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Abstract

This paper describes a novel approach to medical diagnosis based on the SP theory of
computing and cognition. The main attractions of this approach are: a format for represent-
ing diseases that is simple and intuitive; an ability to cope with errors and uncertainties
in diagnostic information; the simplicity of storing statistical information as frequencies
of occurrence of diseases; a method for evaluating alternative diagnostic hypotheses that
yields true probabilities; and a framework that should facilitate unsupervised learning of
medical knowledge and the integration of medical diagnosis with other AI applications.
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1 Introduction

The problem of providing computational support for medical diagnosis has been
approached from many directions including logical reasoning, fuzzy logic, set the-
ory, rough set theory, if-then rules, Bayesian networks, artificial neural networks,
case-based reasoning, support vector machines, perceptrons, possibility theory, and
others.

This paper describes a novel approach to diagnosis based on the SP theory of com-
puting and cognition. The main attractions of this approach are:

• A format for representing diseases that is simple and intuitive.
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• An ability to cope with errors and uncertainties in diagnostic information.
• The simplicity of storing statistical information as frequencies rather than condi-

tional probabilities.
• A method for evaluating alternative diagnostic hypotheses that yields true prob-

abilities.
• A framework that should facilitate unsupervised learning of medical knowledge

and the integration of medical diagnosis with other AI applications.

It should be emphasised that the primary purpose of this paper is conceptual: to
describe an approach to medical diagnosis that is significantly different from the
main alternatives and with potential advantages compared with those alternatives.
Although a prototype of the proposed new system exists, it is not yet a shrink-
wrapped tool that is ready for immediate application.

Key elements of the SP theory are first described, just sufficient for present pur-
poses. Section 3 describes how the theory may be applied to medical diagnosis,
viewed as a process of pattern recognition. This section also discusses how the SP
system relates to several aspects of the diagnostic process, including causal reason-
ing and the process of acquiring the knowledge that is needed for accurate diagno-
sis. Section 4 compares this new approach to medical diagnosis with some of the
alternatives. The paper concludes with an outline of what still needs to be done in
this programme of research and with a review of the main points that have been
made.

2 The SP theory

The SP theory grew out of a long tradition in psychology that many aspects of brain
function may be understood as information compression (see, for example, [1–4]).
It is based on principles ofminimum length encoding1 pioneered by Solomonoff
[5], Wallace and Boulton [6], Rissanen [7] and others (see also [8]). An overview
of the theory is presented in [9] and more detail may be found in other papers cited
there (see also [10]).

The SP theory has been developed as an abstract model ofany system for pro-
cessing information, either natural or artificial. In broad terms, the system receives
‘New’ information from its environment and transfers it to a repository of ‘Old’
information. At the same time, it tries to compress the information as much as pos-
sible by finding patterns that match each other and merging or ‘unifying’ patterns
that are the same.2 An important part of this process is the building of ‘multiple

1 An umbrella term for ‘minimum message length encoding’ and ‘minimum description
length encoding’.
2 The term ‘unification’ in the SP theory means a simple merging of two or more identical
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alignments’ as described below.

To date, the main areas in which the SP framework has been applied are proba-
bilistic reasoning, pattern recognition and information retrieval [11], parsing and
production of natural language [12], modelling concepts in logic and mathematics
[13], and unsupervised learning [14,15].

2.1 Representation of knowledge

In the SP system,all kinds of knowledge are stored as arrays of atomicsymbolsin
one or two dimensions calledpatterns. In work to date, the main focus has been
on one-dimensional patterns (i.e., sequences of symbols) but it is envisaged that, at
some stage, the concepts will be generalised to patterns in two dimensions.

For present purposes, we may define patterns and symbols as follows:

• A pattern is a sequence of symbols bounded by end-of-pattern characters such
as ‘(’ and ‘)’, not shown in the examples in this paper.

• A symbolis a string of non-space characters bounded by white space (space
characters, line-feed characters and the like).

• Any symbol can be matched with any other symbol and, for any one pair of
symbols, the two symbols are either ‘the same’ or ‘different’. No other result is
permitted.

• Symbols have no intrinsic meaning such as ‘add’ for the symbol ‘+’ in arithmetic
or ‘multiply’ for the symbol ‘×’. Any meaning attaching to an SP symbol takes
the form of one or more other symbols with which it is associated in a given set
of patterns.

• Each pattern has an associated integer value representing the absolute or relative
frequency of occurrence of that pattern in some domain.

Despite the extraordinary simplicity of this format for representing knowledge, the
way in which SP patterns are processed within the system means that they can
model a wide variety of established representational schemes, including context-
free and context-sensitive grammars, class-inclusion hierarchies, part-whole hier-
archies, discrimination networks and trees, if-then rules, and others.

patterns to make one. This meaning is different from but related to the meaning of the term
in logic.
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2.2 Processing knowledge

A key part of the process of matching patterns is the building of ‘multiple align-
ments’, illustrated below. As in bioinformatics (whence the concept has been bor-
rowed), a multiple alignment in the SP framework comprises two or more se-
quences of symbols arranged so that matching symbols are aligned. By contrast
with the bioinformatics concept, one or more of the patterns has the status ‘New’
and all the rest are ‘Old’. A ‘good’ alignment is one that allows the New pattern or
patterns to be encoded economically in terms of the Old patterns, as described in
[9].

In bioinformatics, it is generally understood that the search space of alternative
possible alignments between two or more sequences is astronomically large and
cannot be searched exhaustively. All practical methods for finding ‘good’ align-
ments amongst two or more sequences use heuristic methods such as ‘hill climbing
(or ‘descent’), ‘beam search’, ‘genetic algorithms’ or the like. With methods like
these, one can find good approximate solutions in a reasonable time but one can
never be sure of finding the best possible solution unless the sequences are very
short and very few.

Finding good multiple alignments in the SP system is no different. The process has
been realised in the SP62 computer model (an improved version of SP61 described
in [12] 3 ) which uses a form of hill climbing to find good multiple alignments.

The process of building multiple alignments in the SP system provides a unified
model for a variety of computational effects including fuzzy pattern recognition,
best-match information retrieval, probabilistic and exact styles of reasoning, unsu-
pervised learning, planning, problem solving and others, as described in [9].

The SP framework is Turing-equivalent in the sense that it can model a universal
Turing machine [16] but it has much more to say about the nature of ‘intelligence’
than the Turing model of computing (or equivalent models such as lamda calculus
[17] or the Post canonical system [18]).

2.2.1 Computational complexity

The time complexity of the SP62 model in a serial processing environment is ap-
proximately O(log2n× nm), wheren is the size of the New pattern or patterns (in
bits) andm is the total size of the patterns in Old (in bits). In a parallel processing
environment, the time complexity may approach O(log2 n× n), depending on how

3 The main difference between SP62 and SP61 is that each multiple alignment created
by SP62 contains oneor moreNew patterns, whereas each multiple alignment created by
SP61 containsoneNew pattern and only one such pattern.
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well the parallel processing is applied. The space complexity in serial or parallel
environments is O(m). Further details may be found in [12].

In medical diagnosis, it seems reasonable to suppose that there will normally be a
fairly small maximum for the number of signs and symptoms (abbreviated here-
inafter as ‘symptoms’) exhibited by any one patient. Correspondingly, there should
be a maximum size for the size of the set of New patterns (that are used to repre-
sent the patient’s symptoms). If we take this to be a constant value forn, then in a
serial processing environment the time complexity is approximately O(m) and in a
parallel processing environment it may approach O(1).

3 Application of the SP system to medical diagnosis

To a large extent, medical diagnosis may be viewed as a problem of (fuzzy) pattern
recognition: finding the best fit between a given set of symptoms for an individual
patient and the symptoms associated with one or more diseases. However, causal
reasoning also has a part to play when, for example, it is understood that a given
disease is caused by a bacterial or virus infection.

This section presents an example showing how the SP system may be applied to
medical diagnosis, viewed as a process of pattern recognition. The system may
also support causal reasoning about medical problems and this is discussed briefly
in Section 3.9, below.

Within this main section, Subsection 3.10 describes how the SP system may facili-
tate the acquisition of knowledge that is required for medical diagnosis.

3.1 Describing diseases using SP patterns

In the SP scheme, knowledge about diseases may be stored as patterns in a reposi-
tory of Old information and the symptoms for an individual patient may be repre-
sented as a set of one or more New patterns.

A pattern in the store of Old information may represent one disease and its associ-
ated symptoms, or a combination of diseases (see Section 3.7.2, below), or it may
represent a cluster of symptoms that tend to occur together in two or more different
diseases (see Section 3.5, below). In addition, Old may include patterns that play
supporting r̂oles (see Section 3.6, below).

The frequency value of each pattern may be used to represent the absolute or rel-
ative frequency with which a given disease or cluster of symptoms is found in a
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given population. These figures may be derived from population surveys or they
may be estimated by medical experts.

By way of illustration, Figure 1 shows three examples of such patterns, one de-
scribing the symptoms of chicken pox, another describing the symptoms of small-
pox and the third describing the cluster of symptoms which is described as ‘fever’.
The number in brackets after each pattern is a very rough estimate of the relative
frequencies of occurrence of the corresponding disease or condition.4

Each of these example patterns begins and ends with a pair of symbols ‘<disease>
... </disease>’ which indicate that the pattern describes a disease or a cluster of
disease symptoms. Within each pattern, there are similar pairs of symbols, each
one marking the beginning and end of a ‘field’ which describes some aspect of
the disease or cluster. For example, ‘<dname> Chicken Pox</dname>’ provides
the name of the chicken pox disease, ‘<skin> rash</skin>’ describes one of its
symptoms, ‘<causativeagent> chicken pox virus</causativeagent>’ describes
what causes the disease, and ‘<treatment> chicken pox treatment</treatment>’
is a remarkably unhelpful description of how to treat the disease which would, of
course, be much more detailed in a fully developed knowledge base.

Within the pattern for chicken pox, the field ‘<R2> fever</R2>’ indicates that
‘fever’ is one of the symptoms of the disease. However, by contrast with other fields
like those just mentioned, the symbol ‘fever’ is, in effect, a reference or pointer
to a cluster of symptoms such as rapid breathing, flushed face and high temper-
ature described in the third pattern in the same figure. In a similar way, ‘<R1>
flu symptoms</R1>’ in the pattern for smallpox is a reference or pointer to an-
other pattern, not shown in the figure, that describes a cluster of symptoms associ-
ated with influenza and flu-like diseases. The way in which pointers like these are
dereferenced in the SP system will be seen in the next section.

Readers who are familiar with XML [19] will notice that pairs of symbols like
‘<disease> ... </disease>’ or ‘ <dname> ... </dname>’ are rather like the start
and end tags used to mark the elements of an XML document. However, by contrast
with XML and related languages such as HTML, symbols of that kind have no
formal status in the SP system and the styles of symbols are not defined within the
system. Any convenient style may be used such as ‘disease ... #disease’ or ‘disease
... %disease’ and in some applications it is not necessary to provide any distinctive
markers for the beginnings and ends of patterns or fields. The concept of ‘field’ has
no formal status in the SP system.

4 The figure for smallpox is clearly too high in the world today but it will serve for the
purpose of illustration.
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<disease> chicken_pox :
<dname> Chicken Pox </dname>
<R2> fever </R2>
<appetite> normal </appetite>
<chest> normal </chest>
<chills> no </chills>
<cough> no </cough>
<diarrhoea> no </diarrhoea>
<fatigue> no </fatigue>
<lymph_nodes> normal </lymph_nodes>
<malaise> yes </malaise>
<muscles> normal </muscles>
<nose> normal </nose>
<skin> rash </skin>
<throat> normal </throat>
<weight_change> no </weight_change>
<causative_agent> chicken pox virus </causative_agent>
<treatment> chicken pox treatment </treatment>

</disease> (2500)

<disease> smpx :
<dname> Smallpox </dname>
<R1> flu_symptoms </R1>
<appetite> normal </appetite>
<chest> normal </chest>
<diarrhoea> no </diarrhoea>
<fatigue> no </fatigue>
<lymph_nodes> normal </lymph_nodes>
<malaise> no </malaise>
<skin> rash with blisters </skin>
<weight_change> no </weight_change>
<causative_agent> smallpox virus </causative_agent>
<treatment> smallpox treatment </treatment>

</disease> (5)

<disease> fever
<breathing> rapid </breathing>
<face> flushed </face>
<temperature> <t1> </t1> </temperature>

</disease> (15000)

Fig. 1. Three SP patterns, one describing the symptoms of chicken pox, another describing
the symptoms of malaria and the third describing the symptoms of fever.

3.2 Multiple alignment and medical diagnosis

The process of diagnosis may be modelled by the building of one or more multiple
alignments. Figure 3 shows the best alignment created by SP62 with a set of New
patterns shown in Figure 2 that describe ‘John Smith’ and his symptoms and a set
of Old patterns like those shown in Figure 1 that represent diseases or aspects of
diseases. By convention, the New pattern or patterns in any alignment is always
shown in column 0 with the Old patterns in the remaining columns, one pattern
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per column. Apart from this constraint, the order of the patterns in the alignment is
entirely arbitrary.

<patient> John Smith </patient>
<face> flushed </face>
<appetite> poor </appetite>
<breathing> rapid </breathing>
<muscles> aching </muscles>
<chills> yes </chills>
<fatigue> yes </fatigue>
<lymph_nodes> normal </lymph_nodes>
<malaise> no </malaise>
<nose> runny </nose>
<temperature> 38-39 </temperature>
<throat> sore </throat>

Fig. 2. The set of New patterns supplied to SP62 for the example discussed in the text.

An alignment like this may be interpreted as the result of a process of recognition.
In this case, the symptoms that have been recognised are those of influenza, as
shown in column 2. The following subsections discuss aspects of the alignment
and of this interpretation.

3.3 A ‘framework’ pattern

In an application like this, it is convenient but not essential to include amongst
the Old patterns a ‘framework’ pattern like the one shown in column 1. This
is a generalised pattern for diseases of all kinds that lists the main categories
associated with diseases such as ‘<dname> </dname>’ (the name of the dis-
ease), ‘<breathing> </breathing>’ (the state of the patient’s breathing) and
‘<temperature> </temperature>’ (the patient’s temperature), but it does not spec-
ify specific values for any category.

This framework pattern serves as an anchor point for symbols in other patterns
and facilitates the formation of multiple alignments in accordance with the rules
described in [9] and earlier publications.

3.4 The ordering of descriptors

In an application like medical diagnosis, it is not obvious that there is any intrinsic
order to the symptoms of a disease or associated descriptors such as the name of the
patient. In describing a patient’s symptoms, it should make no difference whether
‘high temperature’ is mentioned before ‘runny nose’ or the other way round.

In the SP framework, each pattern that describes a disease or a cluster of symp-
toms necessarily imposes an order in which categories of descriptors are specified.
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0 1 2 3 4 5

<disease> ---------- <disease> ---------- <disease> ---- <disease>
flu

: ------------------ :
<patient> ------ <patient>
John
Smith
</patient> ----- </patient>

<dname> ------------ <dname>
Influenza

</dname> ----------- </dname>
<R1> --------------- <R1>

flu_symptoms ------- flu_symptoms
</R1> -------------- </R1>
<R2> ------------------------------------ <R2>

fever -------- fever
</R2> ----------------------------------- </R2>

<appetite> ----- <appetite> --------- <appetite>
poor normal
</appetite> ---- </appetite> -------- </appetite>
<breathing> ---- <breathing> -------------------------------------------- <breathing>
rapid ------------------------------------------------------------------- rapid
</breathing> --- </breathing> ------------------------------------------- </breathing>

<chest> ------------ <chest>
normal

</chest> ----------- </chest>
<chills> ------- <chills> -------------------------------- <chills>
yes ------------------------------------------------------ yes
</chills> ------ </chills> ------------------------------- </chills>

<cough> --------------------------------- <cough>
yes

</cough> -------------------------------- </cough>
<diarrhoea> -------- <diarrhoea>

no
</diarrhoea> ------- </diarrhoea>

<face> --------- <face> ------------------------------------------------- <face>
flushed ----------------------------------------------------------------- flushed
</face> -------- </face> ------------------------------------------------ </face>
<fatigue> ------ <fatigue> ---------- <fatigue>
yes no
</fatigue> ----- </fatigue> --------- </fatigue>

<headache> ------------------------------ <headache>
yes

</headache> ----------------------------- </headache>
<lymph_nodes> -- <lymph_nodes> ------ <lymph_nodes>
normal ------------------------------ normal
</lymph_nodes> - </lymph_nodes> ----- </lymph_nodes>
<malaise> ------ <malaise> ---------- <malaise>
no ---------------------------------- no
</malaise> ----- </malaise> --------- </malaise>
<muscles> ------ <muscles> ------------------------------- <muscles>
aching --------------------------------------------------- aching
</muscles> ----- </muscles> ------------------------------ </muscles>
<nose> --------- <nose> ---------------------------------- <nose>
runny ---------------------------------------------------- runny
</nose> -------- </nose> --------------------------------- </nose>

<skin> ------------- <skin>
normal

</skin> ------------ </skin>
<temperature> -- <temperature> ------------------------------------------ <temperature>

<t1> ----------- <t1>
38-39 ------------------------------------------------------------------------------------ 38-39

</t1> ---------- </t1>
</temperature> - </temperature> ----------------------------------------- </temperature>
<throat> ------- <throat> -------------------------------- <throat>
sore ----------------------------------------------------- sore
</throat> ------ </throat> ------------------------------- </throat>

<weight_change> ---- <weight_change>
no

</weight_change> --- </weight_change>
<causative_agent> -- <causative_agent>

influenza
virus

</causative_agent> - </causative_agent>
<treatment> -------- <treatment>

influenza
treatment

</treatment> ------- </treatment>
</disease> --------- </disease> --------- </disease> --- </disease>

0 1 2 3 4 5

Fig. 3. The best alignment found by SP62 with the set of patterns from Figure 2 in New (de-
scribing the symptoms of the patient ‘John Smith’) and a set of patterns in Old describing a
range of different diseases and named clusters of symptoms, together with the ‘framework’
pattern shown in column 1.
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However, users of the system may specify the patient’s symptoms in any order that
is convenient. This is because symptoms are described using a set of New patterns
and there is no intrinsic order amongst the New patterns supplied to the system. In
our example, New patterns were supplied to the SP62 model in the order shown
in Figure 2 but in the alignment shown in Figure 3 they appear in a completely
different order.

Notice that this freedom in the ordering of descriptors only applies to whole pat-
terns. When two or more symbols in one pattern are matched to two or more sym-
bols in another, the order of the symbols in one pattern must be the same as the
order of the matching symbols in the other pattern.

3.5 Dereferencing of pointers

As already noted, a symbol like ‘fever’ or ‘flusymptoms’ in one pattern may serve
as a reference or pointer to another pattern that describes a cluster of symptoms that
may be found in two or more different diseases.

In Figure 3, we can see how such pointers are ‘de-referenced’ in the SP system.
The symbol ‘flusymptoms’ in column 2 is matched to the same symbol in column
3 where flu-like symptoms are listed. Likewise, the symbol ‘fever’ in column 3 is
matched to the same symbol in column 4 where the symptoms of fever or listed.
Fever is itself part of the cluster of flu-like symptoms.

The provision of named clusters like these saves the need to specify the correspond-
ing symptoms redundantly in each of the diseases where such clusters appear.

3.6 Uncertainties in diagnosis

Diagnosis is not an exact process:

• Most diseases are ‘family resemblance’ or ‘polythetic’ concepts because the ma-
jority of symptoms associated with any given disease are neither necessary nor
sufficient for the diagnosis of the disease: they are ‘characteristic’ of the disease
in the sense that any one such symptom need not be present in every case and
any of them may be associated with other diseases.

• There may be and frequently are errors in the observation or recording of symp-
toms.

SP62 can accommodate these kinds of uncertainty in diagnosis in two distinct ways:

• Because it looks for a global best match amongst patterns, it does not depend
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on the presence or absence of any particular symptom. Notice how SP62 has
succeeded in constructing the alignment shown in Figure 3 despite there being
no match for ‘poor’ in the New pattern ‘<appetite> poor</appetite>’ and ‘yes’
in the New pattern ‘<fatigue> yes</fatigue>’ and no match for many of the
symbols in the Old patterns.

Although the system does not depend on the presence or absence of any one
symptom, particular symptoms can have a major impact on diagnosis, as de-
scribed in Section 3.7.1, below.

• Within the SP framework, it is not necessary for every symptom of a disease to
be recorded as a specific value. For example, in column 4 of the alignment in
Figure 3, the pair of symbols ‘<t1> </t1>’ represents a set of alternative values
for the temperature associated with fever. In this case, there are just two values,
represented in Old by the patterns ‘<t1> 38-39</t1>’ (high temperature) and
‘<t1> 40+</t1>’ (very high temperature). The first of these patterns is shown
in column 5 of the alignment, matched to the temperature of the patient shown
in column 0.

Being able to specify symptoms as sets of alternative values allows the system
to accommodate the kind of variability which is so prominent in many diseases.

3.7 Weighing alternative hypotheses and the calculation of probabilities

In medical diagnosis, it is quite usual for the physician to consider alternative hy-
potheses about what disease or diseases the patient may be suffering from. The SP
framework provides a model for this process in the way the system builds alterna-
tive alignments for any given pattern in New. Alignments—and the corresponding
diagnoses—may be evaluated as follows.

For each alignment, a ‘compression difference’ (CD) is calculated asBn − Be,
whereBn is the total size (in bits) of those symbols within the New pattern that have
been matched to Old symbols within the alignment, andBe is the size (in bits) of
the code for those New symbols, derived from the given alignment as explained in
[9,12]. The details of how these values are calculated are explained in [12]. They are
derived in part from the frequency values for patterns mentioned at the beginning
of Section 3.2.

Be may be translated into a probability:

pabs = 2−Be . (1)

For each alignment in a set of alternative alignments,A1...AR, that encode the same
symbols from New, a relative probability may be calculated as:

preli = pabsi
/psum, (2)
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where

psum =
i=R∑

i=1

pabsi
(3)

A fuller account of the way probabilities are calculated may be found in [11].

Given that the New patterns represent the symptoms of one patient at a particular
time and given that each pattern in Old describes a single disease or a single cluster
of symptoms that may form part of the description of one or more diseases, then
each alignment formed by SP62 represents a hypothesis about anyonedisease that
the patient may have.

Where alternative alignments encode different subsets of the symbols in New, it is
possible that the patient may be suffering from two or more diseases at the same
time. This possibility is discussed in Section 3.7.2, below. However, where two or
more of the best alignments encode exactly the same symbols from New, then they
representalternativediagnostic hypotheses and they may be compared using values
of prel.

When SP62 formed the alignment shown in Figure 3, it also formed a similar align-
ment, matching exactly the same symbols in New, in which column 2 contained a
pattern representing the symptoms of smallpox, instead of the pattern for influenza.
Theprel values calculated in this case were 0.99950 for influenza and 0.00049 for
smallpox, reflecting the prevalence of those two diseases in the world today.5

3.7.1 ‘Explaining away’

The symptoms of influenza and smallpox are quite similar, except for the very dis-
tinctive rash and blisters that occur in smallpox. The example shown in Figure 3 is
silent about whether John Smith had a rash and blisters or not. If a rash and blisters
had been seen to be absent, this would have been represented as ‘<skin> normal
</skin>’. Given this lack of information about those symptoms, the patient is very
much more likely to have influenza than smallpox, as indicated by the calculated
probabilities.

If ‘ <skin> rash with blisters</skin>’ is added to the symptoms recorded in New,
and if SP62 is run again with the augmented set of symptoms, the best alignment
found by the system is similar to that shown in Figure 3 but with the pattern for
smallpox (the second pattern in Figure 1) instead of the pattern for influenza in
column 2 and with a match shown between ‘<skin> rash with blisters</skin>’ in

5 There are, of course, other factors that may be relevant—such as the possibility that
someone might release the smallpox virus deliberately—but in this example knowledge of
such other factors has been excluded.
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the set of New patterns and the same symbols in the pattern that describes smallpox.
However, in this casethere is no other alignment that matches the same symbols
in New. Consequently, the value ofprel for the best alignment is 1.0. In short, the
addition of one distinctive symptom to the list of symptoms has a dramatic effect
on the relative probabilities calculated by the system. Instead of a vanishingly small
probability for smallpox (0.00049), the system now assigns it a probability of 1.0,
in accordance with our intuitions.

From this result, we may conclude that the patient certainly has smallpox and that
his aching muscles and runny nose are due to smallpox, not influenza. This is the
phenomenon of ‘explaining away’: “If A implies B, C implies B, and B is true,
then finding that C is true makes Alesscredible. In other words, finding a second
explanation for an item of data makes the first explanation less credible.” ([20, p.
7], with the emphasis as in the original).

3.7.2 A patient may suffer from two or more diseases at the same time

As noted above, it is possible for a patient to suffer from two or more diseases at the
same time. Given that the Old patterns in the system describe single diseases, then
the system would create two or more ‘good’ alignments, each one corresponding
to one of the diseases that the patient is suffering from.

If we want the system to calculate probabilities for combinations of diseases, then
the repository of Old patterns must contain patterns that represent combinations of
that kind. Each such pattern may be constructed economically using references to
the component diseases, in much the same way that clusters of symptoms may be
referenced, as described in Section 3.5.

As with single diseases, frequency values for a combinations of diseases may be
obtained from population surveys or by the judgement of medical experts. In the
absence of any direct evidence of a statistical association between two or more dis-
eases, it seems reasonable to assume that they are statistically independent. In such
cases, frequency values may be derived straightforwardly via normalised values for
the frequencies of occurrence of individual diseases. Whether the frequency values
for combinations of diseases are measured, estimated or derived, they can be used
for the calculation ofCD values and probabilities in exactly the same way as for
single diseases.

Of course, there are so many possible combinations of diseases that it would be
impossible to store information about them all. A more practical option may be to
store information in Old about individual diseases and combinations of diseases
that are known to have a statistical association with each other. One may assume
that all other combinations of diseases are statistically independent.
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3.8 Inferences and the diagnostic cycle

In a multiple alignment like the one shown in Figure 3, any symbol within an Old
pattern that isnot matched to a symbol in New represents an inference that may
be drawn from the alignment. In this example, we may infer from the alignment
inter alia that the patient is likely to have a cough and a headache and that the
standard treatment for influenza is required. Probabilities of these inferences can
be calculated as described in [11].

If a ‘good’ alignment makes a prediction about some marker that may be found in
the patient’s blood or something that may be observed in an X-ray, this may be in-
terpreted as a suggestion to the physician that he or she should order an appropriate
blood test or X-ray. If tests of that kind or other kinds of investigation are instigated
as a result of the inferences drawn from preliminary alignments, the results of those
investigations, together with the original symptoms, may be fed back into the sys-
tem as New information. The system may then be run again and the alignments that
are created may suggest a final diagnosis or the need for further investigation—and
so on.

3.9 Causal reasoning

Apart from the kinds of inference just described, medical diagnosis often seems to
involve a ‘deeper’ kind of reasoning about the causes of symptoms and diseases,
using knowledge of bacteria, viruses, anatomy, physiology and so on.

The SP framework supports a variety of styles of reasoning, including probabilistic
‘deductive’ reasoning, abductive reasoning, nonmonotonic reasoning and (as we
saw in Section 3.7.1) ‘explaining away’ (see [11]). So there are reasons to believe
that, within the SP framework, it may be possible to extend the pattern recognition
analysis described above to incorporate causal styles of reasoning.

Recent investigation has confirmed this expectation. The input-output relations of
each subsystem within a larger system can be modelled in the SP framework as a
set of patterns, and causal connections can be established by matching outputs to
inputs. As with the analysis described above, a ‘framework’ pattern is also needed
to ensure that alignments can be formed in an appropriate manner. These potential
applications of the system need further exploration and development.
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3.10 Acquisition of knowledge

Broadly speaking, the knowledge that is required in any artificial system for medi-
cal diagnosis can be obtained ‘manually’ from experts or written sources, or it may
be obtained by the automatic or semi-automatic abstraction of knowledge from raw
medical data, or some combination of the two. The SP system has potential to fa-
cilitate any or all of these processes.

3.10.1 Elicitation of expert knowledge

It should be apparent from the example described above that the SP system provides
a means of representing medical knowledge in a form that is simple and intuitive.
The simplicity of representing all knowledge as patterns is, perhaps, less important
than the fact that this system allows computer-based knowledge to be expressed in
a form that apparently reflects the natural structure of the original concepts.

This feature of the system should facilitate traditional kinds of knowledge elicita-
tion from experts or written sources. Medical experts should have little difficulty
in expressing their knowledge directly in the form of SP patterns. Given that such
experts are often busy and their time is, in any case, expensive, there are advantages
if at least some of the process of building computer-based knowledge bases can be
undertaken by knowledge engineers without specialised medical training. It should
be possible for such people to derive a good deal of the necessary knowledge from
medical text books and other written sources.

3.10.2 Unsupervised learning

At its most abstract level (Section 2), the SP model is conceived as a system that
learns by transferring New information to its repository of Old information and
compressing it at the same time. This abstract conception has now been realised
more concretely in the form of the SP70 computer model [14,15] that is capable
of learning simple grammars from raw data. However, further development of the
model is needed to realise its full potential.

The current model has two stages:

(1) From partial alignments between patterns, the model creates new patterns that
are added to the repository of Old patterns. For example, if ‘A B C P Q R S
D E F G’ is aligned in the obvious way with ‘A B C X Y Z D E F G’, the
system isolates the matched subsequences ‘A B C’ and ‘D E F G’ as discrete
elements and adds system-generated ‘code’ symbols to each one to create
patterns like ‘<%1> A B C </%1>’ and ‘<%2> D E F G </%2>’. In a
similar way, the system isolates the unmatched subsequences ‘P Q R S’ and
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‘X Y Z’ and gives them code symbols that show that they are alternatives in
the same context. The model also creates an ‘abstract’ pattern that records the
sequence of lower-level patterns in terms of their code symbols.

(2) Amongst the patterns that are generated in this way, some are ‘good’ in terms
the principles of minimum length encoding and others are ‘bad’. In the sec-
ond stage of processing, the model measures the frequency with which each
pattern may be recognised in the raw data and then it uses this information in
a hill-climbing search amongst subsets of the Old patterns to find one or more
sets of patterns that are good in terms of the principles of minimum length
encoding. The remaining patterns may be discarded.

It is envisaged that, when the model is more fully developed, these two stages will
be repeated so that the system can progressively bootstrap a set of patterns that
are good in terms of the principles of minimum length encoding and represent a
distillation of the patterns of redundancy in the original data.

If the potential of this model can be realised, the SP system should facilitate the
automatic or semi-automatic construction of knowledge bases from raw medical
data.

3.11 Classes and subclasses of diseases

One of the attractions of the SP system is that it allows concepts to be represented at
multiple levels of abstraction (e.g., ‘cat’, ‘mammal’, ‘vertebrate’, ‘animal’) in the
manner of object-oriented design and, via the building of multiple alignments, it
allows a specific entity (such as “my cat Tibs”) to be recognised at several different
levels of abstraction [9,11].

To some extent, this idea is already illustrated by the example shown in Figure 3.
The concept of ‘fever’, represented by the pattern in column 4 of the figure, may be
seen as a superclass of all the diseases where the patient may be feverish. Likewise,
the pattern for flu symptoms (column 3 in the figure) may be seen as a superclass
of the diseases in which such symptoms may be seen.

By contrast with the classification of animals and plants, the hierarchy of diseases
tends to be relatively flat. However, there is scope for the recognition of classes and
subclasses in the variants of diseases such as influenza and diabetes. With the SP
system, each variant of a given disease may be recorded as a pattern that specifies
the symptoms that are characteristic of the variant. Provided that pattern contains
a symbolic link to another pattern describing the main symptoms of the disease,
there is no need to repeat those symptoms redundantly in each of the variants.
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4 Comparison with alternatives

As mentioned in the introduction, a wide variety of philosophies and systems have
been applied to the problem of medical diagnosis. In this section, I briefly review
some of the more prominent of these approaches and compare them with the SP
approach, as described in this paper.

4.1 Rule-based systems

Rule-based systems (like the well-known MYCIN system [21]) contain if-then
rules where the ‘if’ side of any rule is a collection of one or more conditions for
the rule to fire connected by logical operators such as ‘AND’, ‘OR’ (which may be
inclusive or exclusive) and ‘NOT’. By contrast, the SP system expresses all knowl-
edge in the form of patterns.

At first sight, SP patterns lack the expressive power of if-then rules. But the effect
of such rules can be modelled within the SP system if that is required [16,13]. And
if medical diagnosis is viewed as a process of pattern recognition (as in this paper),
then SP patterns and the SP framework are, arguably, a more natural and flexible
medium for the representation and processing of knowledge than are if-then rules.

To illustrate this last point, we can express the distinctive features of influenza by a
rule such as:

IF chills AND cough AND headache AND aching muscles AND runny nose AND sore throat
THEN influenza (probability = 0.9)

Although there may be a probability associated with the rule (as shown), the rule
has an intrinsic logic which, if strictly applied, means that the rule willonly fire if
all the conditions are satisfied. By contrast, a pattern like the one shown in column
3 of Figure 3 may appear in the best alignment when any reasonably large subset
of its symbols have been matched.

If one attempted to achieve this kind of flexibility with an if-then rule using combi-
nations of AND, OR and NOT, the rule would become very complex. Alternatively,
one might split up the rule into a number of smaller rules, one for each symptom
or combination of two or three symptoms—but again the result would be relatively
complex.

4.1.1 Probabilities

In systems like MYCIN and some of its successors, the ‘probabilities’ that the
system calculates are really measures of confidence without the theoretical under-
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pinnings of probability theory. In other systems, “... formal approaches based on
probability theory are precise but can be awkward and non-intuitive to use.” [22, p.
272]. By contrast, the SP framework allows true probabilities to be calculated quite
simply (see [11]) and strictly in accordance with established theory (as described
in sources such as [23]).

4.2 Neural networks

One of the attractions of artificial neural networks for the support of medical di-
agnosis is that they can be trained with appropriate data, thus by-passing the need
for the manual compilation of knowledge by medical experts or knowledge engi-
neers. However, “A major drawback is that ‘knowledge’ embedded [in the neural
network] is cryptically coded as a large number of weights and activation values.
As a consequence, the lack of neural network validation tools is often one of the
reasons limiting their use in practice, especially in the context of medical diagnosis
where physicians cannot trust a system without explanation of its decisions.” [24,
pp. 141–142].

While there may be scope for extracting rules from a trained neural network (ibid.),
this adds complexity and uncertainty to the technology and defeats the other main
attraction of a neural network: as a classifier of specific cases in terms of the learned
knowledge.

As a system for unsupervised learning of knowledge structures from raw data, the
SP system is not yet a rival to existing neural network systems. However, the system
has clear potential for unsupervised learning and, if that potential can be realised,
the system has the advantage that its knowledge is stored in a form that can be read
and understood by people. Meanwhile, if it is supplied with knowledge about dis-
eases derived from experts or text books, it can be used for diagnostic classification
of individual patients.

4.3 Fuzzy logic

Given the variability of diseases and other uncertainties associated with medical
diagnosis (Section 3.6), fuzzy logic (see, for example, [25]) has the obvious attrac-
tion that it has been designed with the explicit intention of providing a model for
‘fuzzy’ concepts and ‘fuzzy’ operations on them.

In purely theoretical terms, the field of fuzzy logic may be criticised because it in-
troduces a fairly elaborate conceptual framework to accommodate the undoubtedly
fuzzy nature of many human concepts but this conceptual framework is poorly in-
tegrated with other ideas about the nature of human cognition. By contrast, the SP
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theory grew out of research in psychology and it provides a plausible model for
several aspects of human perception and cognition [9].

Considerations of that kind may be discounted as not relevant to the practicalities
of medical diagnosis. But in that connection fuzzy logic has the drawback that it
introduces another layer of complexity to the already difficult process of eliciting
knowledge from medical experts [26]. There seems to be some scope for ameliorat-
ing this problem by the provision of appropriate tools (ibid.) but the basic problem
remains. By contrast, the SP system allows concepts to be expressed in a simple,
intuitive manner and, at the same time, it accommodates much, perhaps all, of the
fuzziness of medical diagnosis.

4.4 Bayesian networks

Two of the main differences between Bayesian networks (see, for example, [20])
and the SP system are:

• Bayesian networks focus on the binary relationship between any given node in
the network and each of its parent nodes (if any). In this respect, they inherit
some of the thinking behind if-then rules. By contrast, the SP system is oriented
towards the representation and processing of associations (expressed as patterns)
that may contain arbitrarily many elements.

• Correspondingly, any given Bayesian network stores its statistical knowledge in
the form of tables of conditional probabilities, one for each node in the network.
By contrast, the SP system stores its statistical knowledge in the form of inte-
gers, one for each pattern, representing the absolute or relative frequency of the
corresponding association in some domain.

These and related differences seem to underlie some of the apparent drawbacks of
Bayesian networks compared with the SP framework:

• The directional nature of Bayesian networks does not sit easily with the non-
directional nature of medical syndromes.

• The process of calculating probabilities of inferences in a Bayesian network is
substantially more complicated than the calculation of probabilities for align-
ments and inferences in the SP framework.

• The tables of conditional probabilities required for Bayesian networks are signif-
icantly more complex than simple measures of frequency that are used in the SP
system. Notwithstanding the development of special methods for eliciting con-
ditional probabilities from experts [27], the process of building up the necessary
tables of conditional probabilities is likely to be much harder than measuring or
estimating an integer value for each disease, reflecting its absolute or relative
frequency in a given domain.
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4.5 Case-based reasoning

A major attraction of case-based reasoning in medical diagnosis (see, for exam-
ple, [28,29]) is that, compared with many of the alternatives, it can considerably
simplify the process of acquiring the necessary knowledge. In its simplest form, a
case-based system merely requires a description of one or more specific examples
of each disease and a search algorithm that can find exact matches or good partial
matches between the symptoms of a given patient and one or more of the stored
records.

In some respects, the SP system is like a case-based system and it could indeed be
used like a case-based system. To use it in this way, each of the Old patterns should
represent a specific case (including its diagnosis) and the New pattern or patterns
should represent the symptoms of a patient for whom a diagnosis is required. The
capabilities of the system for finding exact matches and good partial matches be-
tween patterns will allow it to retrieve patterns for previously-diagnosed cases that
are similar to any given current case.

The main advantages of the SP system compared with the case-based approach to
diagnosis are:

• It facilitates the description of diseases in generalised terms without the need
to specify exact values for every category of symptom. In our main example,
we saw how the temperature of a patient with a disease like influenza may be
specified as a range of alternative values (Section 3.6). Any other category of
symptom may be treated in the same way.

• It allows one to specify clusters of symptoms that are found in two or more dif-
ferent diseases and it allows one to describe diseases at two or more levels of
abstraction (Section 3.11). Both of these things facilitate the description of dis-
eases without the need to repeat information unnecessarily where similar patterns
are found in different diseases or varieties of disease.

5 Conclusion

As we have seen, the SP system accommodates the main elements of medical diag-
nosis, viewed as a problem of pattern recognition, and there are reasons to believe
that it may also provide support for causal reasoning in medical diagnosis. How-
ever, the SP62 model is a prototype that serves for research and demonstration: it is
not yet a system with ‘industrial strength’. The main developments that are needed
to reach that goal are:

• The provision of a well-designed graphical user interface.
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• There is probably scope for improvements in the search methods that are used
within the system.

• There is scope for the application of parallel processing both to improve the
scaling properties of the system (Section 2.2.1) and to increase absolute speeds
of processing.

• Naturally, the system needs to be provided with appropriate knowledge. For each
area of application, a set of patterns needs to be developed that describes the
diseases and symptom clusters in that domain.

• At some stage after the development of a realistic knowledge base, the perfor-
mance of the system must be validated against the judgement of human medical
experts.

The potential payoff from these developments is a system that allows knowledge
about diseases to be expressed in a simple, intuitive manner, that can cope with er-
rors and uncertainties in knowledge about diseases and knowledge about individual
patients, that simplifies the acquisition and storage of statistical information, that
calculates true probabilities of diagnoses, and smooths the path to the automatic or
semi-automatic abstraction of medical knowledge in the future.
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