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1 Introduction

This paper describes a proposed New Mathematics NM and how it may with
advantage be applied in science.

Although the same name has been used for other initiatives,1 this concept
of NM was first proposed in [41, Section 9]. This paper is intended as an
expanded and revised version of the VM concept with an exploration of its
potential benefits and applications.

In brief, the VM is intended as an amalgamation of mathematics with
the SP System (SPS), where the SPS is the SP Theory of Intelligence and its
realisation in the SP Computer Model (SPCM). The proposed amalgamation
is described in Section 3.1, below.

Development of the NM may seem like a monstrous upsetting of the
mathematical applecart that has worked well for hundreds of years. But
there are several potential benefits from the NM, most of which would be
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helpful in scientific research. Of course the NM may be useful in non-scientific
applications but those would be matters to be discussed elsewhere.

Abbreviations used in this paper are defined in Appendix E. In that
appendix, the origins and proposed use of the name ‘SP’ are also described.

The sections of the paper are described briefly here. Five introductory
sections come first:

� Origin of the proposals (Section 2.1). This section summarises how
these proposals originated in research in AI and human learning, per-
ception, and cognition (HLPC).

� Seven techniques for information compression, and their potential (Sec-
tion 2.2). This section describes seven techniques for information com-
pression (IC) which provide the foundation for the proposals.

� Information compression in mathematics (Section 2.3). This outlines
the arguments that much of mathematics, perhaps all of it, may be
understood as a set of techniques for information compression (IC),
and their application.

� Information compression and concepts of inference and probability Sec-
tion 2.5. There is an intimate relation between IC and concepts of
inference and probability.

� Towards the development of a New Mathematics (Section 3.1). Here,
the main elements of the proposed NM are described.

These are followed by several main sections describing potential benefits of
the NM:

� Providing support for thinking about theoretical issues by scientists and
others (Section 5.10). How the NM may provide support for ‘non-
mathematical’ kinds of thinking employed by scientists and others.

� Adding an AI dimension to mathematics (Section 4). The NM may
provide an AI dimension to mathematics with many potential benefits.

� Facilitating the simplification and integration of mathematics, logic,
and computing (Section ??). There is clear potential for the simplifica-
tion and integration of mathematics, logic, and computing.

� Development of the New Mathematics as a Universal Framework for
the Representation and Processing of Knowledge (Section 3.2).
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� A new perspective on statistics? (Section 6). There appears to be
potential for a new perspective on statistics.

� Infinity in mathematics and science (Section ??). The NM may help
to tame problems with infinities that are recognised in physics and
cosmology.

� Superposition (Section 8). It seems that the NM may have some useful
things to say about the concept of superposition in quantum mechanics
(QM).

� Nonlocality, entanglement, SPMA, and discontinuous dependencies (Sec-
tion 9). It seems that the NM may have some useful things to say about
the concepts of nonlocality and entanglement in quantum mechanics.

2 Preliminaries

2.1 Origin of the proposals

A guiding principle in the creation of the VM is the importance of information
compression (IC) in human learning, perception, and cognition (HLPC). This
strand of research was pioneered by Fred Attneave (see, for example, [2, 3])
and Horace Barlow (see, for example, [5, 6]) and is still continuing. There is
a review of relevant evidence in [40].

IC has also been a guiding principle in the development of the SPS, since
the SPS is, amongst other things, an attempt to model HLPC. There is an
outline of the SPS in Appendix ?? with pointers to where more information
may be found.

Since mathematics is designed to help human thinking, and is the prod-
uct of human brains, it should not be surprising to find similar principles in
mathematics. In another paper [41], it is argued that much of mathemat-
ics, perhaps all of it, may be seen as a set of techniques for IC, and their
application.

This has given rise to the idea, outlined in [41, Section 9], that there are
potential advantages in creating a New Mathematics as an amalgamation of
mathematics and the SPS, with IC at centre stage.

2.2 Seven techniques for IC

In this research, seven techniques for IC are recognised, with potential for
more. This subsection, which draws on [41, Section 5], summarises thinking
in this part of the SP Theory of Intelligence.

3



2.2.1 Why not adopt established ideas about information com-
pression?

Before getting on to the seven techniques for IC, a few words are needed
about why, in this research, established techniques for IC are not being used.

ICMUP as an alternative to mathematically-oriented techniques
for IC . The basis for the seven techniques is the relatively primitive con-
cept of ‘IC via the Matching and Unification of Patterns’ (ICMUP), as de-
scribed in Section 2.2.3, below. This approach has been chosen in preference
to mathematically-oriented techniques such as arithmetic compression (see,
for example, [18, Chapter 6]) or transform methods including wavelet com-
pression (see, for example, [18, Chapter 10]), for three main reasons:

� The organisation and workings of the SPS was inspired in part by the
concept of ‘multiple sequence alignment’ in bioinformatics, and that
suggested that IC in the SPS may be achieved entirely via ICMUP.

� Partly for that reason and partly because of the arguments that math-
ematics, logic, and computing, may be understood in terms of ICMUP
[41], a working hypothesis in this research is that all kinds of redun-
dancy may be understood in terms of ICMUP and discovered by meth-
ods based on ICMUP.

� If one is to argue that mathematics may be understood in terms of
IC (as is done in [41]) it is not appropriate to use models of IC that
depend on mathematics. Something more primitive is needed, and
ICMUP seems to meet that need.2

ICMUP as an alternative to MLE concepts . For similar reasons,
concepts of minimum-length encoding (MLE, see, for example, [22]) have
not been adopted although, in the spirit of MLE, it is certainly useful on
occasion to think of the information content of a body of information, I, as
the length of the shortest program that one may create that will produce I.
Also, Solomonoff’s development of Algorithmic Probability Theory [27, 28],
which is part of the foundations of MLE research, is highly relevant to the
NM and its development (Appendix D.2).

2That said, some mathematics is used in the SPCM and has contributed to its
development, as described in Appendix D. But those uses of mathematics, which are at
fairly low levels in the SPCM, does not change the ICMUP-based techniques which are
central in its workings.
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paragraphICMUP as an alternative to the concept of universal Turing
machine. Another reason for not basing the SPS more directly on MLE
concepts is that those concepts are based on the concept of a universal Tur-
ing machine as a definition of computing whereas the SP Theory is itself a
definition of computing [38, Section II-C].

2.2.2 The importance of heuristic search

In all but the smallest bodies of information, I, there is normally an astro-
nomically large number of ways in patterns may be matched and unified.
Accordingly: it is not feasible to search exhaustively for the matches and
unifications that yield the greatest value for IC; it is necessary to use heuris-
tic methods, trading accuracy for speed; and it is not possible to prove that
the best possible result has been obtained.

2.2.3 Basic ICMUP

The first of the techniques for IC to be described is the idea, already men-
tioned, of finding patterns that match each other and the merging or ‘uni-
fication’ of two or more matching patterns to make one. This is illustrated
in the top part of Figure 1 which shows how two instances of the pattern
‘INFORMATION’ may be unified to make a single instance.

In this connection, the expression “IC via the Matching and Unification
of Patterns” may be abbreviated as ‘ICMUP’.

The example in Figure 1 may give the impression that the concept of ‘pat-
tern’ in this research means a coherent array of symbols like ‘INFORMATION’.
But in the SPS, the concept of ‘pattern’ includes arrays of symbols in which
other symbols may be interspersed, such as ‘INpFORpqrMATstION’. The de-
velopment of the SPS has been correspondingly more challenging, but also
more rewarding.

As we shall see, the ICMUP concept is bedrock in the other six techniques
for IC described in this section.

A working hypothesis in this research is that ICMUP is fundamental in
all kinds of IC, including mainstream techniques such as arithmetic coding
and wavelet encoding (see Appendix 2.2.1).

2.2.4 Chunking-with-codes

A problem with Basic ICMUP is that, if two or more patterns within a body
of information, I, are unified, information is lost about the locations of those
patterns within I, assuming that the unified pattern is stored in a separate
dictionary of patterns.
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Raw data

Compressed data

....w62................w62.........

....INFORMATION................INFORMATION.........

w62INFORMATION
Unified pattern
with identifier

INFORMATION
Unified pattern
without identifier

Figure 1: A schematic representation of the way two instances of the pattern
‘INFORMATION’ in a body of data may be unified to form a single ‘unified
pattern’, shown just above the middle of the figure. To achieve lossless com-
pression, the relatively short identifier ‘w62’ may be assigned to the unified
pattern ‘INFORMATION’, as shown below the middle of the figure. At the bot-
tom of the figure, the original data may be compressed by replacing each
instance of ‘INFORMATION’ with a copy of the relatively short identifer, ‘w62’.
Adapted from Figure 2.3 in [30], with permission.



A long-established answer to this problem, called ‘chunking-with-codes’,
is to assign a relatively brief identifier or ‘code’ to the unified pattern (which
may be called a ‘chunk’ of information), and put a copy of that code at each
place within I that a copy of the chunk occurred before unification. This is
illustrated in the lower part of Figure 1 where the identifier ‘w62’ is assigned
to the unified pattern ‘INFORMATION’, and a copy of that identifier is put in
each of the original locations of ‘INFORMATION’.

2.2.5 Schema-plus-correction

The schema-plus-correction technique for IC is like chunking-with-codes ex-
cept that there may be variations in the chunk from one occasion to another.
This is achieved by providing for ‘corrections’ to the chunk that may vary
from one occasion to another.

A popular example is a menu in a restaurant or cafe where the menu
is the chunk and corrections to the chunk are the different dishes that may
be chosen at different locations with the chunk, such as ‘soup’ or ‘prawn
cocktail’, etc, for the starter, ‘roast beef’ or ‘vegetarian lasagne’, etc, for the
main course, and ‘apple crumble’ or ‘treacle tart’, etc, for the pudding. Of
course, the code for the whole menu in this case is something like ‘menu’,
‘bill of fare’, etc.

2.2.6 Run-length coding

Run-length coding can be applied when there is a sequence of two or more
patterns that match each other. In that case, it is only necessary to identify
the pattern once, and either specify the number of repetitions, or show in
some way that the given pattern is repeated until there is a signal for the
repetition to stop.

In everyday life, we use run-length coding all the time: we may ask our
local newsagent to keep delivering a newspaper until we tell them to stop;
the pattern ‘Sunday ... Saturday’ keeps repeating ad infinitum, and likewise
‘January ... December’; and so on.

2.2.7 Class-inclusion hierarchies

In describing things in the world, we often make use of class-inclusion hier-
archies: animals and plants are divided into classes and subclasses through
many levels; there are many classes and subclasses of road vehicle and there
is often cross-classification as for example where a bus is classified as a pas-
senger vehicle and it is also classified as a heavy vehicle; people are divided
into many classes and, as with road vehicles, there is often cross-classification
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as, for example, when a person may be both a woman and a doctor; foods
come in many classes and sub-classes; and so on.

Where does ICMUP come in? If two or more entities have characteristics
that match each other and can be unified, those two or more entities may
form a new class. And if an entity has characteristics that match those
of an existing class (which it does not already belong to), those matching
characteristics may be unified so that the entity becomes a member of the
class. The overall effect of these matches and unifications is to compress the
information in those matching characteristics.

These matches and unifications mean that lower-level classes in a hier-
archy do not, in themselves, show all their attributes. But this does not
matter because, in a class-inclusion hierarchy, classes at any level except the
top level are seen to inherit the attributes of all the classes above them in
the hierarchy.

2.2.8 Part-whole hierarchies

As with class-inclusion hierarchies, we often describe things in the world in
terms of part-whole hierarchies, often through many levels: an animal may
be divided into its head, its body, and its legs; the head may be divided into
skull, brain, eyes, ears, and so on.

As with class-inclusion hierarchies, ICMUP may be seen in the way part-
whole hierarchies originate or are modified. If, for example, two or more cars
have the same high-level structure, it only necessary to describe that high-
level structure once, and the same applies to all the lower-level structures
such as engines, wheels, etc. Naturally, there may be variations but, at
any one level, the variations can be described without it being necessary to
describe the whole level.

2.2.9 SP-multiple-alignment

The concept of SP-multiple-alignment (SPMA) is described in Appendix A.5.
The SPMA concept has a special status in the SPS because it is largely re-
sponsible for the versatility and potential of the SPS in AI-related structures
and functions (Appendix A.7), including the way it can facilitate the seamless
integration of diverse aspects of AI, in any combination.

There seem to be two main reasons for this versatility:

� The SPMA concept may be seen as a generalisation of the six techniques
for IC described in the preceding six subsections, a generalisation which
means that, any or all of those six techniques may be expressed within
an SPMA, in any combination.
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There is detailed evidence for this feature of the SPMA concept in
Appendix B.

� The SPMA concept is also significant because it provides a powerful
means of expressing patterns of redundancy in data, which may in
principle have any desired level of accuracy (Appendix A.5.4).

2.2.10 Other possibilities

What has been described in Section 2.2 does not exhaust the potential for
finding matches between patterns, and thus for the detection of new kinds
of redundancy. Other possibilities include: treating SP-patterns as if they
were unordered sets; searching for redundancies between a set of SP-patterns
and mirror images of those SP-patterns; searching for redundancies in two-
dimensional SP-patterns; and other possibilities described in Appendix C.

2.3 Information compression in mathematics

This section outlines the main arguments in [41] that much of mathematics,
perhaps all of it, may be understood as a set of techniques for IC, and their
application:

� Mathematics as a means of compressing information. Mathematics,
in itself and without any special techniques, provides a very effective
means of compressing information:

“The equation s = (gt2)/2, which expresses one aspect of one
of the laws of motion, is a very compact means of represent-
ing any table, including large ones, showing the distance, s,
travelled by a falling object in a given time, t, since it started
to fall, ... That small equation would represent the values in
the table even if it was a 1000 times or a million times bigger,
and so on. Likewise for other equations such as a2 + b2 = c2,
PV = k, F = q(E + v ×B), and so on.” [41, p. 13].

� Chunking-with-codes:

“If a body of mathematics is repeated in two or more parts
of something larger then it is natural to declare it once as
a named ‘function’, where the body of the function may be
seen as a ‘chunk’ of information, and the name of the function
is its ‘code’ or identifier. This avoids the need to repeat the
body of the function in two or more places.” [41, p. 14].
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� Run-length coding, addition:

“Since all numbers with bases above 1 may be seen to be com-
pressed representations of unary numbers [41, Section 6.4.2],
unary numbers may be regarded as more fundamental than
non-unary numbers. If that is accepted, then, for example,
‘3 + 7’ may be seen as a shorthand for the repeated process
of transferring one unary digit from a group of seven unary
digits to a group of three unary digits. Thus the expression
‘+7’ within ‘3 + 7’ may be seen as an example of run-length
coding.” [41, pp. 14–15].

� Run-length coding, multiplication:

“Multiplication [may be seen as] repeated addition. So, for
example, ‘3 × 10’ is the 10-fold repetition of the operation
‘x+3’, where ‘x’ starts with the value ‘0’. Thus ‘×10’ within
‘3×10’ may be seen as run-length coding. Since addition may
itself be seen as a form of run-length coding [as described in
the preceding bullet point], multiplication may be seen as
run-length coding on two levels.” [41, p. 15].

� Combinations of IC techniques 1:

“The charged particle equation, F = q(E+v×B), illustrates
run-length coding in the multiplication of v by B, in the
multiplication of (E + v × B) by q, and in the addition of
v ×B to E.” [41, p. 15].

� Combinations of IC techniques 2:

“One of special relativity’s equations for time dilation, ∆t′ =
∆t/

√
1− v2/c2, illustrates chunking-with-codes and schema-

plus-correction in its use of the square root function, and it
illustrates run-length coding in the division of v2 by c2, in
the subtraction of v2/c2 from 1, and in the division of ∆t by√

1− v2/c2.” [41, p. 15].
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2.4 Information compression in logic and computing

In [41, Section 7], it is argued that arguments that are similar to those
outlined in Section 2.3 may be applied to argue that, like mathematics, logic
and computing may be understood as a set of techniques for the compression
of information, and their application.

It may be thought that, since computers are often used as vehicles for
mathematics and logic, they would be mere shadows of those two disciplines
with nothing that is distinctive.

An apparent contradiction of that idea is the concept of ‘object-oriented
programming’ (OOP) or ‘object-oriented design’ (OOD) which was origi-
nated in the Simula programming language [7] and is now a feature of most
of the widely-used programming languages today.

Since OOP/OOD is essentially a version of class-inclusion hierarchies, the
fifth of the seven techniques for IC described in Section 2.2 and [41, Section
5], one might expect it to be prominent in mathematics and logic. But it is
altogether absent in those two disciplines or, at best, rarely used.

2.5 Information compression and concepts of inference
and probability

Due mainly to the development of Algorithmic Probability Theory (APT)
by Ray Solomonoff [27, 28], it has been recognised for some time that there
is a very close relationship between concepts of IC and concepts of inference
and probability.

Since mathematics appears to be a set of techniques for IC and their
application (Section ??), and because of the close relation between IC and
concepts of probability described in the previous paragraph, the same appears
to be true of mathematics. [41, Section 8].

At first sight, this is nonsense because of the ‘clockwork’ non-probabilistic
nature of things like 2 + 2 = 4. But it appears that, at some ‘deep’ level,
number theory, a fundamental part of mathematics, has been shown to be
fundamentally probabilistic. In that connection, Gregory Chaitin writes:

“I have recently been able to take a further step along the path
laid out by Gödel and Turing. By translating a particular com-
puter program into an algebraic equation of a type that was famil-
iar even to the ancient Greeks, I have shown that there is random-
ness in the branch of pure mathematics known as number theory.
My work indicates that—to borrow Einstein’s metaphor—God
sometimes plays dice with whole numbers.” [10, p. 80].
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As indicated in this quotation, randomness in number theory is closely
related to Gödel’s incompleteness theorems. These are themselves closely
related to the phenomenon of recursion, a feature of many formal systems
(including the SP System), many of Escher’s pictures, and much of Bach’s
music, as described in some detail by Douglas Hofstadter in his book Gödel,
Escher, Bach: An Eternal Golden Braid [19].

If, for these kinds of reasons, mathematics is fundamentally probabilistic,
the same will be true of the NM and, because the SPCM supports recursion,
it will be true of the SPS.

3 The proposed New Mathematics and re-

lated ideas

3.1 Towards the development of a New Mathematics

As noted in the Introduction (Section 1), the creation of an NM was first
proposed in [41, Section 9.2]. There it is suggested that:

“There is potential for the augmentation and adaptation of math-
ematics with concepts and mechanisms from the SP System, es-
pecially SP-multiple-alignment and unsupervised learning via the
building of SP-grammars.” and that “those concepts, with asso-
ciated ideas, may provide the basis of a New Mathematics (NM).”
[41, p. 20].

In brief, the proposed NM may be developed like this:

1. In broad terms, the NM may be an amalgamation of mathematics and
the SPS, both now and as they may evolve in the future.

Regarding that last point, it is assumed that the SPS will have been
developed to become the SP Machine (Appendix A.12) as described in
[25], and that in particular there will be robust solutions to key prob-
lems noted in [32, Section 3.3]: 1) The concept of SP-pattern will have
been generalised to two dimensions, whilst retaining one-dimensional
SP-patterns (Appendix A.4); 2) How the system may learn to recognise
perceptual features in speech and visual images; 3) Other weaknesses
in unsupervised learning will have been remedied; and 4) There will be
coherent, principled solutions to how the system may process numbers.

2. While [41, Section 6] shows, with evidence, that much of mathematics,
perhaps all of it, may be understood in terms of a set of techniques
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for IC, there is evidence in [41, Section 7] that similar principles may
be seen in the structures and workings of logic and computing. Taken
together, these two bodies of evidence suggest the possibility that math-
ematics, logic, and computing, may be integrated as a single computer
system, with IC as a unifying theme. That single system, which we may
call MLC (short for ‘mathematics and logic and computing’) would be
a useful first step in creating the NM.

3. As a next step, MLC may be integrate with structures and mechanisms
from the SPCM, including structures and mechanisms for IC via the
building of SPMAs ([32, Section 4] and [30, Sections 3.4 and 3.5]), and
for IC via the creation of SP-grammars ([32, Section 5] and [30, Chapter
9]).

4. To avoid creating an NM in which ordinary mathematics looks too
strange and unfamiliar to people who are familiar with ordinary math-
ematics and ordinary logic, there is probably a case for creating ‘syn-
tactic sugar’ so that NM structures corresponding to ordinary math-
ematics and logic may be presented in conventional form, with NM
structures hidden from view but accessible as required. However, any
such syntactic sugar would not change the fundamentals of the system.

5. The vehicle for the NM’s representation and processing of data would be
the SP Machine, as outlined in Appendix A.12 and illustrated schemat-
ically in Figure 7.

3.2 Towards a universal framework for the represen-
tation and processing of knowledge, and the stan-
dardisation of knowledge

It has been suggested in [35, Section III-A] and [41, Section 5], that the SPS
has potential to be developed into a Universal Framework for the Represen-
tation and Processing of Knowledge UFK. With the addition of mathematics,
logic, and computing (items 2 and 3 in Section 3.1), the NM may also be
seen to have potential as a UFK.

There is much about AI in the concept of a UFK but it is distinctive in
its focus on knowledge and the problems of storing and processing diverse
kinds of knowledge.

Potential benefits of the NM as a UFK are described in the next-but-one
subsection and those that follow.
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3.3 Towards standardised knowledge

Before we get on to those potential benefits, an important adjunct to the
concept of UFK is the concept of Standardised Knowledge (STK). The UFK is
a framework for representing knowledge, while the STK is specific knowledge.

For example, a good UFK should provide an effective means of represent-
ing the syntax and semantics of any natural language, while an STK in that
area may specify meanings and internationally-agreed forms in which they
should be represented across the multitude of things that people may wish
to talk or write about.

An example of that kind of standardisation is the way in which dates
and times should be represented, recommended by ISO, the International
Organization for Standardization. They suggest, with reasons, that the form
should be YYYY-MM-DD hh:mm:ss rather than the many other forms in
use.

As described in Section 4.5, this kind of standardisation can be very useful
in artificial systems for translating between natural languages.

4 Adding an AI dimension to the NM

This section and those that follow describe features of the NM that may
prove useful in science.

Since the NM will incorporate the SPS (as outlined in Appendix A), it
will have the strengths and potential of the SPS in aspects of intelligence, as
outlined in Appendix A.7, and summarised even more briefly here:

� Intelligence-related capabilities such as unsupervised learning (more in
Section 3.2), the analysis and production of natural language, and so
on.

� In particular, several forms of reasoning such as one-step ‘deductive’
reasoning, chains of reasoning, abductive reasoning, and so on.

� The representation and processing of intelligence-related forms of knowl-
edge.

� The seamless integration of diverse aspects of intelligence-related ca-
pabilities and forms of knowledge, in any combination.

As noted in Appendix A.7.4, the seamless integration of diverse kinds
of intelligence-related capabilities and intelligence-related knowledge
appears to be essential in achieving human-level broad AI. In scientific
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research, that kind of fluidity and adaptability is likely to be at least
as useful in any artificial system as it is in flesh-and-blood scientists.

4.1 Helping to overcome the problem of variety in data

A major potential benefit of a UFK would be reducing the hundreds of kinds
of data and kinds of application, each with a distinct file extension, as listed in
the Wikipedia articles List of file formats,3 and List of filename extensions.4

Although this may seem to be an overambitious claim, there is potential in
the SPS and NM to reduce the variety of kinds of data to 1, and to reduce
the variety of kinds of application to 1. Here’s how:

� One kind of data. Anything to be processed as ‘data’, regardless of
what it is about, would be a set of New SP-patterns.

� One kind of application. The SPCM or its development as the SP
Machine may be regarded as one application, the only one in the SPS.
It is true that Old SP-patterns can influence the workings of that one
application, but all Old SP-patterns are processed in the same way.

4.2 Facilitating the discovery of structure in data

Unsupervised learning in the SPCM, described in [32, Section 5] and [30,
Chapter 9] has demonstrated how it is possible to discover SP-grammars in
data, including relatively concrete structures like words and more abstract
structures like the abstract form of a sentence. We may reasonably expect
that future versions of these learning processes, perhaps embodied in the SP
Machine, will be more robust and capable of discovering meaningful struc-
tures in a wide variety of kinds of data.

As noted elsewhere there is also potential to discover three-dimensional
structures from several partially-overlapping two-dimensional views of an ob-
ject (Appendix A.4), and also to discover three-dimensional structures by
merging pairs of two-dimensional SP-patterns (Appendix C.2).

4.3 The interpretation of data in terms existing knowl-
edge

With appropriate New SP-patterns and Old SP-patterns, the SPCM can
parse sentences as described in Appendix A.5. This is a form of interpretation

3tinyurl.com/2efzsuyc, retrieved 2021-06-26.
4tinyurl.com/n8u3sjb9, retrieved 2021-06-26.
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of the New information in terms of the Old information but falls short of the
analysis of a sentence for its meanings.

Preliminary work in that area, described in [30, Section 5.7], shows how,
with a simple sentence, the SPCM can derive a meaning from the surface
form of a sentence [30, Figure 5.18], and how the surface form of a sentence
may be derived from meanings [30, Figure 5.19]. Clearly, there is more work
to be done in this area.

4.4 Data fusion

If two or more bodies of data are to be merged or fused, it clearly helps if there
is uniformity in how information such as dates, weights, distances, and so on,
are expressed. With a mapping between surface forms and a standardised
form for knowledge (STFK), the SPS and the NM have potential to provide
the necessary preprocessing.

4.5 As an interlingua to facilitate translation between
natural languages

An STFK, as just described but with extensive knowledge of meanings, may
serve as an interlingua for translations between different languages, so that
translations can work with meanings. Ultimately, this is likely to prove more
accurate and generally more effective than computer-translation systems that
work with the surface forms of different languages.

4.6 To facilitate the standardisation required for the
“Semantic Web”, and the “Internet of Things”

As with data fusion and translations between languages, an STFK with ap-
propriate knowledge is likely to prove useful in setting up and operating such
things as the “Semantic Web”,5 and the “Internet of Things”.6.

4.7 Helping to minimise the problem of obsolescence
in data and its formats and formalisms

Again, an STFK would help to reduce problems of obsolescence on formats
and formalisms for data. This presupposes that all such formats and for-
malisms are stored with translations into STFK meanings. Then, if a partic-

5See Semantic Web in Wikipedia, retrieved 2021-06-30.
6See Internet of things in Wikipedia, retrieved 2021-06-30.
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ular format or formalism falls out of use, it should be possible, with STFK
mappings, to interpret any older documents that use it.

4.8 The study of complex systems

There seems to be potential for the NM in the study of complex systems,
meaning systems which “... are characterized by interactions between their
components that produce new information—present in neither the initial nor
boundary conditions—which limit their predictability.”7

5 Potential for improvements in scientific the-

ories

5.1 Creation

5.2 representation

5.3 evaluation

5.4 integration

5.5 Expanding the role of mathematics in the repre-
sentation and processing of scientific knowledge

The NM may expand the role of mathematics in the representation and pro-
cessing of all kinds of knowledge, including scientific knowledge. Instead of
being confined to the representation of a few brief formulae, the NM may
potentially serve in the representation of processing of knowledge that may
otherwise be represented with pictures, diagrams, and even verbal descrip-
tions.

In particular, there seems to be potential for the NM to imitate the
‘mind’s eye’ view of scientific knowledge that seems often to be a feature
of the thinking of leading scientists (Section 5.10).

7In “About this Journal” of the journal Complexity, bit.ly/2DZ1t3A, retrieved
2019-08-16.
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5.6 Unsupervised learning and the development of sci-
entific theories

Although the SPCM can demonstrate unsupervised learning ([30, Chapter
9]), it needs further development as outlined in [32, Section 3.3]. Since science
may be seen as a process of gathering information and compressing it, there
is potential for the automatic or semi-automatic creation of scientific theories
via unsupervised learning from appropriate data [36, Section 6.10.7].

5.7 Facilitating the integration of scientific theories

By providing a UFK for the description and processing of related but in-
compatible theories such as quantum mechanics and relativity, an NM has
the potential to help iron out inconsistencies between such theories and to
facilitate their integration.

5.8 Quantitative evaluation of scientific theories

In scientific research as it has been up to now, the evaluation of rival scientific
theories has been done via more-or-less informal debate, and it seems likely
that this will be true for some time to come. But there is potential for the
NM to achieve quantitative evaluation of scientific theories in terms of IC.

5.9 Quantification of confidence in inferences

By contrast with mathematics, where inferences can be, and often are, made
without any measure of the confidence that may attach to those inferences,
the SP System provides measures of probability for all its inferences (Ap-
pendix A.5.3).

5.10 Providing support for ‘visual’ thinking of scien-
tists and others

This section, which is based on [41, Section 9.2.2], suggests that the NM
may provide support for the kind of ‘visual’ or ‘mind’s eye’ thinking of sci-
entists and others, a kind of thinking that can be difficult to express with
ordinary mathematics, notwithstanding the existence of ‘graphic’ branches
of mathematics such as geometry or topology.

Here are three possible examples:
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� It appears that Michael Faraday developed his ideas about electricity
and magnetism with little or no knowledge of mathematics and that
James Clerk Maxwell translated them into mathematical form:

“Without knowing mathematics, [Faraday] writes one of the
best books of physics ever written, virtually devoid of equa-
tions. He sees physics with his mind’s eye, and with his
mind’s eye creates worlds.” [?, Location 623].

and

“Maxwell quickly realizes that gold has been struck with
[Faraday’s] idea. He translates Faraday’s insight, which Fara-
day explains only in words, into a page of equations. These
are now known as Maxwell’s equations. They describe the
behaviour of the electric and the magnetic fields: the math-
ematical version of the ‘Faraday lines’.” [?, Location 677].

� Charles Darwin described his theory of evolution by natural selection
with words and pictures. To this day, it is still normally described in
that way (but see Gregory Chaitin’s proposals for creating “a general,
abstract mathematical theory of evolution that captures the essence of
Darwin’s theory and develops it mathematically.” [?, Location 189]).

� It seems that Albert Einstein’s ideas were generally developed first in
non-mathematical form and only later cast into mathematics:

“Einstein had a unique capacity to imagine how the world
might be constructed, to ‘see’ it in his mind. The equations,
for him, came afterwards; ... For Einstein, the theory of gen-
eral relativity is not a collection of equations: it is a mental
image of the world arduously translated into equations.” [?,
Location 1025].

Judging by the quotes above, much of the thinking of at least some lead-
ing scientists is visual, and not expressible directly in terms of equations
(although mainstream mathematics includes visual structures such as 2D
and 3D charts, geometrical figures, and topological structures). However, an
NM may, in addition, provide a means of representing two-dimensional struc-
tures via 2D SP-patterns, and three-dimensional structures via SP-patterns
as described in [?, Sections 6.1 and 6.2].
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The provision of cognitive structures like those may help scientists to
think and communicate directly with NM concepts, without the need to
translate their ideas into some less congenial form. It seems possible that
an NM may provide the means of representing and processing scientific con-
cepts in forms that are more in accord with the intuitions of scientists like
Michael Faraday, Charles Darwin, and Albert Einstein than is conventional
mathematics.

There is relevant discussion in José Luis Bermúdez’s book on Thinking
Without Words [?] and Hans Furth’s book on Thinking Without Language:
Psychological Implications of Deafness [?].

6 A new perspective on statistics?

Within mathematics, statistical theory is well established and has proved its
worth in many applications in science and elsewhere. But of course there is
always room for other perspectives.

As we have seen, there is an intimate relation between IC, probabilities,
and mathematics because, if it is accepted that there is an intimate relation
between IC and concepts of probability (Section 2.5), and if it is accepted that
mathematics may be understood in terms of IC [41], then there should be an
intimate relation between mathematics and concepts of probability. Hence
we may expect ‘normal’ mathematics, and the NM, to be fundamentally
probabilistic.

In the points that follow, the potential of the NM in statistics is largely
because of the potential of the SPS in statistics and the incorporation of the
SPS within the NM:

� Strengths of the SPS with inferences and probabilities. The strengths of
the SPS in the making of inferences and the calculation of associated
probabilities (Appendix A.5.3) flow directly from the central role of
IC in the workings of the SPS, and because of the intimate relation
between IC and concepts of probability (Section 2.5).

� Several kinds of probabilistic reasoning. More specifically, the SPMA
concept within the SPS has proved to be a powerful vehicle for several
kinds of probabilistic reasoning ([32, Section 10], [30, Chapter 7]), and
for their seamless integration in any combination (Appendix A.7.4).
Collectively, these several kinds of probabilistic reasoning, working to-
gether, have potential as a powerful aid to statistical inference.

� Exploiting the asymmetry between IC and concepts of probability. Be-
cause of the asymmetry between IC and concepts of probability [41,
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Section 8.2], there are potential advantages in working from IC to prob-
abilities, and not the other way round.

� Statistical analysis via unsupervised learning. It appears that, in effect,
compression of incoming data via unsupervised learning in the SPS
achieves a thorough statistical analysis of those data.

� Making good use of small frequencies. As noted in [41, Section 8.2.3], it
is possible with ICMUP to exploit situations where frequencies as low
as 2 or 3 can be statistically significant. Since ICMUP is bedrock in
the building of SPMAs.

� Modelling Bayesian networks via the SPS. The SPS has proved to be
an effective alternative to Bayesian reasoning, including reasoning in
Bayesian networks ([32, Section 10.2], [30, Section 7.8]).

� Learning structures via probabilistic associations. In addition to its
strengths in learning patterns of association, the SPS, via unsupervised
learning, has strengths and potential to learn entire structures, includ-
ing the potential to learn three-dimensional structures (Appendix C.2
(items 3 and 4) and Appendix A.4). In its strengths and potential for
the learning of structures, it goes beyond mainstream statistics.

7 New concepts of “proof,” “theorem,” and

related ideas

As noted in [41, Section 9.2.1], there is potential in the development of the
NM for the creation of new concepts of proof, theorem, and related ideas.
Because IC is central in the workings of the SPS, it is likely that such de-
velopments will incorporate IC, and corresponding measures of probability,
as indicators of success. There is also potential for the integration of such
concepts with concepts of probabilistic reasoning, as described in [32, Section
10] and [30, Chapter 7].

Concepts like these have many potential applications in science.

8 Superposition

This section presents arguments that the meaning of the word ‘superposi-
tion’ is different from the meaning of that word in wave mechanics, and is
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essentially the same as the meanings of the expressions ‘syntactic class’ in
theoretical linguistics, and ‘data type’ in mathematics and computing.

In what way is the SP relevant? That second concept of ‘superposition’
can be represented and processed by the SPCM in a very straightforward
manner, as will be explained.

But first we need to untangle some apparent misconceptions about the
concept of superposition and associated ideas in QM.

8.1 Some apparent misconceptions about ‘superposi-
tion’ and related ideas in quantum mechanics

The concept of superposition of waves is described by Al-Khalili like this:

“The idea of superposition is not unique to quantum mechanics
but is a general property of all waves. Imagine watching someone
dive into an empty swimming pool. You will see the ripples travel
outwards along the surface of the water as simple undulations all
the way to the other end of the pool. This is in stark contrast to
the state of the water when the pool is full of people swimming
and splashing about. The turbulent shape of its surface is now
due to the combined effect of many disturbances and is achieved
by adding them all together. This process of adding different
waves together is known as superposition.” [1, location 1025].

This concept of superposition of waves is clear. But it appears that, in
QM, the word ‘superposition’ means something different from what it does in
the analysis of waves. And it appears that this can lead to confusion, both
in the concept of ‘superposition’ itself, and in associated concepts such as
‘wavefunction’ and the ‘collapse’ of a wavefunction.

Possible sources of confusion in QM are described in Sections 8.1.1 to 8.2
that follow, drawing on Ball’s book Beyond Weird [4].

After that, Sections 8.2.1 and 8.2.2 argue that the concept of superpo-
sition is not unique to QM, and much less puzzling and mysterious that is
commonly supposed, because it is essentially the same as: 1) the concept of
‘syntactic class’ in theoretical linguistics; and 2) as the concept of ‘data type’
in mathematics and computing.

8.1.1 The assumption that a wavefunction is a physical entity like
a physical wave

The concept of a ‘wavefunction’ is described by Ball like this:
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“The French physicist Roland Omnès put it nicely when he called
the wavefunction ‘the fuel of a machine that manufactures proba-
bilities’. In general, the chance of measuring any particular value
of an observable property of a quantum system in an experiment
can be calculated by a particular mathematical manipulation of
its wavefunction. The wavefunction encodes this information, and
quantum maths lets you extract it. There’s a particular operation
you conduct on the wavefunction to find a particle’s momentum
(mass × velocity), another operation to find its energy, and so
on. In each case, what you get from this operation is not exactly
the momentum, or energy, or whatever, that you’d measure in an
experiment; it’s the average value you’d expect to get from many
such measurements.” ([4, Locations 447–458], emphasis in the
original).

However, a source of confusion in QM is when people believe that a
‘wavefunction’ describes a physical entity. In this connection, Ball quotes
from an article by Berthold-Georg Englert:

“[There is a] widespread habit of ... debaters to endow the mathe-
matical symbols of the [Schrödinger] formalism with more mean-
ing than they have. In particular, there is a shared desire to
regard the Schrödinger wave function as a physical object itself
after forgetting, or refusing to accept, that it is merely a mathe-
matical tool that we use for a description of the physical object.”
[14, p. 12], quoted in [4, Locations 1398–1408].

Thus a wavefunction is not a physical entity, it is merely an abstraction:

“The wave in Schrödinger’s equation isn’t a wave of electron
charge density. In fact it’s not a wave that corresponds to any con-
crete physical property. It is just a mathematical abstraction—for
which reason it is not really a wave at all, but is called a wave-
function.” ([4, Location 435], emphasis in the original).

8.1.2 The assumption that the ‘collapse’ of the wavefunction is a
physical process that we might observe

Since a wavefunction is not a physical entity, it is also misleading to speak
or write as if the ‘collapse’ of a wavefunction was a physical process that we
might observe. In this connection, Freeman Dyson writes:
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“Unfortunately, people writing about quantum mechanics often
use the phrase ‘collapse of the wave function’ to describe what
happens when an object is observed. This phrase gives a mis-
leading idea that the wave function itself is a physical object. A
physical object can collapse when it bumps into an obstacle. But
a wave function cannot be a physical object. A wave function is
a description of a probability, and a probability is a statement
of ignorance. Ignorance is not a physical object, and neither is
a wave function. When new knowledge displaces ignorance, the
wave function does not collapse; it merely becomes irrelevant.”
In “The Collapse Of The Wave Function” by Freeman Dyson in
[9, p. 73].

8.1.3 The apparent misconception that quantum particles can be
in more than one state at the same time

What appears to be another misconception about superposition is the idea
that a quantum particle can be in two mutually exclusive states at the same
time, as described by Ball:

“The classical idea of a state generally has an exclusive aspect to
it. Macroscopic objects can be a bit of this and a bit of that—a
bit rigid but somewhat flexible, or kind of reddish brown. But
they can’t be in mutually exclusive states: here and there, having
a mass of 1 g and also of 1 kg. I can’t be cycling at 20 mph
at the same time as cycling at 10 mph. And my cycling jacket
can’t be bright yellow at the same time as being pink. It can be
a mixture of both, but it can’t be all yellow and all pink. This
seems common sense.

“So it’s understandable that, when we hear that quantum parti-
cles can be in more than one state at the same time, we struggle to
see what that could mean, and we start to talk about quantum
weirdness—or figure that we’re too plain dumb to comprehend
quantum mechanics.” [4, Location 672].

And later he writes:

“This ‘two (or more) states at once’ is called a superposition. The
terminology conjures up the image of a ghostly double exposure.
But strictly speaking a superposition should be considered only as
an abstract mathematical thing. The expression comes from wave
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mechanics: we can write the equation for a wave as the sum
of equations for two or more other waves.” ([4, Location 681],
emphasis added).

One of the pioneers of QM, Paul Dirac, provides clarity:

“The non-classical nature of the superposition process is brought
out clearly if we consider the superposition of two states, A and
B, such that there exists an observation which, when made on the
system in state A, is certain to lead to one particular result, a say,
and when made on the system in state B is certain to lead to some
different result, b say. What will be the result of the observation
when made on the system in the superposed state? The answer
is that the result will be sometimes a and sometimes b, according
to a probability law depending on the relative weights of A and
B in the superposition process. It will never be different from
both a and b. The intermediate character of the state formed
by superposition thus expresses itself through the probability of a
particular result for an observation being intermediate between the
corresponding probabilities for the original states, not through the
result itself being intermediate between the corresponding results
for the original states.” ([12, Locations 359–367], emphasis in the
original).

From what Ball and Dirac say, we can see that it is highly misleading
for anyone to suggest that a quantum entity has two or more (mutually
exclusive) states “at once” or “at the same time”.

As Ball makes clear in the second quote above, that way of describing a
superposition of states is only valid if superposition is seen as an “abstract
mathematical thing” with the implication that it is not a direct representa-
tion of any physical entity.

And Dirac describes how, in QM, a superposition of two mutually ex-
clusive states, A, and B, are only superposed in the sense that they are
alternatives to each other in a given context so that only A or B will yield a
result when an observation is made.

This seems to get at the nub of the matter:

� The word ‘superposition’ in wave mechanics means two or more things
(waves) which can exist at the same time—in the same way that some-
one may be tall and slim. But ...
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� The word ‘superposition’ in QM is used to mean two or more things
that are mutually exclusive in a given context, like the states A and B
in the quote from Dirac, above.

We shall return to these points in Section 8.2.

8.1.4 The idea that measurable states of quantum particles do not
have particular values until we measure them

With the double-slit experiment as the implied or explicit context for dis-
cussion, another thing which can be puzzling for many people about the
Copenhagen concept of superposition, is the idea that the value of some
variable only comes into existence by being measured or observed:

“... we have no problem saying that [a] tennis ball was travelling
at 100 mph and then I measured it. The tennis ball had the pre-
existing property of a speed of 100 mph, which I could determine
by measurement. We would never think of saying that it was
travelling at 100 mph because I measured it. That wouldn’t make
any sense. In quantum theory, we do have to make statements
like that. And then we can’t help asking what it means. That’s
when the arguments start.” [4, Locations 372–382], emphasis in
the original).

And later,

“... for Bohr, all one can meaningfully say about a quantum sys-
tem is contained in the Schrödinger equation. So if the maths says
that we can’t measure some observable quantity with more than
a certain degree of precision, that quantity simply does not exist
with greater precision. That is the difference between uncertainty
(‘I’m not sure what it is’) and unknowability (‘It is only to this
degree’). ([4, Locations 1716–1725], emphasis in the original).

In terms of our everyday interpretation of things and events, the Bohr
interpretation makes a certain amount of sense for such things as discoveries.
Depending on one’s use of language, a new discovery does not exist until
the discovery has been made, although there is room for debate about the
passage of time between the event itself and when reporters learn about it,
and, from then, a further period of time before members of the public get to
hear or read about it.

But more generally, the Copenhagen interpretation appears to be non-
sense. For example, before we meet someone on a blind date (without any
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prior information), we are confident that he or she exists, and that he or she
has a certain height, a certain hair colour, a certain timbre of voice, and so
on, even though we do not know exactly what the values of those attributes
may be. We see those values as things that exist prior to our meeting which
we discover on the occasion of the meeting, not as values that spring into
existence at the time we first see or hear them.

8.2 Possible remedies for problems of interpretation
associated with quantum mechanics

It seems that, in Section 8.1.1 (about the concept of a ‘wavefunction’), in 8.1.2
(about the ‘collapse’ of a wavefunction), and in 8.1.3 (about ‘superposition’
of states), the heart of the problem appears to be surprisingly widespread
misunderstandings about QM. But in Section 8.1.4 (about the idea that the
value of any state of a quantum particle does not exist until it is detected or
measured), the problem seems to lie with QM itself.

The two subsections that follow describe similarities between the meaning
of the word ‘superposition’ as it is used in QM (which, as previously noted,
appears to be different from the meaning of that word in wave mechanics)
and: 1) the concept of ‘syntactic class’ in theoretical linguistics; and 2) the
concept of ‘data type’ in mathematics and computing.

8.2.1 The similarity between ‘superposition’ in QM and ‘syntactic
class’ in theoretical linguistics

This section describes what seems to be a useful analogy for the idea of
‘superposition’ of two or more mutually exclusive states of a quantum entity
(Section 8.1.3).

Figure 2 shows a set of SP-patterns that may be seen as a stochastic
grammar8 for a very simple English-like language.

The number at the end of each SP-pattern, preceded by a ‘?’, is a supposed
frequency of occurrence of the SP-pattern in some imaginary text. Within
every SPMA created by the SPS, the frequency of every participating SP-
pattern is used to calculate absolute and relative probabilities for the SPMA,
and inferences that may be drawn from the SPMA (Section 2.5).

The first SP-pattern in the figure, ‘(S s1 D #D N #N V #V #S)’, repre-
sents the abstract structure of a sentence. Within that SP-pattern, ‘D #D’
may be seen as a ‘slot’, ‘space’, or ‘variable’, for a word of the grammatical

8A ‘stochastic’ grammar is a grammar in which frequencies of usage of rules, or
probabilities, have a role to play.
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category ‘determiner’ (words like ‘the’, ‘a’, ‘two’, and so on), ‘N #N’ may be
seen as a variable for a word of the category ‘noun’, and ‘V #V’ may be seen
as a variable for a word of the category ‘verb’.

(S s1 D #D N #N V #V #S)*750

(D d1 the #D)*600

(D d2 this #D)*150

(N n1 dog #N)*400

(N n2 cat #N)*350

(V v1 walks #V)*500

(V v2 runs #V)*250

Figure 2: SP-patterns representing grammatical structures, as discussed in
the text. The number after each SP-pattern, preceded by a ‘?’, is a supposed
frequency of occurrence in some imaginary text.

The remaining SP-patterns in Figure 2 represent words, each one with its
syntactic class:

� The SP-patterns ‘(D d1 the #D)’ and ‘(D d2 this #D)’ represent words
of the syntactic class ‘determiner’ (marked by ‘D’ and ‘#D’ in the SP-
pattern).

� The SP-patterns ‘(N n1 dog #N)’ and ‘(N n2 cat #N)’ represent words
of the category ‘noun’.

� The SP-patterns ‘(V v1 walks #V)’ and ‘(V v2 runs #V)’ represent
words of the category ‘verb’.

When the SPCM is run with the New SP-pattern, ‘(this dog runs)’,
and with the SP-patterns in Figure 2 as Old SP-patterns, the best SPMA
created by the program is the one shown in Figure 3. Here, “best” means
that the SPMA in the figure is the one which, via an encoding (as described
in [32, Section 4.1] and [30, Section 3.5]), yields the greatest compression of
the New SP-pattern. Overall, the SPMA may be seen as a parsing of the
sentence ‘(this dog runs)’ in terms of its grammatical constituents.

This example shows how, in a parsing of a simple sentence, each of the
variables ‘D #D’, ‘N #N’, and ‘V #V’, may take on appropriate values. With
other sentences, such as ‘(the cat walks)’ and so on, the variables would
take on different values.

In summary, a superposition in QM is similar to a syntactic class in four
respects:

� ‘Superposition’ in QM and ‘syntactic class’ in linguistics are both ab-
stractions, without any corresponding physical structure in the world;
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0 this dog runs 0

| | |

1 | N n1 dog #N | 1

| | | |

2 S s1 D | #D N #N V | #V #S 2

| | | | | |

3 D d2 this #D | | | 3

| | |

4 V v2 runs #V 4

Figure 3: The best SPMA created by the SPCM using the New SP-pattern
‘(this dog runs)’ and the Old SP-patterns shown in Figure 2.

� They both represent two or more values that are alternatives in one or
more contexts;

� With both superposition and syntactic class, there are situations where
one value is selected out of the two or more values in the superposition
or syntactic class. In QM, this happens when a ‘particle’ is detected
or ‘measured’. With syntactic classes, this happens when a ‘variable’
is assigned a value from the relevant syntactic class.

� In a superposition and in a syntactic class in a stochastic grammar,
there is a probability or frequency associated with each value. Non-
stochastic grammars in linguistics leave out this refinement, but in
effect that means that all the values of any given syntactic class have
the same probability or frequency.

8.2.2 The similarity between ‘superposition’ in quantum mechan-
ics and ‘data type’ in mathematics and computing

As with superposition and syntactic class, there is a similarity between the
concept of superposition in QM and the concept of a ‘data type’ in math-
ematics and computing. As before, it appears that they are similar in four
respects:

� Both ‘superposition’ in QM and ‘data type’ in mathematics or comput-
ing are abstract constructs without any corresponding physical struc-
ture;

� A superposition and a ‘data type’ both represent a range of possible
values that are alternatives in one or more contexts;

� In most applications, there are many situations where a ‘variable’ is
assigned a specific value from the set of values in the data type;
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� As with superposition, probabilistic programming on computers assigns
a probability or frequency to each of the values of each data type.
Where no such probabilities are assigned, we may assume that they
are all the same.

8.3 Superposition and quantum computing

The two preceding subsections (Sections 8.2.1 and 8.2.2) seem to take a lot of
the mystery out of the concept of superposition in QM. In the SP perspective,
superposition is not some seemingly magical feature of QM but can be seen
as a humdrum feature of theoretical linguistics and ordinary mathematics
that may be modelled quite straightforwardly in the SPCM.

This section describes how these ideas relate to concepts in quantum
computing. The main ideas in that area are described by Al-Khalili thus:

“... in 1985, Oxford physicist David Deutsch published a pio-
neering paper that showed how [quantum computing] might be
achieved in practice. ... Deutsch’s machine would operate ac-
cording to quantum principles to simulate any physical process.
It required a row of quantum systems that could each exist in a
superposition of two states, such as atoms in superpositions of
two energy levels. These quantum systems would then be entan-
gled together to create quantum logic gates that would be made
to perform certain operations.

The basic idea is that of the ‘quantum bit’ or qubit. In a normal
digital computer, the basic component is the ‘bit’, a switch that
can be in either of two positions: off or on. These are denoted by
the binary symbols of 0 and 1. However, if a quantum system,
such as an atom, is used then it could exist in the two states at
once. A qubit can thus be both off and on at the same time, just
as long as it can be kept isolated from its environment.

Of course a single qubit is not very useful. But if we entangle two
or more qubits we can start to see the power of such a set-up.
Consider the information content of three classical bits. Each can
be either 0 or 1 and so there are eight different combinations of
the three (000, 001, 010, 100, 011, 101, 110, 111). But just three
entangled qubits allow us to store all eight combinations at once!
Each of the three digits is both a 1 and a 0 at the same time.

Adding a fourth qubit would give us 16 combinations and a fifth,
32 and so on. The amount of information stored increases expo-
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nentially (as 2N , where N is the number of qubits). Now imagine
carrying out operations in the same way that we would with clas-
sical bits. We would be able to perform 2N computations at once,
the ultimate in parallel processing. Certain problems that might
take a normal supercomputer years to solve could be cracked in
a fraction of a second. [1, locations 3421–3433].

In the light of what is said about superposition by Ball and Dirac in Sec-
tion 8.1.3, it seems necessary to view a qubit as an abstraction that describes
‘0’ and ‘1’ as alternatives in a given context. Contrary to the way qubits are
often described for non-specialist readers, they are not versions of classical
bits that can, in some mysterious way, be a “ghostly double exposure” [4,
Location 681] of ‘0’ and ‘1’ at the same time.

8.3.1 Syntactic classes and quantum computing

If the parallels described in Sections 8.2.1 are accepted, then in the SP-
pattern ‘(S s1 D #D N #N V #V #S)’ in Figure 2, the syntactic variable ‘D
#D’ is like a superposition of the SP-patterns ‘(D d1 the #D)’ and ‘(D d2

this #D)’, the syntactic variable ‘N #N’ is like a superposition of the SP-
patterns ‘(N n1 dog #N)’ and ‘(N n2 cat #N)’, and the syntactic variable
‘V #V’ is like a superposition of the SP-patterns ‘(V v1 walks #V)’ and ‘(V
v2 runs #V)’.

Viewed in that way, the whole grammatical structure may be seen as hav-
ing the same general form as the three entangled qubits in the quote from Al-
Khalili near the beginning of Section 8.3 above: (000, 001, 010, 100, 011, 101,
110, 111). Like those three entangled qubits, the grammatical structure has
the potential to create (or ‘generate’ in the jargon of theoretical linguistics)
eight possible sentences like ‘(the dog walks)’, ‘(the dog runs)’, ‘(the
cat walks)’, and so on, corresponding to the eight combinations, (000, 001,
010, 100, 011, 101, 110, 111).

8.3.2 Quantum computing in comparison with ordinary parallel
processing

What is said about syntactic classes in Sections 8.2.1 suggests that, with a
conventional computer working on a linguistic application, parallel processing
may be applied very simply by treating each invocation of a syntactic class
as an opportunity to process all the members of the class in parallel.

Since a syntactic class resembles a superposition in quantum computing
(Section 8.3.1), we may suppose that much the same may be said about
superpositions in quantum computing.
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Thus, we may suppose that the anticipated speedup in any quantum
computer would be largely because the ‘0’ and ‘1’ in each qubit would be
processed in parallel, in essentially the same way as an ordinary parallel-
processing computer, but with different hardware technologies.

That possibility, and several other possibilities are discussed quite fully
by Ball in a chapter in [4] headed “Quantum computers don’t necessarily
perform ‘many calculations at once’ ”. The possibilities described by Ball in
several places between [4, Locations 3010], to [4, Location 3047].

In the light of these and other aspects of quantum computing, there are
reasons to believe that ordinary non-quantum parallel processing may have
advantages compared with quantum computing:

� The range of views described by Ball demonstrate many uncertainties
in current thinking about quantum computing.

� The undoubted technical difficulties in making quantum computers
work: “Just as in a classical computer, the 1s and 0s of the input
to a quantum algorithm are marshalled into binary digits encoding so-
lutions. The catch is that superpositions are generally very ‘delicate’.
They get easily disrupted by disturbances from the surrounding envi-
ronment, particularly the randomizing effects of heat. ... this doesn’t
really mean—as is often implied—that superpositions are destroyed,
but rather that the quantum coherence spreads into the environment,
so that the original system decoheres.” [4, Location 2822].

� It appears to be generally accepted that: “There isn’t a straightfor-
ward way of making use of what QM has to offer, and designing good
quantum algorithms is a very difficult task.” [4, Location 3084]

� A report in the Communications of the ACM describes how a senior
honors student, at the University of Texas at Austin, “discovered an
algorithm that showed classical computers can indeed tackle predic-
tive recommendations at a speed previously thought possible only with
quantum computers.” [16, p. 15].

� A paper by Mikhail Dyakonov [13] argues that the astronomically-large
number of “degrees of freedom” in quantum computing means that, in
answer to the question “When will we have a quantum computer?” in
the title of the paper, “As soon as physicists and engineers learn to
control this number of degrees of freedom, which means—never!” [13,
p. 4].
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� In short, it seems likely that any speed advantage of a quantum com-
puter compared with an ordinary parallel-processing computer, would
be due to the underlying hardware rather than QM concepts as such.

In view of these considerations, it seems that there is a case for devoting
at least as much effort to the development of non-quantum parallel processing
as is currently devoted to the development of quantum computing:

� It seems as likely as not that, in quantum computers, gains in the an-
ticipated speed of processing, or reductions in computational complex-
ity, could be matched with non-quantum parallel processing applied
to knowledge structures with implicit parallelism like syntactic classes
and mathematical data types.

� If it turns out that there is something special about bit-level parallel
processing, that kind of parallelism could probably be developed with
non-quantum computers.

� It seems likely that engineering problems in the advancement of non-
quantum computers would be more easily solved than problems such as
decoherence that have proved so hard to solve with quantum computers.

� It may be that automatic, semi-automatic, or manual programming of
non-quantum computers could prove to be more straightforward than
programming quantum computers.

9 Nonlocality, entanglement, SP-multiple-alignment,

and discontinuous dependencies

The interrelated concepts of ‘superposition’ (discussed in Section 8), ‘nonlo-
cality’ and ‘entanglement’ are described by Al-Khalili thus:

“[Superposition] states that a quantum particle can be in a com-
bination of two or more (mutually exclusive) states at the same
time, while [nonlocality] says that two quantum particles (or two
separate parts of the spread-out wavefunction of the same par-
ticle) can somehow remain in touch with each other however far
apart they are. I will now combine these two ideas together in
order to introduce a third quantum concept.

“In quantum mechanics, the idea of two dice remaining in (nonlo-
cal) contact with each other how ever far apart they are is known
as entanglement.” [1, 1225–1234].
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There is little doubt that the phenomena of “nonlocality” and “entangle-
ment” are genuine features of the world and not merely some “weirdness” in
QM which may, at some stage, be explained away:

“Today, quantum nonlocality and entanglement are no longer the
subject of philosophical debate. They are accepted as crucial
features of the quantum world. Indeed, entanglement of many
particles could lead to the development of a whole new technology
not even dreamed of by the quantum pioneers.” [1, location 1274].

9.1 How the concepts of nonlocality and entanglement
may be represented via the concept of SP-multiple-
alignment in the SP Theory

As with superposition (Section 8), there is a potentially useful analogy for
nonlocality and entanglement in the processing of natural language. This
may be seen as another example of the way aspects of cognitive psychology
may have a bearing on the development of theories in physics (Section ??).

The SPMA shown in Figure 5 provides an example (with simplifications
of some of the details of English grammar). Here, the sentence ‘t w o k i

t t e n s p l a y’ is identified as a sentence (defined by the SP-pattern
‘(S ... #S)’ in row 7), and parsed into constituents such as a noun phrase
(‘(NP ... #NP)’ in row 4), a verb phrase (‘(V ... #V)’ in row 6), and so
on.9

For present purposes, the key point of interest is that, within sentences
like this, there is a syntactic “dependency” between the ‘subject’ at the
beginning (which is the noun-phrase ‘t w o k i t t e n s’) and the main
verb-phrase later in the sentence (which is the single word ‘p l a y’).

The rule here is that, in English at least, if the ‘subject’ noun-phrase is
plural then the main or only verb-phrase must be plural, and if the subject
noun-phrase is singular then the main verb-phrase must be singular. Most
natural languages have dependencies like that, such as for example, gender
dependencies in French, which may cut across number dependencies (for more
discussion, see [30, Section 5.4]).

This kind of dependency is often described as “discontinuous” because it
can jump over intervening structure such as that were only born yesterday

9It is anticipated that, when the SPS is more fully developed (Section 3.2), it will be
able, via unsupervised learning, to discover Old patterns like those in rows 1 to 8 of
Figure 5 for itself, instead of them being provided ready-made in the store of Old
patterns as is the case with that example.
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between the subject noun-phrase, two kittens, and the main verb-phrase,
play, in two kittens that were only born yesterday play, and there appears to
be no limit on how big that intervening structure may be.

Amongst the several ways in which discontinuous dependencies may be
represented in AI systems, one of the simplest is via an SP-pattern within an
SPMA, like the SP-patten in row 8 in Figure 5. Here, the SP-symbol ‘NPp’
(mnemonic for ‘plural noun-phrase’) is aligned with a matching SP-symbol
within the SP-pattern for the subject noun-phrase, ‘(NP NPp D Dp #D N Np

#N #NP)’ in row 4, and the symbol ‘VPp’ (mnemonic for ‘plural verb-phrase’)
is aligned with a matching symbol within the SP-pattern for the main verb-
phrase, ‘(VP VPp Vr #Vr #VP) in row 6.

The fact that the SP-symbols ‘NPp’ and ‘VPp’ both appear in one SP-
pattern (in row 8) is what marks the dependency between the subject noun-
phrase and the main verb-phrase.

This example suggests that insights gained with the SPS may have trac-
tion in QM. It seems possible that a dependency between, for example, two
entangled electrons, such that one electron has a clockwise spin while the
other electron has a counter-clockwise spin, may be understood in a manner
that is similar to our understanding of the phenomenon of syntactic depen-
dencies in natural languages. In both cases:

� There is a correlation between the two elements of the dependency.

� The dependency may bridge arbitrarily large amounts of intervening
structure.

� There is a kind of ‘instant’ communication in the sense that, if we know
one element of a dependent pair, we know immediately what the other
should be. This effect is what Einstein famously called ‘spooky action
at a distance’.10

The kind of instant communication just mentioned—something that has
been verified in many experiments—looks like communication that is faster
than the speed of light and thus incompatible with a basic principle in general
relativity that nothing can travel faster than light. How can that contradic-
tion be resolved?

10“As he declared to his friend Max Born, coining a memorable phrase, ‘Physics
should represent a reality in time and space, free from spooky action at a distance.’ ”,
this quote, including the quote from Einstein, is in [20, Location 8066]. The source for
what Einstein said is given as “Einstein to Max Born, March 3rd, 1947, in [8, p. 155]
(not in Albert Einstein Archives).
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9.2 How a non-local, entangled pair of particles may
be regarded as a single entity

A suggested answer to the question at the end of the preceding subsection
is that what is normally construed as two entangled particles could equally
equally well be seen as a single object, in the same way that the SP-pattern
‘(Num PL ; NPp VPp)’ is a single object containing the two significant SP-
symbols, ‘NPp’ and ‘VPp’. In this case, there is no need for any communication
at all, spooky or otherwise, because if we have a full knowledge of an SP-
pattern, we know its contents.

Ball makes essentially the same point in a chapter in [4] headed “There
is no ‘spooky action at a distance’ ” [4, location 1973]. Without attempting
to discuss all the arguments and counter-arguments that Ball considers, here
is one of the more telling examples that he describes:

“Think of a pair of gloves: one left-handed, the other right-
handed. If we were to post one at random to Alice in Aberdeen
and the other to Bob in Beijing ..., then the moment Alice opened
the parcel and found the left glove (say), she’d know that Bob’s
glove is right-handed. This is trivial, because the gloves had that
handedness all the time they were in transit—it’s just that Alice
and Bob didn’t know which was which until one of them looked.”
[4, locations 1838–1845].

Here, the pair of gloves may be seen as a discrete entity rather than two
separate entities. This is like the SP-pattern ‘(Num PL ; NPp VPp)’ in Figure
5 being regarded as a single entity which provides knowledge of both ‘NPp’
and ‘VPp’ without the need for communication between them.

In the same vein, a little later, Ball writes that:

“We can’t regard particle A and particle B [that are entangled] as
separate entities, even though they are separated in space. As far
as quantum mechanics is concerned, entanglement makes them
both parts of a single object.” [4, location 2026].

Here’s another example. Imagine a scene in which a car is partly obscured
by the trunk of a tree, with the front part visible. If we see the front part
move forwards (or backwards), we can infer instantly that the back of the
car will be moving in the same direction and at the same speed. Of course,
it could be a stage magician’s car that does something different—so, for
that reason, the inference is probabilistic. But in this case the probabilities
strongly favour the normal interpretation.
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Since this kind of scene is very familiar, it would be strange indeed if
people were to speak of nonlocality and entanglement between the front and
back of a car! Perhaps we’ll eventually drop that kind of language when
speaking or writing about entangled quantum particles.

Similar things can be said about left and right brackets as they are nor-
mally used in text. Although they are normally separated by a body of text,
which can be quite variable in its size, we think of them as belonging to a
single entity, which leads to expectations, such as a left curly bracket being
followed by a right curly bracket, or a left square bracket being followed by
a right square bracket, and so on.

10 Conclusions
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A Outline of the SPS

The SP System (SPS), meaning the SP Theory of Intelligence and its re-
alisation in the SP Computer Model (SPCM), is the product of a lengthy
programme of research, seeking to simplify and integrate observations and
concepts across artificial intelligence (AI), mainstream computing, mathe-
matics, and HLPC.

Although this objective is ambitious, the research has met with success in
the discovery and development of the concept of the SP-multiple-alignment
(SPMA) concept within the SPS (Appendix A.5), and the exploration of
how it may function in the modelling of different aspects of intelligence,
and writing a book about the research [30]. That process, including the
development and testing of hundreds of versions of the SPMA within the
CPCM, has taken about 17 years, and there has been a further period of
research, exploring potential benefits and applications of the SPCM [42].

Because of substantial evidence for IC as a unifying principle in brains and
nervous systems [40], a working hypothesis in the SP programme of research
is that IC would be central in the structure and workings of the SPS.

The SPS and some of its applications are described most fully in the book
Unifying Computing and Cognition [30], more briefly but quite fully in the
paper [32], and in outline in this Appendix. Since the SP concepts provide a
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foundation for the proposals and discussion in this paper, readers may find
it useful to read at least one of those descriptions.

Mathematical underpinnings of the SPCM are described in Appendix D.
Key publications in this programme of research, including several about

potential applications of the SPS, are detailed with download links on
bit.ly/37Y0NcI. A more comprehensive list is on on bit.ly/2Gxici2.

Because the SPS is the product of a lengthy programme of research,
seeking to simplify and integrate observations and concepts across a broad
canvass (noted at the beginning of this Appendix A), it naturally has points
of resemblance to many other systems. This has sometimes been construed,
quite wrongly, to mean that the SPS is “nothing but X”, or “nothing but
Y”, etc. With the aim of reducing the chances of misunderstandings in this
area, distinctive features and advantages of the SPS are described in [38].

To forestall any misunderstandings, it cannot be emphasised too strongly
that the SPS is radically different from deep neural networks (DNNs) [38,
Section V].

The organisation and workings of the SPS are outlined in the subsections
that follow.

A.1 The SPS as a brain-like system

The SPS is conceived as a brain-like system that receives New information
that is not compressed from its environment via its senses and stores some
or all of it in compressed form in its ‘brain’ as Old information. This is
illustrated schematically in Figure 4.

Old
(compressed)

New
(not compressed)

Figure 4: A schematic representation of the SPS. Adapted from Figure 1 in
[32], with permission.
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A.2 The central importance of information compres-
sion

In the SPS, IC is a unifying principle because of the previously-mentioned
evidence for the importance of IC in HLPC (Appendix ??). More specifically,
a central idea in the SPS is that IC may be achieved via the matching and
unification of patterns (Appendix ??) which itself may be achieved via the
creation of SPMAs (Appendix A.5).

A.3 The SP Computer Model

The SP Computer Model (SPCM) is a computer program which gives ex-
pression to the elements of the SP Theory of Intelligence.

As previously noted, Appendix D describes the mathematical underpin-
nings of SPCM, both the mathematics included in the model and mathemat-
ics that has contributed to its development.

The development of the SPCM proceeded hand-in-hand with the develop-
ment of the SP Theory. The aim, as mentioned above, has been to discover a
framework for the simplification and integration of observations and concepts
across a broad canvass.

From the germ of an idea about how this may be done, the process of
creating a conceptual framework and developing it was done via the devel-
opment and testing of a very large number of versions of the SPCM. At all
stages, simplification and integration of observations and concepts has been
the touchstone of success or failure.

The lengthy process of development has been extremely important in
weeding out bad ideas and blind alleys in the evolving SP Theory, and it
is largely responsible for the intelligence-related strengths and potential of
the SPS, summarised in Appendix A.7. It is also largely responsible for
the several potential benefits and applications of the SPS, summarised in
Appendix A.8.

Thus the SPCM was not hacked together in a day. Its long period of
research, development, and testing, provides a solid foundation for the SP
Theory of Intelligence.

Source code and Windows executable code for the SPCM may be down-
loaded via links from www.cognitionresearch.org/sp.htm#SOURCE-CODE.

A.4 SP-patterns and SP-symbols

All information in the SPS is stored and processed as SP-patterns, where an
SP-pattern is an array of atomic SP-symbols in one or two dimensions. An
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SP-symbol is simply a mark (from an alphabet of marks) that can be matched
with any other SP-symbol in an all-or-nothing manner. One-dimensional SP-
patterns are normally shown with round brackets (‘(’ and ‘)’) at each end.

At present, the SPCM works only with one-dimensional SP-patterns. It
is envisaged that it will be generalised to work also with two-dimensional SP-
patterns which should open the door to the representation and processing of
pictures, diagrams, and the like.

It would also facilitate the learning of an object or other structure in three
dimensions as described in [33, Sections 6.1 and 6.2]. The basic idea is to
take overlapping pictures of the object from several different angles and then
knit them together by unifying the overlapping areas, in much the same way
that a panoramic picture of a scene can be created from several overlapping
pictures. The technique for creating 3D digital models of objects is now
offered as a service by several commercial companies.

The introduction of two-dimensional SP-patterns would also facilitate the
representation of procedural knowledge with parallel processing [34, Section
IV-H].

A.5 SP-multiple-alignment

Compression of information in the SPS is achieved largely via the building
of SPMAs, a powerful concept which has been borrowed and adapted from
the concept of ‘multiple sequence alignment’ in bioinformatics. An example
of an SPMA is shown in Figure 5.

0 t w o k i t t e n s p l a y 0

| | | | | | | | | | | | | |

1 | | | Nr 5 k i t t e n #Nr | | | | | 1

| | | | | | | | | |

2 | | | N Np Nr #Nr s #N | | | | 2

| | | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3

| | | | | | | | | |

4 NP NPp D Dp #D N Np #N #NP | | | | 4

| | | | | | |

5 | | | Vr 1 p l a y #Vr 5

| | | | |

6 | | | VP VPp Vr #Vr #VP 6

| | | | | |

7 S Num ; NP | #NP VP | #VP #S 7

| | | |

8 Num PL ; NPp VPp 8

Figure 5: The best SPMA created by the SPCM with a store of Old SP-
patterns like those in rows 1 to 8 (representing grammatical structures, in-
cluding words) and a New SP-pattern, ‘(t w o k i t t e n s p l a y)’,
shown in row 0 (representing a sentence to be parsed). Adapted from Figure
1 in [31], with permission.

The concept of SPMA is central in the workings of the SPS and provides
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most of the AI-related versatility of the SPS, summarised in Appendix A.7,
below.

Bearing in mind that underselling concepts is as bad as overselling them,
the concept of SPMA has the potential to be as significant for an understand-
ing of ‘intelligence’ as is DNA for biological sciences. It may prove to be the
“double helix” of intelligence.

A.5.1 How IC is achieved via SPMAs

An SPMA provides for the economical encoding of a New SP-pattern in row
0 (sometimes more than one) in terms of one or more Old SP-patterns, one
per row, in the other rows of the SPMA. For a given SPMA, the amount of
compression of the New SP-pattern that is achieved is calculated as described
in [32, Section 4] and [30, Sections 3.4 and 3.5].

In Section 2.2.9, there is an outline of seven techniques for IC in the SPS,
the last and most powerful of which is the SPMA concept.

In Appendix B, there is a detailed description of how the SPMA concept
may model any or all of the other six techniques for IC, in any combination.

A.5.2 Heuristic search in the building of SPMAs

Because the abstract space of possible SPMAs is astronomically large, it
is not possible to search it exhaustively. Thus it is necessary use heuristic
search: building SPMAs in stages, and retaining only the best ones at the
end of each stage. Here, ‘best’ means the SPMAs that can provide relatively
high levels of IC.

Heuristic search in the SPCM trades accuracy for speed, allowing SPMAs
to be built in a reasonable time, but without any guarantee that best possi-
ble SPMA has been found. However, the search process normally produces
SPMAs that are good enough for how they are to be used.

A.5.3 SPMAs, inference, and probabilities

Because of the intimate relation between IC and concepts of inference and
probability (Appendix ??), each SPMA has associated probabilities ([32,
Section 4.4], [30, Section 3.7]). For each SPMA, there are: 1) the absolute
probability of the encoded version of the New SP-pattern, and 2) the very
much more useful relative probability which facilitates the comparison of one
SPMA with another. Also, for such things as probabilistic reasoning ([32,
Section 10], [30, Chapter 7]), the SPCM can, with two or more SPMAs, cal-
culate the relative probabilities of SP-patterns and SP-symbols ([32, Section
4.4.4], [30, Section 3.7.3]).

41



A.5.4 An abstract view of the SPMA concept in terms of patterns
of redundancy

From an abstract perspective, row 0 of an SPMA may be seen as raw data
from the system’s environment (represented by a New SP-pattern), and each
of the rows below row 0 (which contains one Old SP-pattern) may be seen
as a pattern of redundancy in the world (which, in a more fully developed
SPCM, the system would normally learn via its procedures for unsupervised
learning).

Since each SPMA may always be collapsed into a single sequence, with
the alignments between different rows showing the relative positions of dif-
ferent patterns of redundancy, an SPMA may be seen as a single pattern of
redundancy. Along the length of that pattern, each part that is matched to
a high-frequency Old SP-pattern may be seen to represent a high level of
redundancy, each part that is matched to a low-frequency Old SP-pattern
may be seen to represent a low level of redundancy, and there may be many
values in between.

Since there is in principle no limit to the number of Old SP-patterns
that may appear in an SPMA, or their frequencies of occurrence, there is
in principle no limit to the number of patterns of redundancy that may be
included within the SPMA structure. For that reason, there is in principle no
limit to the accuracy with which that SPMA structure reflects the structure
of the world.

A.6 Unsupervised learning

Unsupervised learning in the SPS means the intake of New information and
its storage in compressed form as Old information, as outlined in Appendix
A.1, above. Compression of information is achieved both via the creation of
SPMAs, and via the creation of SP-grammars, where an SP-grammar is a
set of SP-patterns that have been shown to be effective, collectively, in the
compression of a given body of New information. How much compression
may be achieved via a given SP-grammar is calculated as described in [32,
Section 5] and [30, Chapter 9].

An SP-grammar may be seen, not only as a collection of SP-patterns,
but also as a computational model of the New information from which it was
derived. It is anticipated that unsupervised learning may encompass the cre-
ation of three-dimensional computational models, as described in Appendix
A.4.
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A.7 Intelligence-related strengths and potential of the
SPS

The versatility and potential of the SPS in intelligence-related features are
summarised in [41, Section 3.7], and that summary is reproduced in the
following four subsections.

A.7.1 Versatility in intelligence-related capabilities

The SPS has strengths and potential in several aspects of intelligence includ-
ing: unsupervised learning; the analysis and production of natural language;
pattern recognition that is robust in the face of errors; pattern recognition
at multiple levels of abstraction; computer vision; best-match and semantic
kinds of information retrieval; several kinds of reasoning (next subsection);
planning; and problem solving. There is more detail in [32] and [30].

A.7.2 Versatility in reasoning

The strengths and potential of the SPS in reasoning include: one-step ‘de-
ductive’ reasoning; chains of reasoning; abductive reasoning; reasoning with
probabilistic networks and trees; reasoning with ‘rules’; nonmonotonic rea-
soning and reasoning with default values; a non-Bayesian alternative to
Bayesian reasoning with ‘explaining away’; causal reasoning; reasoning that
is not supported by evidence; the inheritance of attributes in class hierarchies;
and inheritance of contexts in part-whole hierarchies. There is more detail
in [32, Section 10] and [30, Chapter 7]. There is also potential for spatial
reasoning [34, Section IV-F.1] and what-if reasoning [34, Section IV-F.2].

A.7.3 Versatility in the representation of diverse kinds of
intelligence-related knowledge knowledge

Because of the expressive power of the SPMA concept (Appendix A.5), the
SPS has strengths and potential in the representation and processing of sev-
eral kinds of intelligence-related knowledge including: the syntax of nat-
ural languages; class-inclusion hierarchies (with or without cross classifica-
tion); part-whole hierarchies; discrimination networks and trees; if-then rules;
entity-relationship structures; relational tuples; and concepts in mathemat-
ics, logic, and computing, such as ‘function’, ‘variable’, ‘value’, ‘set’, and
‘data type’. The addition of two-dimensional SP-patterns to the SPCM is
likely to expand the representational repertoire of the SPS to structures in
two- and three-dimensions and the representation of procedural knowledge
with parallel processing (Appendix A.4).
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A.7.4 Seamless integration of intelligence-related capabilities
and knowledge

Because of the versatility of the SPS outlined in Sections A.7.1, A.7.2, and
A.7.3, outlined above, and because this versatility is largely due to the cen-
tral role of SPMA, there is clear potential for the seamless integration of di-
verse intelligence-related capabilities and diverse kinds of intelligence-related
knowledge, in any combination.

It appears that that kind of versatility and seamless integration, illus-
trated schematically in Figure 6, is essential in any artificial system that
aspires to human-level broad AI, with fluidity across diverse aspects of intel-
ligence, and with adaptability in the acquisition of new skills, new knowledge,
and new ideas.

A.8 Other potential benefits and applications of the
SPS

The paper [36] outlines of some of the potential benefits and applications of
the SPS, apart from those outlined in Section A.7. These other potential
benefits and applications are described at more length in other papers: how
the SPS may facilitate the management of big data [35]; how the system
may help in the development of intelligence in autonomous robots [34]; how
it may help in the understanding of natural vision and the development of
computer vision [33]; how it may function as an intelligent database system
[31]; and how it may help in the processes of medical diagnosis [29].

A.9 Potential to solve problems in AI research

.
The SPS has clear potential to help solve 19 problems in AI research

[?]. All but 2 of those problems have been described by leading researchers
in AI, in interviews with the writer Martin Ford and presented in his book
Architects of Intelligence [15].

A.10 A foundation for the development of human-like
general AI

The strengths and potential of the SPS described in Appendices A.7 to A.9
suggest that the SPS provides a firmer foundation for the development of
AGI than any alternative, and that includes DNNs.
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Figure 6: A schematic representation of versatility and integration in the
SPS, with SPMA at centre stage. Adapted from Figure 6 in [40], with per-
mission.



A.11 SP-Neural

SP-Neural is a version of the SPS in which concepts such as SP-pattern,
SP-symbol, and SPMA are expressed in terms of neurons with their inter-
connections and intercommunications [37].

A.12 SP Machine

It is intended that the ‘SP Machine’ will be derived from the SPCM with
the application of high levels of parallel processing provided by one or more
GPUs with many cores, and improvements in its user interface.

It is envisaged that the SP Machine will be a vehicle for further re-
search and development, by individual researchers and groups, towards an
industrial-strength device, with guidance from a ‘roadmap’ presented in [25].
This development is shown schematically in Figure 7.

SP Theory and SP Computer Model

SP MACHINEHigh parallel
In the cloud

Open source
Good user interface

Representation of knowledge Natural language processing

Several kinds of reasoning Planning & problem solving

Information compression Unsupervised learning

Pattern recognition Information retrieval

MANY APPLICATIONS

Figure 7: Schematic representation of the development and application of
the SP machine. Reproduced from Figure 2 in [32], with permission.

Since the SPS is part of the proposed NM, the SP Machine may also
provide a basis for the development of the NM.
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B How each of six variants of ICMUP may

be seen as special cases of the SP-multiple-

alignment concept

In writing about the SP system, it has proved useful in Section 2.2 to outline
seven variants of ICMUP.

The purpose of this appendix is to describe with examples how the first
six of those variants of ICMUP may be realised via the SPMA concept,
how each of those six variants of ICMUP should be seen as instances of the
more general principle of information compression via SPMA, and how all
six variants may be integrated seamlessly within the SPMA framework, in
any combination.

Most of this appendix has been transferred from the unpublished technical
report [39], with editing. All references to this material should now be made
to this appendix, not the earlier technical report.

B.1 Basic ICMUP

The simplest version of ICMUP is where two patterns match each other and
they are merged or ‘unified’ to make one. This may be modelled very simply
and directly in the SPMA framework with a simple match between all or
part of a New SP-pattern (such as ‘k i t t e n’ in Figure 5) and one Old
SP-pattern (such as ‘Nr 5 k i t t e n #Nr’ in the same figure).

B.2 Chunking-with-codes

The basic idea here is that, with each unified ‘chunk’ of information, give it
a relatively short name, identifier, or ‘code’, and use that as a shorthand for
the chunk of information wherever it occurs. This is illustrated by the same
example as was given in Appendix B.1. Here, ‘k i t t e n’ is the chunk of
information and the SP-symbols ‘Nr 5 ... #Nr’ serve as the code for that
chunk.

B.3 Schema-plus-correction

The schema-plus-correction may be illustrated with a simple example: the
kinds of things that need to be done in serving a meal in a restaurant or cafe
in response to an order from a customer. The example will be described first,
and how it illustrates the schema-plus-correction concept will follow.
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Figure 8 shows an SP-grammar, comprising a collection of SP-patterns,
which may be seen as a highly simplified program for the serving of a meal
to order.

The first SP-pattern in the figure, ‘PM ST #ST MC #MC PD #PD #PM’ de-
scribes the overall structure of the procedure for serving a meal. It is identi-
fied by the pair of SP-symbols ‘SM ... #SM’, mnemonic for ‘serve meal’.

The main steps are the serving of a starter (‘ST ... #ST’), the serving of
the main course (‘MC ... #MC’), and the serving of a pudding (‘PD ... #PD’).
Corresponding SP-patterns are shown in the second and subsequent rows in
the figure: there are three kinds of starter, five kinds of main course, and
four kinds of pudding.

SM ST #ST MC #MC PD #PD #SM | Serve meal

ST 0 mussels #ST | Starter: serve a dish of mussels

ST 1 soup #ST | Starter: serve a bowl of soup

ST 2 avocado #ST | Starter: serve an avocado dish

MC 0 lassagne #MC | Main course: serve a lassagne dish

MC 1 beef #MC | Main course: serve a beef dish

MC 2 nut-roast #MC | Main course: serve a nut-roast dish

MC 3 kipper #MC | Main course: serve a kipper

MC 4 salad #MC | Main course: serve a salad

PD 0 ice cream #PD | Pudding: serve ice cream

PD 1 apple crumble #PD | Pudding: serve apple crumble

PD 2 fresh fruit #PD | Pudding: serve fresh fruit

PD 3 tiramisu #PD | Pudding: serve tiramisu

Figure 8: An SP-grammar comprising a set of SP-patterns representing, in
a highly simplified form, the kinds of procedures involved in serving a mean
for a customer in a restaurant or cafe. To the right of each SP-pattern is an
explanatory comment, after the symbol ‘|’.

To see how this grammar functions in practice, consider the SPMA shown
in Figure 9.

This SPMA is the best one created by the SPCM with the New SP-
pattern, ‘SM 0 4 1 #SM’, processed in conjunction with Old SP-patterns
shown in Figure 8. Here, the New SP-pattern may be seen as an economi-
cal description of what the customer ordered: a starter comprising a dish of
mussels represented by the short code ‘0’; a main course chosen to be a salad
represented by the short code ‘4’; and a pudding which in this case is apple
crumble, represented by the code ‘1’.

Assuming that each of the SP-symbols ‘mussels’, ‘salad’, and ‘apple
crumble’, represents the execution of instructions for serving the correspond-
ing dish, the whole SPMA may be seen to achieve the effect of serving what
the customer has ordered.
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0 1 2 3 4

SM -- SM | Serve meal

ST ---------- ST | Serve starter

0 ----------------- 0

mussels

#ST --------- #ST

MC -- MC | Serve main course

4 --------- 4

salad

#MC - #MC

PD -------------------- PD | Serve pudding

1 --------------------------- 1

apple

crumble

#PD ------------------- #PD

#SM - #SM

0 1 2 3 4

Figure 9: The best SPMA created by the SPCM with the New SP-pattern,
‘SM 0 4 1 #SM’, and the set of Old SP-patterns shown in Figure 8. Com-
ments are shown on the right, each one following the symbol ‘|’.

In terms of the schema-plus-correction concept, the SP-pattern ‘SM ST

#ST MC #MC PD #PD #SM’ may be seen as the schema, which in this case is
the overall structure of the meal. Like any other schema, it may also be seen
as a chunk of information which in this case has the code ‘SM ... #SM’.

In this example, the ‘corrections’ to the schema are the choices made by
the customer, represented by the digits in the SP-pattern ‘SM 0 4 1 #SM’.
As noted above, ‘0’ means “Serve the starter mussels”, ‘4’ means (serve)
salad, and ‘1’ means (serve) apple crumble.

Although the example is very simple, it shows how a meal can be described
very economically with the SP-pattern ‘SM 0 4 1 #SM’. Because the menu
has been identified by the pair of symbols ‘SM’ and ‘#SM’, it is not necessary
to put in information to identify the starter, main course, and pudding, or
any other information that is associated with those three courses.

B.4 Run-length coding

The variant called ‘run-length coding’ may be used with any sequence of
two or more copies of an SP-pattern. In that case, it is only necessary to
record one copy of the SP-pattern, with something to define the length of the
sequence, such as the number of copies of the SP-pattern, or tags to mark
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the start and end of the sequence.
With the SP system, run-length coding may be achieved via recursion,

as described in Section B.4.1.

B.4.1 Recursion

The SP system does not provide for the repetition of procedures via these
kinds of statement: while ..., do ... while ..., for ..., or repeat ... until .... But
the same effect may be achieved via recursion, as illustrated in Figure 10.

0 1 2 3 4 5 6 7 8 9 10

pg ---------------- pg

a ----------------------------------------------------------------------------- a

a6 ------------------------------------------------------------------------------------------------ a6

procedure-A

#a ---------------------------------------------------------------------------- #a

ri ------------------------------ ri

ri1

ri ---------------- ri

ri1

ri ---------------- ri

ri1

ri

#ri

b ----------- b

b1 ---------------------------------------------------------------------------- b1

procedure-B

#b ---------- #b

#ri --------------- #ri

b ----------- b

b1 -------------------------------------------------------- b1

procedure-B

#b ---------- #b

#ri --------------- #ri

b ----------- b

b1 ------------------------------------ b1

procedure-B

#b ---------- #b

#ri ----------------------------- #ri

c ----------- c

c4 -- c4

procedure-C

#c ---------- #c

d --- d

d3 ---------------------- d3

procedure-D

#d -- #d

#pg --------------- #pg

0 1 2 3 4 5 6 7 8 9 10

Figure 10: An SPMA produced by the SP model showing how, via recursion
mediated by a self-referential SP-pattern (which is ‘ri ri1 ri #ri b #b

#ri’ in this example), the SP system may model the repetition of a procedure
or function, which in this examples is shown as ‘procedureB’.

A key point here is that the SP-pattern ‘ri ri1 ri #ri b #b #ri’
(which appears in columns 5, 7, and 9) is recursive because it is self-
referential, and this is because the pair of SP-symbols ‘ri #ri’ within the
larger SP-pattern ‘ri ri1 ri #ri b #b #ri’ may be matched and unified
with the same two SP-symbols at the beginning and end of that larger SP-
pattern. Hence, the larger SP-pattern contains a reference to itself.
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B.5 Class-inclusion hierarchies with inheritance of at-
tributes

The way in which a class-inclusion hierarchy may be modelled in the SP
system is described in Section B.5.1, with an illustration in Figure 11.

B.5.1 Example: a class-inclusion hierarchy in the SP system

In Figure 11, the SPMA produced by the SPCM shows how a previously
unknown entity with features shown in the New SP-pattern in column 1 may
be recognised at several levels of abstraction: as an animal (column 1), as
a mammal (column 2), as a cat (column 3) and as the specific cat ‘Tibs’
(column 4).

From this SPMA, we can see how the entity that has now been recog-
nised inherits unseen characteristics from each of the levels in the class hier-
archy: as an animal (column 1) the creature ‘breathes’ and ‘has-senses’;
as a mammal it is ‘warm-blooded’; as a cat it has ‘carnassial-teeth’ and
‘retractile-claws’; and as the individual cat Tibs it has a ‘white-bib’ and
is ‘tabby’.

B.6 Part-whole hierarchies with inheritance of con-
texts

This is like class-inclusion hierarchies with inheritance of attributes except
that the structure represents the parts and subparts of some entity. Each
subpart may be seen to inherit its place in larger structures.

The way in which a part-whole hierarchy may be modelled in the SP
system is described in Section B.6.1.

B.6.1 Example: a part-whole hierarchy in the SP system

Figure 12 shows how a part-whole hierarchy may be accommodated in the
SP system. Here, an SP-pattern representing the concept of a car is shown in
column 2, with parts such as ‘<engine>’ ‘<body>’, and ‘<gearbox>’. The SP-
pattern in column 1 shows parts of an engine such as ‘<cylinder-block>’,
‘<pistons>’, and ‘<crankshaft>’. The SP-pattern in column 3 shows
how the body may be divided into such things as ‘<steering-wheel>’,
‘<dashboard>’, and ‘<seats>’. The SP-pattern in column 5 divides the dash-
board into parts that include ‘<speedometer>’ and ‘<fuel-gauge>’. And
the SP-pattern in column 4 divides the speedometer into ‘<speed-dial>’,
‘<speed-pointer>’, and more.
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0 1 2 3 4

T

Tibs

C ---------------- C

cat

M ------------ M

mammal

A ---------- A

animal

head ---------------------- head

carnassial-teeth

#head --------------------- #head

body ----------------------------------------- body

white-bib ------------------------------------------------ white-bib

#body ---------------------------------------- #body

legs ---------------------- legs

retractile-claws

#legs --------------------- #legs

eats ------ eats

breathes

has-senses

...

#A --------- #A

furry ------------------ furry

warm-blooded

...

#M ----------- #M

purrs --------------------------------- purrs

...

#C --------------- #C

tabby

...

#T

0 1 2 3 4

Figure 11: The best SPMA found by the SP model, with the New SP-
pattern ‘white-bib eats furry purrs’ shown in column 1, and a set of Old
SP-patterns representing different categories of animal and their attributes
shown in columns 1 to 4. Reproduced with permission from Figure 6.7 in
[30].
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0 1 2 3 4 5

<car>

c1

<engine> --------- <engine>

e1

<cylinder-block>

<pistons>

<crankshaft> ----- <crankshaft>

...

</engine> -------- </engine>

<body> ---- <body>

b1

<steering-wheel> -------------------------------- <steering-wheel>

<dashboard> ------------------------ <dashboard>

d1

<speedometer> --- <speedometer>

sp1

<speed-dial> ------------------------------------------------------- <speed-dial>

<speed-pointer>

...

</speedometer> -- </speedometer>

<fuel-gauge>

...

</dashboard> ----------------------- </dashboard>

<seats>

...

</body> --- </body>

<gearbox> --------------------------- <gearbox>

...

</car>

0 1 2 3 4 5

Figure 12: The best SPMA found by the SP model, with the New
SP-pattern ‘<crankshaft> <steering-wheel> <speed-dial> <gearbox>’
shown in column 1, and a set of Old SP-patterns representing different parts
and sub-parts of a car, shown in columns 1 to 5.



The kind of structure shown in Figure 12 exhibits a form of inheritance,
much like inheritance in a class-inclusion hierarchy. In this case, recognition
of something as a ‘<speed-dial>’ suggests that it is likely to be part of a
‘<dashboard>’, which itself is likely to be part of the ‘body’ of a ‘<car>’.
This kind of inference is the kind of thing that crime investigators will do:
search for a missing body when a severed human arm has been discovered.

C ICMUP applications

As noted in Section 2.2.3, a working hypothesis in this research is that
ICMUP is fundamental not only in mathematics [41] but also in all tech-
niques for IC, including those described in Section 2.2. This appendix tries
to summarise that working hypothesis in terms of broad categories of tech-
nique.

C.1 Matching a pair of one-dimensional SP-patterns

With one-dimensional SP-patterns there are, broadly, two matching schemes.

� Matching both SP-patterns from left-to-right. Examples here include
the techniques used in the SP research to date which are largely the
techniques described in Section 2.2.

� Mirror-matching. Matching one SP-pattern from left-to-right and the
other from right-to-left. Nothing like this has been tried with the SPCM
but it should be a relatively easy thing to implement.

In both cases, the two SP-patterns would be matched, as described in
[30, Appendix A] and incorporated into the SPCM, or something equivalent,
which allows for zero, one, two, or more matching segments between the two
SP-patterns. In other words, there can be discontinuous matches or complex
partial matches, as well as exact matches between two SP-patterns.

C.2 Matching a pair of two-dimensional SP-patterns

The main possibilities with two-dimensional SP-patterns include:

� Vertical matching. Matching would be the same as in the two options
in Section C.1, but, in addition, from top to bottom and bottom to
top.
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� Create a panorama. A panorama may be created, left to right or from
right to left, from two or more partially-overlapping views.

� The discovery of a three-dimensional digital model of an entity. This
can be done by taking several partially-overlapping views of an entity.
The technique is used to create Google’s Street Views, and it is also
used by commercial companies to create 3D digital models of objects
(see [33, Sections 6.1 and 6.2]).

� Fusing images from two eyes, with the inference of objects and dis-
tances. In a book published in 1971 [21], Béla Julesz presented pairs of
random-dot images which, when viewed through a stereoscope would
yield the perception of one or more objects suspended above a back-
ground, with or without variations in depth in the object(s). Since
each of the two images was entirely random, the perception must have
derived from a process of mental fusing of the two images, together
with redundancies between the two images.

What is happening here may be explained by a theory developed by
Marr and Poggio [24]. Since ICMUP has an important role in that
theory, we may supposed that the same is true of human perceptions
of random-dot stereograms.

Both suppositions are strengthened by the workings of a computer pro-
gram developed by Grimson [17] which, in accordance with Marr and
Poggio’s theory, could discover the hidden image in a random-dot stere-
ogram with performance on a late-1970s computer that “coincides well
with that of human subjects” [17, Section 5].

Apart from the creation of a panorama (second item above) or creating a
digital image of an object from overlapping views of the object (third item),
all the matchings described above, including those in Section C.1, would
have the same generality and potential for the discovery of complex partial
matches, or discontinuous matches, as the matching processes in the SPCM,
described in [30, Appendix A].

C.3 Established techniques for IC

The suggestion here, with only brief discussion, is that in all the established
techniques for IC, such as those described by Darrel Hankerson and colleagues
[18], and by Khalid Sayood [26], ICMUP, may be seen at work in either or
both of two ways:
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� Via direct ICMUP. Examples here include the popular LZ algorithms
described in [26, Section 5.4].

� Via mathematics. Examples include arithmetic coding [26, Chapter 4]
and wavelet compression [26, Chapters 15 and 16]. It seems that much
of the power of methods like these derives from mathematics, which is
itself founded on ICMUP [41].

In the first case, above, it is clear that ICMUP has a prominent roll.
In the second case, ICMUP may also be seen to have an important roll if

it is accepted that “Mathematics [may be seen] as information compression
via the matching and unification of patterns” [41] (see also Section 2.2.10).

D Mathematics incorporated in the SP Com-

puter Model or contributing to its devel-

opment

In order to demonstrate that, notwithstanding the hundreds of versions of
the SPCM that were developed [?, Section 3], and the reliance on ICMUP
for the modellin of inferences and unsupervised learning (Section 2.2.1), the
SPCM has a fundamental rigour, illustrated in this appendix with details
of mathematics that is incorporated in the SPCM or contributing to its
development. It is adapted with permission from [40, Appendix A].

D.1 Searching for repeating patterns

At first sight, the process of searching for repeating patterns (Appendix ??)
is simply a matter of comparing one pattern with another to see whether they
match each other or not. But there are, typically, many alternative ways in
which patterns within a given body of information, I, may be compared—and
some are better than others.

We are interested in finding those matches between patterns that repre-
sent most redundancy and thus, via unification, yield most compression—and
a little reflection shows that this is not a trivial problem [30, Section 2.2.8.4].

Maximising the amount of redundancy found means maximising R where:

R =
i=n∑
i=1

(fi − 1) · si, (1)
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fi is the frequency of the ith member of a set of n patterns and s is its size in
bits. Patterns that are both big and frequent are best. This equation applies
irrespective of whether the patterns are coherent substrings or patterns that
are discontinuous within I.

Maximising R means searching the space of possible unifications for the
set of big, frequent patterns that gives the best value. For a sequence con-
taining N symbols, the number of possible subsequences (including single
symbols and all composite patterns, both coherent and fragmented) is:

P = 2N − 1. (2)

The number of possible comparisons is the number of possible pairings of
subsequences which is:

C = P (P − 1)/2. (3)

For all except the very smallest values of N , the value of P is very large
and the corresponding value of C is huge. In short, the abstract space of
possible comparisons between patterns and thus the space of possible unifi-
cations is, in the great majority of cases, astronomically large.

Since the space is normally so large, it is not feasible to search it exhaus-
tively. For that reason, it is normally necessary to use heuristic methods in
searching—conducting the search in stages and discarding all but the best
results at the end of each stage—and we must be content with answers that
are “reasonably good”.

Because it is not normally possible to use exhaustive search, we cannot
normally guarantee to find the theoretically ideal answer. And, normally, we
cannot know whether or not we have found that theoretically ideal answer.

D.2 Information, compression of information, induc-
tive inference and probabilities

Solomonoff [27, 28] seems to have been one of the first people to recognise the
close connection that exists between IC and inductive inference: predicting
the future from the past, and calculating probabilities for such inferences.
The connection between them—which may at first sight seem obscure—lies
in the redundancy-as-repetition-of-patterns view of redundancy (Appendix
??):

� Patterns that repeat within I represent redundancy in I, and IC can
be achieved by reducing multiple instances of any pattern to one.
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� When we make inductive predictions about the future, we do so on
the basis of repeating patterns. For example, the repeating pattern
‘Spring, Summer, Autumn, Winter’ enables us to predict that, if it is
Spring time now, Summer will follow.

Thus IC and inductive inference are closely related to concepts of fre-
quency and probability. Here are some of the ways in which these concepts
are related:

� Probability has a key role in Shannon’s concept of information. In
that perspective, the average quantity of information conveyed by one
symbol in a sequence is:

H = −
i=n∑
i=1

pi log pi, (4)

where pi is the probability of the ith type in the alphabet of n available
alphabetic symbol types. If the base for the logarithm is 2, then the
information is measured in ‘bits’.

� Measures of frequency or probability are central in techniques for eco-
nomical coding such as the Huffman method [11, Section 5.6] or the
Shannon-Fano-Elias method [11, Section 5.9].

� In the redundancy-as-repetition-of-patterns view of redundancy and
IC, the frequencies of occurrence of patterns in I is a main factor (with
the sizes of patterns) that determines how much compression can be
achieved.

� Given a body of (binary) data that has been ‘fully’ compressed (so that
it may be regarded as random or nearly so), its absolute probability
may be calculated as pABS = 2−L, where L is the length (in bits) of the
compressed data.

Probability and IC may be regarded as two sides of the same coin. That
said, they provide different perspectives on a range of problems. In this
research, the IC perspective—with redundancy-as-repetition-of-patterns—
seems to be more fruitful than viewing the same problems through the lens
of probability. In the first case, one can see relatively clearly how compres-
sion may be achieved by the primitive operation of unifying patterns whereas
these ideas are obscured when the focus is on probabilities.
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D.3 Random-dot stereograms

A particularly clear example of the kind of search described in Appendix ??
is what the brain has to do to enable one to see the figure in the kinds of
random-dot stereogram described in [40, Section 11].

In this case, assuming the left image has the same number of pixels as
the right image, the size of the search space is:

S = P 2/2 (5)

where P is the number of possible patterns in each image, calculated in the
same way as was described in Appendix D.1. The fact that the images are
two dimensional needs no special provision because the original equations
cover all combinations of atomic symbols.

For any stereogram with a realistic number of pixels, this space is very
large indeed. Even with the very large processing power represented by the
1011 neurons in the brain, it is inconceivable that this space can be searched
in a few seconds and to such good effect without the use of heuristic methods.

David Marr [23, Chapter 3] describes two algorithms that solve this prob-
lem. In line with what has just been said, both algorithms rely on constraints
on the search space and both may be seen as incremental search guided by
redundancy-related metrics.

D.4 Coding and the evaluation of SPMAs in terms of
IC

Given an SPMA like one of the two shown in Figure 5, one can derive a code
SP-pattern from the SPMA in the following way:

1. Scan the SPMA from left to right looking for columns that contain an
SP-symbol by itself, not aligned with any other symbol.

2. Copy these SP-symbols into a code pattern in the same order that they
appear in the SPMA.

The code SP-pattern derived in this way from the SPMA shown in Figure 5
is ‘S PL 4 5 1 #S’. This is, in effect, a compressed representation of those
symbols in the New pattern that form hits with Old symbols in the SPMA.

Given a code SP-pattern derived in this way, we may calculate a ‘com-
pression difference’ as:

CD = BN −BE (6)
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or a ‘compression ratio’ as:

CR = BN/BE, (7)

where BN is the total number of bits in those symbols in the New pattern
that form hits with Old symbols in the SPMA, and BE is the total number
of bits in the code SP-pattern (the ‘encoding’) that has been derived from
the SPMA as described above.

In each of these equations, BN is calculated as:

BN =
h∑

i=1

Ci, (8)

where Ci is the size of the code for ith symbol in a sequence, H1...Hh, compris-
ing those symbols within the New pattern that form hits with Old symbols
within the SPMA (Appendix D.5).

BE is calculated as:

BE =
s∑

i=1

Ci, (9)

where Ci is the size of the code for ith symbol in the sequence of s symbols
in the code pattern derived from the SPMA (Appendix D.5).

D.5 Encoding individual symbols

The simplest way to encode individual symbols in the New pattern and the
set of Old patterns in an SPMA is with a ‘block’ code using a fixed number of
bits for each symbol. But the SPCM uses variable-length codes for symbols,
assigned in accordance with the Shannon-Fano-Elias coding scheme [11, Sec-
tion 5.9] so that the shortest codes represent the most frequent alphabetic
symbol types and vice versa. Although this scheme is slightly less efficient
than the well-known Huffman scheme, it has been adopted because it avoids
some anomalous results that can arise with the Huffman scheme.

For the Shannon-Fano-Elias calculation, the frequency of each alphabetic
symbol type (fst) is calculated as:

fst =
P∑
i=1

(fi × oi) (10)

where fi is the (notional) frequency of the ith pattern in the collection of
Old SP-patterns (the grammar) used in the creation of the given SPMA, oi
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is the number of occurrences of the given symbol in the ith SP-pattern in
the grammar and P is the number of SP-patterns in the grammar.

D.6 Calculation of probabilities associated with any
given SPMA

As may be seen in [30, Chapter 7], the formation of SPMAs in the SP frame-
work supports a variety of kinds of probabilistic reasoning. The core idea
is that any Old symbol in a SPMA that is not aligned with a New symbol
represents an inference that may be drawn from the SPMA. This section
describes how absolute and relative probabilities for such inferences may be
calculated.

D.6.1 Absolute probabilities

Any sequence of L symbols, drawn from an alphabet of |A| alphabetic types,
represents one point in a set of N points where N is calculated as:

N = |A|L. (11)

If we assume that the sequence is random or nearly so, which means that
the N points are equi-probable or nearly so, the probability of any one point
(which represents a sequence of length L) is close to:

pABS = |A|−L. (12)

In the SPCM, the value of |A| is 2.
This equation may be used to calculate the absolute probability of the

code, C, derived from the SPMA as described in Appendix D.4. pABS may
also be regarded as the absolute probability of any inferences that may be
drawn from the SPMA as described in [30, Section 7.2.2].

D.6.2 Relative probabilities

The absolute probabilities of SPMAs, calculated as described in the last
subsection, are normally very small and not very interesting in themselves.
From the standpoint of practical applications, we are normally interested in
the relative values of probabilities, not their absolute values.

The procedure for calculating relative values for probabilities (pREL) is
as follows:

1. For the SPMA which has the highest CD (which we shall call the
reference SPMA), identify the symbols from New which are encoded
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by the SPMA. We will call these symbols the reference set of symbols
in New.

2. Compile a reference set of SPMAs which includes the SPMA with the
highest CD and all other SPMAs (if any) which encode exactly the
reference set of symbols from New, neither more nor less.

3. The SPMAs in the reference set are examined to find and remove any
rows which are redundant in the sense that all the symbols appearing in
a given row also appear in another row in the same order.11 Any SPMA
which, after editing, matches another SPMA in the set is removed from
the set.

4. Calculate the sum of the values for pABS in the reference set of SPMAs:

pA SUM =
i=R∑
i=1

pABSi
(13)

where R is the size of the reference set of SPMAs and pABSi
is the value

of pABS for the ith SPMA in the reference set.

5. For each SPMA in the reference set, calculate its relative probability
as:

pRELi
= pABSi

/pA SUM . (14)

The values of pREL calculated as just described seem to provide an ef-
fective means of comparing the SPMAs in the reference set. Normally, this
will be those SPMAs which encode the same set of symbols from New as the
SPMA which has the best overall CD.

D.7 Sifting and sorting of SP-patterns in unsupervised
learning in the SPS

In the process of unsupervised learning in the SPS (Appendix A.6 and [30,
Chapter 9]), which starts with a set of New SP-patterns, there is a process of
sifting and sorting Old SP-patterns that are created by the SPS to develop
one or more alternative collections of Old SP-patterns (grammars), each one

11If Old is well compressed, this kind of redundancy amongst the rows of a SPMA
should not appear very often.
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of which scores well in terms of its capacity for the economical encoding of
the given set of New SP-patterns.

When all the New SP-patterns have been processed in this way, there
is a set A of full SPMAs, divided into b1...bm disjoint subsets, one for each
SP-pattern from the given set of New SP-patterns. From these SPMAs, the
program computes the frequency of occurrence of each of the p1...pn Old
SP-patterns as:

fi =

j=m∑
j=1

max(pi, bj) (15)

where max(pi, bj) is the maximum number of times that pi appears in any
one of the SPMA in the subset bj.

The program also compiles an alphabet of the alphabetic symbol types,
s1...sr, in the Old SP-patterns and, following the principles just described,
computes the frequency of occurrence of each alphabetic symbol type as:

Fi =

j=m∑
j=1

max(si, bj) (16)

where max(si, bj) is the maximum number of times that si appears in any one
SPMA in subset bj. From these values, the encoding cost of each alphabetic
symbol type is computed using the Shannon-Fano-Elias method as before
[11, Section 5.9].

In the process of building alternative grammars, the tree of such alter-
natives is pruned periodically to keep it within reasonable bounds. Values
for G, E and (G + E) (which we will refer to as T ) are calculated for each
grammar and, at each stage, grammars with high values for T are eliminated.

For a given grammar comprising SP-patterns p1...pg, the value of G is
calculated as:

G =

i=g∑
i=1

(

j=Li∑
j=1

sj) (17)

where Li is the number of symbols in the ith SP-pattern and sj is the encoding
cost of the jth SP-symbol in that SP-pattern.

Given that each grammar is derived from a set a1...an of SPMAs (one
SPMA for each pattern from New), the value of E for the grammar is calcu-
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lated as:

E =
i=n∑
i=1

ei (18)

where ei is the size, in bits, of the code SP-pattern derived from the ith
SPMA.

D.8 Finding good matches between two sequences of
symbols

At the heart of the SPCM is a process for finding good matches between
two sequences of symbols, described quite fully in [30, Appendix A]. What
has been developed is a version of dynamic programming with the advantage
that it can find two or more good matches between sequences, not just one
good match.

The search process uses a measure of probability, pn, as its metric. This
metric provides a means of guiding the search which is effective in practice
and appears to have a sound theoretical basis. To define pn and to justify it
theoretically, it is necessary first to define the terms and variables on which
it is based:

� A sequence of matches between two sequences, sequence1 and se-
quence2, is called a ‘hit sequence’.

� For each hit sequence h1...hn, there is a corresponding series of gaps,
g1...gn. For any one hit, the corresponding gap is g = gq + gd, where
gq is the number of unmatched characters in the query between the
query character for the given hit in the series and the query character
for the immediately preceding hit; and gd is the equivalent gap in the
database, g1 is taken to be 0.

� A is the size of the alphabet of symbol types used in sequence1 and
sequence2.

� p1 is the probability of a match between any one symbol in sequence1
and any one symbol in sequence2 on the null hypothesis that all hits are
equally probable at all locations. Its value is calculated as: p1 = 1/A.

Using these definitions, the probability of any hit sequence of length n is
calculated as:
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pn =
i=n∏
i=1

(1− (1− p1)
gi+1), g1 = 0

.
With this equation, is relatively easy to calculate the probability of the

hit sequence up to and including any hit by using the stored value of the hit
sequence up to and including the immediately preceding hit.

E Abbreviations

The abbreviations used in this paper are shown here in alphabetical order:

� Artificial intelligence: ‘AI’.

� Human learning, perception, and cognition: ‘HLPC’.

� Information compression: ‘IC’.

� Information compression via the matching and unification of patterns:
‘ICMUP’.

� New Mathematics: ‘NM’.

� Quantum Mechanics: ‘QM’.

� SP-multiple-alignment: ‘SPMA’.

� Standardised form for knowledge: ‘STFK’.

� Universal Framework for the representation and processing of diverse
kinds of Knowledge: ‘UFK’.

The name ‘SP’ originates in two features of the research: 1) The SP
Theory is intended, in itself, to combine Simplicity with descriptive and ex-
planatory Power; and 2) The SPS works entirely by the compression of a
given body of information, I, and this may be seen as a process that pro-
motes Simplicity in I whilst retaining as much as possible of the descriptive
and explanatory Power of I.

However, it is intended that ‘SP’ should be treated as a name, without any
need to expand the letters in the name or explain the origin of the letters, as
with names such as ‘IBM’ or ‘BBC’.
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