapted from the concept of
‘multiple sequence alignment’ in bioinformatics.

The original concept is an arrangement of two or more DNA sequences or
sequences of amino acid residues, in rows or columns, with judicious ‘stretching’ of
selected sequences in a computer to bring symbols that match each other from row
to row, as many as possible, into line. An example of such a multiple sequennce
alignment of five DNA sequences is shown in Figure [10]

A.3 SP-multiple-alignments in the SP system

In the SP system, multiple alignments are sufficiently different from those in bioin-
formatics for them to be given a different name: SP—multiple—alignmentsﬁ The
distinctive features of an SP-multiple-alignment are:

8This name has been introduced fairly recently to make clear that there are important
differences between the two kinds of multiple alignment.

28

GGA G CAGGGAGGA TG G GGA
L1 I FErr e [[
GG|G GCCCAGGGAGGA | GGCG GGA
L1 I T A IO I [I
AIlGACTGCCCAGGGI|IGGIGCTG GAI|GA
L1 O A I O I
GGAA | AGGGAGGA | AG G GGA
L FErrrr I [
GGCA CAGGGAGG C G G GGA

Figure 10: A ‘good’ multiple sequence alignment amongst five DNA sequences.
Reproduced with permission from Figure 3.1 in [Wolff [2006a].

e One New SP-pattern is shown in row 0 (or column 0 when SP-patterns are
arranged in columns)[]

e The Old SP-patterns are shown in the remaining rows (or columns), one
SP-pattern per row (or column).

e As with the original concept of multiple alignment, the aim in building multi-
ple alignments is to bring matching SP-symbols into alignment. More specif-
ically in SP-multiple-alignments, the aim is to create or discover one or more
‘good’ SP-multiple-alignments that allow the New SP-pattern to be encoded
economically in terms of the Old SP-patterns. How this encoding is done is
described in |Wolff| [2006a, Section 2.5] and in |Wolff| [2013] Section 4.1].

An example of an SP-multiple-alignment is shown in Figure [11]

In this SP-multiple-alignment, a sentence is shown as a New SP-pattern in
row 0. The remaining rows show Old SP-patterns, one per row, representing
grammatical structures including words. The overall effect is to analyse (parse)
the sentence into its parts and subparts. The SP-pattern in row 8 shows the
association between the plural subject of the sentence, marked with the SP-symbol
‘Np’, and the plural main verb, marked with the SP-symbol ‘Vp’.

Because, with most ordinary multiple sequence alignments or with SP-multiple-
alignments, there is an astronomically large number of ways in which sequences
may be aligned, discovering good multiple alignments means the use of heuristic
methods: building each multiple alignment in stages and discarding all but the
best few multiple alignment at the end of each stage. With this kind of technique
it is normally possible to find multiple alignments that are reasonably good but
it is not normally possible to guarantee that the best possible multiple alignment
has been found.

The concept of SP-multiple-alignment has proved to be extraordinarily power-
ful: in aspects of intelligence (Appendix [B.1]), in the representation of knowledge

9Sometimes there is more than one New SP-pattern in row 0 or column 0.

29

0 two kitten s play 0
(N [O | [
1 (N Nr 5kitten #Nr | [1
(N | ([[
2 [N Np Nr #Nr s #N [2
(I Il | [
3 DDp4two#D | | | [3
| [| [
4 NP D #D N | #N #NP [4
| | | [
5 | | | Vr1play #r 5
| I I | |
6 | I | VVp Vr #Vr #V 6
| | I |
7 S Num NP | #NP V| #V #S 7
| | | |
8 Num PL ; Np Vp 8

Figure 11: The best SP-multiple-alignment created by the SP Computer Model
with a store of Old SP-patterns like those in rows 1 to 8 (representing grammatical
structures, including words) and a New SP-pattern (representing a sentence to be
parsed) shown in row 0. Adapted with permission from Figures 1 in Wolff [2007].

(Appendix , and in the seamless integration of diverse aspects of intelligence
and diverse kinds of knowledge in any combination (Appendix. It could prove
to be as significant for an understanding of intelligence as is DNA for biological
sciences: it could be the ‘double helix’ of intelligence.

A.4 Unsupervised learning

Unsupervised learning in the SP system is described quite fully in Wolff| [2006a,
Sections 3.9 and 9.2]. The aim with unsupervised learning in the SP system is,
for a given set of New SP-patterns, to create one or two grammars—meaning
collections of Old SP-patterns—that are effective at encoding the given set of New
SP-patterns in an economical manner.

The process of creating good grammars entails the creation of Old SP-patterns,
partly by the direct assimilation of New SP-patterns and partly via the building
of SP-multiple-alignments—which provides a means of creating Old SP-patterns
and via the splitting of New SP-patterns and the splitting of pre-existing Old
SP-patterns.

The building of SP-multiple-alignments also provides a means of evaluating
candidate grammars in terms of their effectiveness at encoding the given set of
New SP-patterns in an economical manner.

As with the building of SP-multiple-alignments, the creation of good gram-
mars requires heuristic search through the space of alternative grammars: creating
grammars in stages and discarding low-scoring grammars at the end of each stage.

The SP Computer Model can discover plausible grammars from samples of
English-like artificial languages. This includes the discovery of segmental struc-

30

tures, classes of structure, and abstract SP-patterns.

At present, the program has two main weaknesses outlined in [Wolff [2013,
Section 3.3]: it does not learn intermediate levels of abstraction or discontinuous
dependencies in data. However, it appears that these problems are soluble, and
it seems likely that their solution would greatly enhance the performance of the
system in the learning of diverse kinds of knowledge.

To ensure that unsupervised learning in the SP system is robust and useful
across a wide range of different kinds of data, it will be necessary for the system,
including its procedures for unsupervised learning, to have been generalised for
two-dimensional SP-patterns as well as one-dimensional SP-patterns (Appendix

).

A.5 The SP Machine

As mentioned earlier, it is envisaged that an industrial-strength SP Machine will
be developed from the SP Theory and the SP Computer Model [Palade and Wolff,
2017). Initially, this will be created as a high-parallel software virtual machine,
hosted on an existing high-performance computer. An interesting possibility is
to develop the SP Machine as a software virtual machine that is driven by the
high-parallel search processes in any of the leading internet search engines.

Later, there may be a case for developing new hardware for the SP Machine, to
take advantage of optimisations that may be achieved by tailoring the hardware to
the characteristics of the SP system. In particular, there is potential for substantial
gains in efficiency and savings in energy compared with conventional computers
by taking advantage of statistical information that is gathered by the SP system
as a by-product of how it works (Wolff] [2014¢|, Section IX], Wolff| [2014a}, Section
111}, Palade and Wolff] [2017, Section 14]).

A schematic representation of how the SP Machine may be developed and
applied is shown in Figure [12]

A.6 Distinctive features and advantages of the SP system

Distinctive features of the SP system and its main advantages compared with
Al-related alternatives are described in |Wolff] [2016a]. In particular, Section V
of that paper describes thirteen problems with deep learning in artificial neural
networks and how, with the SP system, those problems may be overcome. The SP
system also provides a comprehensive solution to a fourteenth problem with deep
learning— “catastrophic forgetting”—meaning the way in which new learning in a

31

SP theory and SP computer model

High parallel SP MACHIN Open source
In the cloud Good user interface

Representation of knowledge Natural language processing
Several kinds of reasoning Planning & problem solving

Information compression Unsupervised learning

Pattern recognition Information retrieval

\ /

MANY APPLICATIONS

Figure 12: Schematic representation of the development and application of the SP
machine. Reproduced from Figure 2 in [2013], with permission.

deep learning system wipes out old memories.ﬂ

The main strengths of the SP system are in its versatility in the representation
of several kinds of knowledge (Appendix , its versatility in several aspects of
intelligence (Appendix , and because these things all flow from one relatively
simple framework—the SP-multiple-alignment concept—they may work together
seamlessly in any combination (Appendix . That kind of seamless integration
appears to be essential in any system that aspires to general human-level artificial
intelligence.

A.7 Potential benefits and applications of the SP system

Potential benefits and applications of the SP system are described in sev-
eral peer-reviewed papers, copies of which may be obtained via links from
www.cognitionresearch.org/sp.htm: the SP system may help to solve nine prob-
lems with big data , ; it may help in the development of human-like
intelligence in autonomous robots [Wolff, 2014a]; the SP system may help in the
understanding of human vision and in the development of computer vision [Wolff,
2014d]; it may function as a database system with intelligence , ; it

10A solution has been proposed in Kirkpatrick [2017] but it appears to be partial, and it is
unlikely to be satisfactory in the long run.

32

http://www.cognitionresearch.org/sp.htm

may assist medical practitioners in medical diagnosis [Wolff] 2006b[; it provides
insights into commonsense reasoning [Wolff, 2016b|; and it has several other po-
tential benefits and applications described in Wolff| [2014b]. And, of course, this
paper describes how the SP system may be applied in software engineering.

B Towards universal artificial intelligence (UAI)

In Sections [11] and [13] it has been noted that the SP system has potential for
universal artificial intelligence (UAI). The purpose of this appendix is to describe
what this means and to distinguish the concept from alternatives such as a ‘uni-
versal Turing machine’ (UTM) [Turing, |1936].

The idea that something may have UAI or be a UAI derives from the concept
of a universal framework for the representation and processing of diverse kinds of
knowledge (UFK) [Wolff, 2014c, Section III] but gives weight to the concept of
(human-like) ‘intelligence’.

The idea that the SP system has potential for UAI may at first sight seem to be
redundant since it has been recognised for some time that all kinds of computing
may be understood in terms of the workings of a UTM or ideas which are recognised
as equivalent such as Post’s ‘canonical system’ [Post|, [1943], or Church’s ‘lambda
calculus’ [Church, |1941], or indeed the many conventional computers that are in
use today. For the sake of brevity these will be referred to collectively as CCs,
short for ‘conventional computers’.

The suggestion here is that, by definition: 1) a UAI should demonstrate human-
like intelligence, 2) it should be able to represent any kind of knowledge, 3) it should
provide for any kind of processing within the limits set by computational complex-
ity, 4) it should facilitate the seamless integration of diverse kinds of knowledge
and diverse kinds of processing in any combination, and 5) it should do these
things efficiently. In short, a UAI is a Turing-equivalent device with human-like
intelligence.

The potential of the SP system in areas 1), 2), 4), and 5), and how it differs
from a CC, is described in the following four subsections.

B.1 Versatility in aspects of intelligence via the powerful
concept of SP-multiple-alignment
As noted in Appendix [A.3] the concept of SP-multiple-alignment has the potential

to be the ‘double helix’ of intelligence, the key to the versatility of the SP system
in aspects of intelligence, summarised here:

e Unsupervised learning via the processing of SP-multiple-alignments. The SP
system has strengths and potential in ‘unsupervised’ learning of new knowl-

33

edge, meaning learning without the assistance of a ‘teacher’ or anything
equivalent. As outlined in Appendix unsupervised learning is achieved
in the SP system via the processing of SP-multiple-alignments to create Old
SP-patterns, directly and indirectly, from New SP-patterns, and to build col-
lections of Old SP-patterns, called grammars which are relatively effective in
the compression of New SP-patterns (Wolff [2006a, Chapter 9], Wolff [2013|
Section 5]).

Unsupervised learning appears to be the most fundamental form of learning,
with potential as a foundation for other forms of learning such as reinforce-
ment learning, supervised learning, learning by imitation, and learning by
being told.

How other aspects of intelligence flow from the building of SP-multiple-
alignments. By contrast with the way in which the SP system models
unsupervised learning via the processing of already-constructed ‘good’ SP-
multiple-alignments, other aspects of intelligence derive from the building of
SP-multiple-alignments (Appendix . These other aspects of intelligence
include: analysis and production of natural language; pattern recognition
that is robust in the face of errors in data; pattern recognition at multiple
levels of abstraction; computer vision [Wolff] |2014d]; best-match and seman-
tic kinds of information retrieval; several kinds of reasoning (more under the
next bullet point); planning; and problem solving (Wolff [2006a, Chapters 5
to 8], [Wolff] [2013, Sections 5 to 14]).

How several kinds of reasoning flow from the building of SP-multiple-
alignments. In scientific research and in the applications of science, what is
potentially one of the most useful attributes of the SP system is its versatility
in reasoning, described in [Wolff| [2006a, Chapter 7] and Wolff] [2013, Section
10]. Strengths of the SP system in reasoning, derived from the building of
SP-multiple-alignments, include: one-step ‘deductive’ reasoning; chains of
reasoning; abductive reasoning; reasoning with probabilistic networks and
trees; reasoning with ‘rules’; nonmonotonic reasoning and reasoning with
default values; Bayesian reasoning with ‘explaining away’; causal reasoning;
reasoning that is not supported by evidence; the already-mentioned inheri-
tance of attributes in class hierarchies; and inheritance of contexts in part-
whole hierarchies. There is also potential for spatial reasoning [Wolff, 2014a,
Section IV-F.1], and for what-if reasoning [Wolff, 2014a;, Section IV-F.2].

34

B.1.1 Generality in artificial intelligence

The close connection that is known to exist between information compression and
concepts of prediction and probability [Li and Vitdnyi, 2014, Solomonoft, (1964,
1997|, the central role of information compression in the SP-multiple-alignment
framework (Appendix[A.3)), and the versatility of the SP-multiple-alignment frame-
work in the representation of knowledge (Appendix and aspects of intelligence
(Appendix [B.1]), suggest that SP-multiple-alignment may prove to be the key to
the development of general, human-like artificial intelligence.

B.1.2 What about things that the SP system can’t do, except with
some kind of ‘programming’ or ‘training’?

In considering the possibility that the SP system might be developed into a UAI
is that, while the mechanisms for the building and processing of SP-multiple-
alignments, yield several different Al-related capabilities, described above, there
are lots of things that a newly-created system, without any ‘experience’, would
not be able to do. It would not, for example, have any knowledge of how to hold a
pencil, how to climb a ladder, how to negotiate an international treaty, and so on.

Is it reasonable to suggest that such a system might be a UAI when there there
are so many shortcomings in what it can do? The answer, of course, is “Yes, such a
system can be ‘universal’ in exactly the same way that a universal Turing machine,
or a newborn baby, is universal”, because in all three cases there is the potential to
do a wide variety of different things, provided that it has appropriate knowledge,
acquired via learning (babies and Al systems) or programming (computers).

Since procedures or processes are forms of knowledge, and since we have reason
to believe that the SP system may accommodate any kind of knowledge (Appendix
B.2), it is reasonable to believe that the SP system may in principle, with the
right knowledge, do any kind of computation that is not ruled out by over-large
computational complexity.

B.1.3 How the SP system differs from a CC in aspects of intelligence

With regard to the modelling of human-like intelligence, the main attraction of the
SP system compared with CCs, is its versatility in diverse aspects of intelligence
(Appendix and its potential for the seamless integration of diverse aspects of
intelligence and diverse kinds of knowledge, in any combination (Appendix [B.3)).

Unless a CC has been specifically programmed with SP capabilities—in which
case it would be an SP system, not a CC—it would be lacking in the above-
mentioned capabilities, and, arguably, for that reason, is likely to fall short of
general human-like artificial intelligence.

35

B.2 Versatility in the representation of knowledge via the
powerful concept of SP-multiple-alignment

The SP system has the potential for UAI because, although SP-patterns are not
very expressive in themselves, they come to life in the SP-multiple-alignment
framework. Within that framework, they may serve in the representation of
several different kinds of knowledge, including: the syntax of natural languages;
class-inclusion hierarchies (with or without cross classification); part-whole hier-
archies; discrimination networks and trees; if-then rules; entity-relationship struc-
tures |Wolff] 2007, Sections 3 and 4]; relational tuples (ibid., Section 3), and con-
cepts in mathematics, logic, and computing, such as ‘function’, ‘variable’, ‘value’,
‘set’, and ‘type definition’ (Wolff [2006a, Chapter 10], Wolff [2014b| Section 6.6.1]).

With the addition of two-dimensional SP-patterns to the SP Computer Model,
there is potential for the SP system to represent such things as: photographs;
diagrams; structures in three dimensions [Wolff] [2014d} Section 6.1 and 6,2]; and
procedures that work in parallel [Wolff, 2014a; Sections V-G, V-H, and V-I, and
Appendix C].

B.2.1 Generality in the representation of knowledge

The generality of information compression as a means of representing knowledge in
a succinct manner, the central role of information compression in the SP-multiple-
alignment framework, and the versatility of that framework in the representation
of knowledge, suggest that SP-multiple-alignment may prove to be a means of
representing any kind of knowledge, as would be needed if the SP system were to

be a UAL

B.2.2 How the SP system differs from a CC in the representation of
knowledge

With regard to the representation of knowledge, attractions of the SP system
compared with CCs are:

e The SP system provides for the succinct representation of knowledge via
ICMUP and the powerful concept of SP-multiple-alignment. By contrast,
information compression, ICMUP, and SP-multiple-alignments are barely
recognised as guides or principles for the representation of knowledge in

CCsH]

HFor example, none of these ideas is mentioned in “Knowledge representation and
reasoning”, Wikipedia, bit.ly /2fmKVtP, retrieved 2017-08-07.

36

http://bit.ly/2fmKVtP

e The versatility of the SP system in the representation of knowledge is
combined with some constraint—knowledge must be represented with SP-
patterns and processed via the building and manipulation of SP-multiple-
alignments (Appendix —and that constraint seems to be largely respon-
sible for how the system facilitates the seamless integration of different kinds
of knowledge (Appendix [B.3)).

By contrast, the representation of knowledge in a CC is a free-for-all: any
kind of structure that may be represented with arrays Os and 1s is accepted.
This relative lack of discipline seems to be largely responsible for the excessive
number of formats and formalisms in computing today (Appendix and
the many incompatibilities that exist amongst computer applications today.

The need for some discipline in how computing is done is not a new idea. In
the early days of computing by machine, there was much ‘spaghetti programming’
with the infamous “goto” statement, leading to the creation of programs that were
difficult to understand and to maintain. This problem was largely solved by the
introduction of ‘structured programming’ (see, for example, |Jackson| [1975]). Later,
it became apparent that there could be more gains in the comprehensibility and
maintainability of software via the introduction of ‘object-oriented’ programming
and design, modelling software on world-oriented objects and classes of object.

B.3 Seamless integration of diverse kinds of knowledge and
diverse aspects of intelligence

In connection with the potential of the SP system as a UAI, an important third
feature of the system, alongside its versatility in aspects of intelligence and its
versatility in the representation of knowledge, is that there is clear potential for
the SP system to provide seamless integration of diverse kinds of knowledge and
diverse aspects of intelligence, in any combination. This is because diverse kinds
of knowledge and diverse aspects of intelligence all flow from a single coherent and
relatively simple source: SP-patterns within the SP-multiple-alignment framework.

In this respect, there is a sharp contrast between the SP system and the ma-
jority of other AI systems, which are either narrowly specialised for one or two
functions or, if they aspire to be more general, are collections or kluges of different
functions, with little or no integration/?

12 Although Allen Newell called for the development of Unified Theories of Cognition
[Newell, 1990] [1992], and researchers in ‘Artificial General Intelligence’ are aiming for a similar
kind of integration in Al, it appears that none of the resulting systems are fully integrated:
“We have not discovered any one algorithm or approach capable of yielding the emergence of
[general intelligence].” |Goertzell 2012, p. 1].

37

This point is important because it appears that seamless integration of diverse
kinds of knowledge and diverse aspects of intelligence, in any combination, are
essential pre-requisites for human levels of fluidity, versatility and adaptability in
intelligence.

Figure [13|shows schematically how the SP system, with SP-multiple-alignment
centre stage, exhibits versatility and integration.

Unsupervised learning

Several kinds of reasoning:
deductive; abductive; chains of reasoning;
probabilistic networks and trees; with ‘rules’;
nonmonotonic; Bayesian;
causal; inheritance of
attributes; with
potential for

Pattern recognition:
robust against
errors in data;

more. SP- at multiple levels
mu|tip|e- of abstraction.
Information .
retrieval: allg nment Computer vision
best-match scene analysis

and ‘semantic’. and more.

Seamless integration of diverse kinds of
intelligence and knowledge, in any
combination.

Analysis and production
of natural language

Figure 13: A schematic representation of versatility and integration in the SP
system, with SP-multiple-alignment centre stage.

38

B.4 Efficiency

As noted near the beginning of Appendix [B] the fifth suggested feature of a UAI
is that it should in some sense be relatively ‘efficient” in its ability to represent
diverse kinds of knowledge, to support diverse aspects of intelligence, and to pro-
vide for seamless integration of diverse kinds of knowledge and diverse aspects of
intelligence, in any combination. This section expands on that idea.

It is anticipated that, when the SP system is more fully developed, it is likely
to be more ‘efficient’ than a CC, largely because it contains well-developed mecha-
nisms for compression of information via the matching and unification of patterns
(ICMUP), expressed via the powerful concept of SP-multiple-alignment. This pro-
vides the key to the SP system’s versatility in the representation of diverse kinds
of knowledge (Appendix , its versatility in aspects of intelligence (Appendix
, and its potential for the seamless integration of diverse kinds of knowledge
and diverse aspects of intelligence in any combination (Appendix [B.3)).

Although the computational ‘core’ of a CC is likely to be smaller and simpler
than in the SP Machine, the SP system has potential for relative advantages like
these:

o More intelligence. A CC is likely to fall short of the SP system in modelling
the fluidity, versatility, and adaptability of human intelligence—unless the
CC has been programmed with all the features of the SP system, in which
case it would be an SP system and not a CC.

e Economies in software. Because of the pervasive influence of information
compression in the SP system, its ‘software’ is likely to be relatively com-
pact. By contrast, the absence of well-developed mechanisms for ICMUP
in the core of the CC is likely to mean the need for such mechanisms to be
repeatedly recreated in different guises and in different applications. This
can mean software with a bloating that more than offsets the small size of
the central processor. See also Section [12]

e Economies in data. Unlike a CC, the SP system is designed to compress its
data via unsupervised learning. This would normally mean that data for the
SP Machine would, after compression, be substantially smaller than data for
a CC.

e Dramatic reductions in the variety of formats and formalisms. As described
in Appendix [C] an enormous variety of formats and formalisms is associ-
ated with conventional systems. The SP Machine has potential for dramatic
simplifications in this area.

39

e FEfficiency in processing. Although CCs, compared with human brains, are
extraordinarily effective in such arithmetic tasks as adding up numbers or
finding square roots, the advent of big data is creating demands that exceed
the capabilities of the most powerful supercomputers [Kelly and Hamm), [2013|
p. 9]. But by exploiting statistical information that the SP system gathers as
a by-product of how it works, there is potential in the system for substantial
gains in the energy efficiency of its computations [Wolff] 2014c|, Sections VIII
and IX].

With regard to the second and third bullet points, all knowledge in the SP
system reflects the world outside the system. This may include knowledge of
entities and their interrelations—the kind of knowledge that would conventionally
be called ‘data™—and knowledge of world-oriented processes or procedures—the
kind of knowledge that might conventionally be called ‘software’.

All such knowledge is stored as SP-patterns without any formal distinctions
amongst them. But in a CC, stored knowledge may be seen to comprise two
components:

e Knowledge of the system’s environment, as in the SP Machine. This knowl-
edge may be contained in external ‘databases’ and also in ‘software’.

e Knowledge of processes or procedures, contained largely in ‘software’, needed
to overcome the deficiencies of the core model. This kind of knowledge, such
as knowledge of how to search for matching SP-patterns, may be recreated
many times in many different guises and in many different applications.

C The curse of variety in computing and what
can be done about it

Wikipedia lists nearly 4,000 different ‘extensions’ for computer files, representing
a distinct type of file]®] A scan of the list suggests that most of these types
of file are designed as input for this or that application. Each application is
severely restricted in what kinds of file it can process—it is often only one—
and incompatibilities are rife, even within one area of application such as word
processing or the processing of images. And a program that will run on one
operating system will typically not run on any other, so normally a separate version
of each program is needed for each operating system, and, with some exceptions,
each version needs its own kind of data file.

13Details may be seen in “List of filename extensions”, Wikipedia, bit.ly/28LaT4v, retrieved
2016-08-16.

40

http://bit.ly/28LaT4v

This kind of variety may also be found within individual files. In a Microsoft
Word file, for example, there may be text in several different fonts and sizes,
information generated by the “track changes” system, equations, WordArt, hyper-
links, bookmarks, cross-references, Clip Art, pre-defined shapes, SmartArt graph-
ics, headers and footers, embedded Flash videos, images created by drawing tools,
tables, and imported images in any of several formats including JPEG, PNG,
Windows Metafile, and many more.

Excess variety is also alive and well amongst computer languages. Several
hundred high-level programming languages are listed by Wikipedia, plus large
numbers of assembly languages, machine languages, mark-up languages, style-
sheet languages, query languages, modelling languages, and more[”]

C.1 Problems arising from excessive variety in computing

Excessive variety in computing is so familiar that we think of it as normal—part of
the ‘wallpaper’ of computing. But, although some may see that variety as evidence
of vitality in computing, it is probably more accurate to see it as a symptom of a
deep malaise in computing as it is today.

Much of this excessive variety is quite arbitrary, without any real justification,
and the source of significant problems in computing such as:

e Bit rot. The first of these, bit rot, is when software or data or both be-
come unusable because technologies have moved on. Vint Cerf of Google has
warned that the 21st century could become a second “Dark Age” because
so much data is now kept in digital format, and that future generations
would struggle to understand our society because technology is advancing so
quickly that old files will be inaccessible. See, for example, “Google’s Vint
Cerf warns of ‘digital Dark Age’”, BBC News, 2015-02-13, bbc.in/1D3pemp.

o Difficulties in extracting value from big data. With big data—the humongous
quantities of information that now flow from industry, commerce, science,
and so on—excessive variety in formalisms and formats for knowledge and
in how knowledge may be processed is one of several problems that make
it difficult or impossible to obtain more than a small fraction of the value
in those floods of data [Kelly and Hamm), 2013, |[National Research Council,
2013]. Most kinds of processing—reasoning, pattern recognition, planning,
and so on—will be more complex and less efficient than it needs to be [Wolf,

“4There is more information in “List of programming languages”, Wikipedia,
bit.ly/1IGTWO05W, retrieved 2016-08-16; and also in “Computer language” and links from
there, Wikipedia, bit.ly/2aZ2kag, retrieved 2016-08-17.

41

http://bbc.in/1D3pemp
http://bit.ly/1GTW05W
http://bit.ly/2aZ2kag

2014c|, Section III]. In particular, excess variety is likely to be a major handi-
cap for data mining—the discovery of significant SP-patterns and structures
in big data [Wolff] 2014c| Section IV-B].

e [nefficiencies in the development of software. Excessive variety in computing
also means inefficiencies in the labour-intensive and correspondingly expen-
sive process of developing software and the difficulty of reducing or eliminat-
ing bugs in software.

o Safety and security. And excess variety in computing means potentially
serious consequences for such things as the safety of systems that depend
on computers and software, and the security of computer systems. With
regard to cybersecurity, Mike Walker, head of the Cyber Grand Challenge
at DARPA, has said that it counts as a grand challenge because of, inter
alia, the sheer complexity of modern software. A relevant news report is
“Can machines keep us safe from cyber-attack?”, BBC' News, 2016-08-02,
bbc.in/2aL.GwOu.

C.2 A potential solution to the problem of excessive vari-
ety

The SP system provides a potential solution to the kinds of problems described in
Appendix [C.1] It arises from the following three features of the SP system:

o Versatility of the SP system in the representation of knowledge. The SP
system has already-demonstrated versatility in the representation of diverse
kinds of knowledge (Appendix , with reasons to think that it may serve
in the representation of any kind of knowledge (Appendix .

o Versatility of the SP system in aspects of intelligence. The SP system has
already-demonstrated versatility in aspects of intelligence (Appendix ,
with reasons to think that it provides a relatively firm foundation for the
development of general, human-like artificial intelligence (Appendix .

e Potential of the SP system to perform any kind of computable process or
procedure. As described in Appendix[B.1.2] the SP system has potential, via
learning or programming, for any kind of computation that is not ruled out
by problems with computational complexity.

An implication of the foregoing is that, instead of the great variety of kinds of
input file for programs that prevails in computing today, we need only one: a type
of computing file that contains SP-patterns, as described in Appendix [A.T]

42

http://bbc.in/2aLGwOu

In a similar way, there is potential to replace all the many different computer
languages with one language composed entirely of SP-patterns to be processed by
the SP Machine.

A possible qualification to the idea that there might be only type of data file
and one type of computer language is that, in both cases, users may wish to
create sub-types of data file and sub-types of computer language by incorporating
domain-specific knowledge in any given sub-type. For example, information about
physics might be incorporated in a special-purpose language for use by physicists,
and information about finance might be incorporated in a special-purpose language
for that domain.

References

F. Attneave. Some informational aspects of visual perception. Psychological Re-
view, 61:183-193, 1954.

H. B. Barlow. Sensory mechanisms, the reduction of redundancy, and intelligence.
In HMSO, editor, The Mechanisation of Thought Processes, pages 535-559. Her
Majesty’s Stationery Office, London, 1959.

H. B. Barlow. Trigger features, adaptation and economy of impulses. In K. N.
Leibovic, editor, Information Processes in the Nervous System, pages 209-230.
Springer, New York, 1969.

G. M. Birtwistle, O-J Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Stu-
dentlitteratur, Lund, 1973.

A. Church. The Calculi of Lamda-Conversion, volume 6 of Annals of Mathematical
Studies. Princeton University Press, Princeton, 1941.

B. Goertzel. Cogprime: an integrative architecture for embodied artificial gen-
eral intelligence. Technical report, The Open Cognition Project, 2012. PDF:
bit.ly /1Zn0qfF, 2012-10-02.

M. A. Jackson. Principles of Program Design. Academic Press, New York, 1975.

J. E. Kelly and S. Hamm. Smart machines: IBM’s Watson and the era of cognitive
computing. Columbia University Press, New York, Kindle edition, 2013.

J. Kirkpatrick. Overcoming catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences of the United States of America, 114(13):
3521-3526, 2017.

43

http://bit.ly/1Zn0qfF

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complezity and Its Appli-
cations. Springer, New York, 3rd edition, 2014.

National Research Council. Frontiers in Massive Data Analysis. The National
Academies Press, Washington DC, 2013. ISBN-13: 978-0-309-28778-4. Online
edition: bit.ly/14A0eyo.

A. Newell. You can’t play 20 questions with nature and win: Projective comments
on the papers in this symposium. In W. G. Chase, editor, Visual Information
Processing, pages 283-308. Academic Press, New York, 1973.

A. Newell, editor. Unified Theories of Cognition. Harvard University Press, Cam-
bridge, Mass., 1990.

A. Newell. Précis of Unified Theories of Cognition. Behavioural and Brain Sciences,
15(3):425-437, 1992.

V. Palade and J. G. Wolff. Development of a new machine for artificial intelli-
gence. Technical report, CognitionResearch.org, 2017. Submitted for publica-
tion. bit.ly/2tWb88M, arXiv:1707.0061 [cs.Al].

E. L. Post. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics, 65:197-268, 1943.

R. J. Solomonoff. A formal theory of inductive inference. Parts I and II. Informa-
tion and Control, 7:1-22 and 224-254, 1964.

R. J. Solomonoff. The discovery of algorithmic probability. Journal of Computer
and System Sciences, 55(1):73-88, 1997.

A. M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230-265
and 544-546, 1936.

J. G. Wolff. Learning syntax and meanings through optimization and distributional
analysis. In Y. Levy, I. M. Schlesinger, and M. D. S. Braine, editors, Categories
and Processes in Language Acquisition, pages 179-215. Lawrence Erlbaum, Hills-

dale, NJ, 1988. bbit.ly /ZIGjyc.

J. G. Wolff. Unifying Computing and Cognition: the SP Theory and Its Appli-
cations. CognitionResearch.org, Menai Bridge, 2006a. ISBNs: 0-9550726-0-
3 (ebook edition), 0-9550726-1-1 (print edition). Distributors, including Ama-
zon.com, are detailed on bit.ly/WmB1rs.

44

http://bit.ly/14A0eyo
http://bit.ly/2tWb88M
http://bit.ly/ZIGjyc
http://bit.ly/WmB1rs

. G. Wolff. Medical diagnosis as pattern recognition in a framework of information
compression by multiple alignment, unification and search. Decision Support
Systems, 42:608-625, 2006b. doi: 10.1016/j.dss.2005.02.005. bit.ly/1F36607,
arXiv:1409.8053 [cs.Al.

. G. Wolff. Towards an intelligent database system founded on the SP theory
of computing and cognition. Data € Knowledge Engineering, 60:596-624, 2007.
doi: 10.1016/j.datak.2006.04.003. bit.ly/1CUIdR6, arXiv:cs/0311031 [cs.DB].

. G. Wolff. The SP theory of intelligence: an overview. Information, 4(3):283-341,
2013. doi: 10.3390/info4030283. bit.ly/INOMJ6], arXiv:1306.3888 [cs.Al].

. G. Wolff. Autonomous robots and the SP theory of intelligence. IEEE Access,
2:1629-1651, 2014a. doi: 10.1109/ACCESS.2014.2382753. bit.ly/18DxU5K,
arXiv:1409.8027 [cs.Al].

. G. Wolff. The SP theory of intelligence: benefits and applications. Information,
5(1):1-27, 2014b. doi: 10.3390/info5010001. bit.ly /IFRYwew, arXiv:1307.0845
[cs. AT

. G. Wolff. Big data and the SP theory of intelligence. IEEFE Access, 2:301-315,
2014c. doi: 10.1109/ACCESS.2014.2315297. bit.ly/2qfSR3G, arXiv:1306.3890
[cs.DBJ. This paper, with minor revisions, is reproduced in Fei Hu (Ed.), Big
Data: Storage, Sharing, and Security, Taylor & Francis LLC, CRC Press, 2016,
Chapter 6, pp. 143-170.

. G. Wolff. Application of the SP theory of intelligence to the understanding of
natural vision and the development of computer vision. SpringerPlus, 3(1):552—
570, 2014d. doi: 10.1186/2193-1801-3-552. bit.ly/20lpZB6, arXiv:1303.2071
[cs.CV].

. G. Wolff. The SP theory of intelligence: its distinctive features and advan-
tages. IEEE Access, 4:216-246, 2016a. doi: 10.1109/ACCESS.2015.2513822.
bit.ly /2qgqbQF, arXiv:1508.04087 [cs.Al].

. G. Wolff. Commonsense reasoning, commonsense knowledge, and the SP theory
of intelligence. Technical report, CognitionResearch.org, 2016b. Submitted for
publication. bit.ly /2eBoE9E, arXiv:1609.07772 [cs.Al].

. G. Wolff. Information compression via the matching and unification of patterns
as a unifying principle in human learning, perception, and cognition. Technical
report, CognitionResearch.org, 2017. Submitted for publication. bit.ly /2ruLnrV,
viXra:1707.0161v2, hal-01624595, v1.

45

http://bit.ly/1F366o7
http://bit.ly/1CUldR6
http://bit.ly/1NOMJ6l
http://bit.ly/18DxU5K
http://bit.ly/1FRYwew
http://bit.ly/2qfSR3G
http://bit.ly/2oIpZB6
http://bit.ly/2qgq5QF
http://bit.ly/2eBoE9E
http://bit.ly/2ruLnrV

J. G. Wolff. Introduction to the SP theory of intelligence. Technical report,
CognitionResearch.org, 2018. arXiv:1802.09924 [cs.Al], bit.ly/2ELq0Jq.

46

http://bit.ly/2ELq0Jq

	Introduction
	How concepts that are familiar in ordinary computer programming may be seen in the workings of the SP system
	`Function', `calling of a function', `parameter', and `conditional statement'
	An outline of C code for preparing meals in a restaurant
	An outline of an SP grammar for preparing meals in a restaurant
	Building SP-multiple-alignments via information compression
	How the concepts of `function', `calling of a function', `parameter', and `conditional statement' may be seen in the workings of the SP system

	Variables, values, and types
	Structured programming
	Object-oriented design or programming
	Recursion

	The full or partial automation of software development
	Automation of software development
	Example: learning in an autonomous robot
	Example: processing data received by the SKA
	Example: programming by demonstration
	Possible augmentations

	Semi-automatic creation of software
	Generalisation and the avoidance of under- and over-generalisation

	Non-automatic programming of the SP system
	A potential advantage of the SP Machine in the application of parallel processing
	Programming via natural language
	Bringing `design' closer to `implementation'
	Possible reductions in the need for operations like compiling or interpretation
	Verification
	Validation
	Seamless integration of `software' with `database'
	An overall simplification of computing applications
	Reducing the variety of formats and formalisms in computing
	Version control
	Technical debt
	Conclusion
	Outline of the SP system
	Overview
	Multiple sequemce alignments in bioinformatics
	SP-multiple-alignments in the SP system
	Unsupervised learning
	The SP Machine
	Distinctive features and advantages of the SP system
	Potential benefits and applications of the SP system

	Towards universal artificial intelligence (UAI)
	Versatility in aspects of intelligence via the powerful concept of SP-multiple-alignment
	Generality in artificial intelligence
	What about things that the SP system can't do, except with some kind of `programming' or `training'?
	How the SP system differs from a CC in aspects of intelligence

	Versatility in the representation of knowledge via the powerful concept of SP-multiple-alignment
	Generality in the representation of knowledge
	How the SP system differs from a CC in the representation of knowledge

	Seamless integration of diverse kinds of knowledge and diverse aspects of intelligence
	Efficiency

	The curse of variety in computing and what can be done about it
	Problems arising from excessive variety in computing
	A potential solution to the problem of excessive variety

