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The article develops the conjecture that the organisation and use of any kind of formal system, knowledge structure or
computing system may usefully be seen in terms of the management of redundancy in information.

Every formal system, knowledge structure or computing system has two key dimensions — simplicity (complexity or
size) and expressive or descriptive power — and there is a trade-off between them. The balance between simplicity and
power corresponds to a balance between OR relations and AND relations in the system.

The efficiency of the system (the ratio of power to size) depends on the extraction of redundancy from the system.
Key mechanisms for the extraction of redundancy are pattern matching and search (by hill climbing or equivalent

mechanism) for the greatest possible unification of patterns.

These principles are the basis of a proposed new language and associated computing machine, called SP, which
combines simplicity with high expressive power. SP is a Prolog-like pattern-matching system well suited to high levels

of parallelism in processing.

In SP, the boundary between ‘knowledge engineering’ and other kinds of information engineering breaks down. In SP
there is the potential for full integration of artificial intelligence, software engineering and other aspects of computing —
with Shannon—W eaver information theory as a unifying framework. SP also offers a bridge between ‘connectionist’ and

‘symbolic’ views of computing.
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1. INTRODUCTION

There is a Babel of languages, formalisms and represen-
tational systems in computing and a diversity of concepts.
Some of this variety is useful but much of it is not. There
is a need to rationalise and integrate computing ideas
and to achieve a corresponding simplification of the
subject.

Simplicity in itself is not enough. We could, for
example, propose the very simple theory that all (digital)
computing is about storing and manipulating bits. This
theory is too simple to be illuminating. We need a view
of computing which is simple but which also has
explanatory and expressive power.

This article proposes some principles which can lay
some claim to providing that desirable marriage of
simplicity and power. The principles are embodied in a
proposed new computing language and associated
computing machine called ‘SP’. The name SP is
mnemonic for ‘Simplicity’ and ‘Power’; it is also
mnemonic for ‘Syntagmatic’ and ‘Paradigmatic’, two
concepts from taxonomic linguistics which figure promi-
nently in the system.

SP is a Prolog-like pattern-matching system well suited
to high levels of parallelism in processing. The justifi-
cation for creating yet another language is the expectation
that it will lead to an overall simplification of the field.

In SP the boundary between ‘knowledge engineering’
and other kinds of information engineering breaks down.
In SP there is potential for the full integration of artificial
intelligence, software engineering and other aspects of
computing — with Shannon-Weaver information theory
as a unifying framework. SP also offers a bridge between
‘connectionist’ and ‘symbolic’ views of computing.

The principles and the system have potential appli-
cations in several areas of computing including the
following.

@ Logic and logical inference.
@ Formal specification of computing systems.

Inductive learning.
Pattern recognition.
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Principles of object-oriented design and conceptual©

modelling: class-inclusion relations, part-whole rela- 8
tions, inheritance of attributes — and the integration =
of these constructs. SP supports intensional and S
extensional descriptions of classes and the creation of 2

entity-relationship models.
@ The representation of knowledge in expert systems
and databases; information retrieval and content-
addressable memory.
Probabilistic inference and reasoning with uncertain
and incomplete knowlege.
The representation of plans and the automatic
generation of plans.
Specification of the organization of natural languages
including ‘context-sensitive’ features.
Software re-use and configuration management.
The integration of diverse kinds of knowledge which
is required in many applications including integrated
project-support environments; facilitation of trans-
lations between computer languages and between one
form of knowledge and another.

2. SIMPLICITY AND POWER IN
GRAMMARS AND COMPUTING SYSTEMS

The ideas to be described derive most immediately from
work on the inductive learning of grammars and from an
analysis of cognitive development.’*'* I do not intend to
discuss these fields in detail, merely to sketch the ideas
which are relevant here.

From this work on inductive learning has emerged the
conjecture that knowledge representation and inductive
learning may both usefully be seen in terms of the
management of redundancy in information. The idea has
now been generalised to the conjecture that: the
organisation and use of any kind of formal system,
knowledge structure or computing system may usefully be
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SIMPLICITY AND POWER-SOME UNIFYING IDEAS IN COMPUTING

seen in terms of the management of redundancy in
information.

Key ideas in the management of redundancy in a
knowledge structure are:

@ the detection of redundancy by pattern matching and

@ the reduction of redundancy in the structure by
searching for the greatest possible unification of
patterns (using hill climbing or a related process).

As I shall try to show, the extraction of redundancy by
pattern matching and unification of patterns can provide
a unified view of several concepts in computing. Since the
concept of redundancy is part of Shannon-Weaver
information theory, information theory is a foundation
for the theory to be described.

The idea of searching for economical structures has
figured in research on ‘neural computing’ (see, for
example, Ref. 6) and, indeed, in research on cluster
analysis and numerical taxonomy. This article presents a
view of computing which is not tied to any particular
architecture (such as neural networks) and which is in
several other respects different from work on neural
computing or cluster analysis. In many ways it is
complementary to these fields. In particular, it may be
seen as a bridge between the purely connectionist and
‘sub-symbolic’ views of computing associated with
research on simulated neural nets and the more tradi-
tional ‘symbolic’ views of computing.

2.1 Redundancy, structure and inductive reasoning

Before we proceed to examine these ideas, there are some
general points to be made about redundancy.

@ Redundancy means repetition of information. Al-
though this is not always obvious, redundancy in
information (and thus all kinds of structure, see below)
always means repetition of information. Repetition of
information means redundancy when the repeating
patterns are more frequent than other patterns of the
same size.

@ Redundancy and structure. The concept of redundancy
(in the Shannon-Weaver sense) is closely related to
the concept of structure. A body of information
which has no redundancy is entirely random; it is
‘white noise” with a maximum of entropy; it has no

structure. The structure of a body of information

may be equated with the patterns of redundancy in it.
Thus any discussion of the structure or organisation
of a body of information may be mirrored by a
corresponding discussion about the redundancy in
the information.

@ Redundancy and inductive reasoning. Whatever the
particular reasons for storing and manipulating
information (in computing systems, or paper, or in
our heads) the underlying reason is always to make
predictions. The principle of inductive reasoning —
that the past is a guide to the future — is the basis of
all kinds of natural or artificial cognition. :

Inductive reasoning depends on repetition of in-
formation: patterns of information which have
repeated in the past are assumed to repeat in the
future. Given that repetition of information also
means redundancy, we can see that inductive reason-
ing (and thus all kinds of natural and artificial

cognition) depends on the existence of redundancy in
the world.

The idea that the storage and manipulation of
information is always about prediction may seem obscure
if we think of some humdrum computing task like the
storage and processing of accounts. But the accounts of
a company (or any other organisation) are only
interesting in relation to the future. Should there be
changes in how the company is managed? Should the
receiver be called in? Should we buy more shares in the
company or sell the ones we have?

A world without redundancy would not permit
prediction. It would lack any structure; there would be
no point in storing or manipulating information because
that information would provide no means of anticipating
the future.

These ideas have a bearing on the philosophical
problem of finding a rational basis for inductive
reasoning, but it would take us too far afield to discuss
this interesting question here.

In the following subsections I discuss the significance
of redundancy in more detail using grammatical inference
(inductive learning) as a way of introducing the main
concepts.

2.2 Grammatical inference

Grammatical inference is a process of discovering,
inducing or constructing a grammar from a body of
‘raw’ data — typically a string of characters or a set of
strings of characters. The grammar which is inferred
from the string or strings may be seen as a means of
succinctly describing those strings.

There are always many grammars which are com-
patible with a given body of raw data, in the sense that
they can ‘generate’ that body of data; some of these
alternative grammars are, in some sense, ‘better’ than
others. The inference problem is to find the ‘best’
grammar or, more realistically, to find one which is
‘good enough’.

Two key measures of ‘ goodness’ are : the compactness,
size or simplicity of a grammar; and its usefulness,
expressiveness or power for describing data. The words
with emphasis have been chosen deliberately to show the
parallel with the need for both simplicity and power in
how we think about computing.

Consider Fig. 1. The ‘raw’ data at the top of the figure
may be represented by a number of alternative grammars.
In the first, labelled ‘Primitive Grammar 1°, we simply
give a label ‘1” to the whole string of data. This primitive
grammar is not at all compact: apart from the label, it is
exactly the same size as the original data. But it is very
‘powerful” in the sense that it may be used to represent
the original data succinctly in other contexts by means of
the symbol “1°.

The same raw data may also be represented by
‘Primitive Grammar 2’, in which each type of letter is
represented by a digit. If rules are selected repeatedly
from this primitive grammar it can ‘ generate’ the original
data. This grammar is very simple and compact — but it
is not at all powerful: a description of the original data
using the grammar is as big as the original data (see
Fig. 1).

These two primitive grammars represent extremes of a
trade-off between simplicity and power. Between the two
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RAW DATA

A,B,C,D,P,Q,R,A,B,C,D,A,B,C,D,P,Q,R,A,B,C,D,P, Q,R,P,Q,R,A,B,C,D

PRIMITIVE GRAMMAR 1

1-A,B,C,D,P,Q,R,A,B,C,D,A,B,C,D,P,Q,R,A,B,C,D,P,Q,R,P,Q,R,A,B,C,D

Encoding of raw data: 1

PRIMITIVE GRAMMAR 2

1-A
2-B
3-C
45D
5-P
6—->Q
7-R

Encoding of raw data: 1,2,3,4,5,6,7,1,2,3,4,1,2,3,4,5,6,7, 1,2,3,4,5,6,7,5,6,7,1,2,3,4

WELL-STRUCTURED GRAMMAR 1

1-2,3,2,2,3,2,3,3,2
2->A,B,C,D
3-P,QR

Encoding of raw data: 1

WELL-STRUCTURED GRAMMAR 2

1-A,B,C,D
2-P,Q,R

Encoding of raw data: 1,2,1,1,2,1,2,2,1

BADLY-STRUCTURED GRAMMAR 1

1-A,B,3,2,C,D,A,B,3,2,3,Q,R,P,2,C,D

2-Q,R,A,B
3-C,D,P

Encoding of raw data: 1

BADLY-STRUCTURED GRAMMAR 2

1-Q,R,A,B
2-C,D,P

Encoding of raw data: A,B,2,1,C,D,A,B,2,1,2, Q,R,P,1,C,D

Figure 1. Data and grammars to illustrate cdl;cepts of simplicity and power.

extremes lies a whole range of grammars covering a
whole range of combinations of simplicity and power.
The problem of grammatical inference is to find
grammars, like the two ‘well-structured’ grammars in
Fig. 1, in which that combination is at or near a
maximum.

The first well-structured grammar in Fig. 1 is just as
expressive (powerful) as the first primitive grammar
(because the original data may be represented with the
single symbol ‘1°) but it is more compact (simple) and
thus represents an improvement over the first primitive
grammar.

The second well-structured grammar in Fig. 1 is as
simple as the second primitive grammar, but it is more

powerful because the grammar may be used to encode
the original data in a more economical form than with
the second primitive grammar (as shown in Fig. 1).

As a contrast to the two well-structured grammars,
consider the two badly structured grammars in Fig. 1.
The first badly structured grammar is as powerful as the
first well-structured grammar, but it is less compact. We
can say that it is relatively ‘inefficient” compared with the
first well-structured grammar because it has a relatively
poor ratio of power to size.

The second badly structured grammar is as simple as
the second well-structured grammar but it less powerful.
Again, its efficiency is low compared with the cor-
responding well-structured grammar. There are many
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possible inefficient grammars like this which should be
rejected by the grammar induction process.

2.3 Grammars and other systems

There is a more than superficial analogy between these
example grammars and other kinds of formal system.
The analogy extends to cognitive and computing systems
in general — hardware, software or both.

@ Every system has a size measurable in terms of the
amount of information (bits) needed to specify the
system.

@® Every system has more or less power, comparable
with the expressive power of the example grammars.
For example, a ‘bare’ computing machine, without
software, is a relatively poor tool for doing any
particular kind of task, e.g. processing accounting
data and producing accounting reports. The addition
of an operating system makes it more powerful in this
sense, and the further addition of an accounting
package makes it even better. ‘Power’ in this context
means much the same as ‘usefulness’ or ‘function-
ality’, and seems to be equivalent at some level of
abstraction to the notion of expressive power intro-
duced in the last section.

In addition to the dimensions of simplicity and power
seen in grammars and in computing systems, there is the
concept of efficiency (the ratio of power to size) which we
saw in connection with grammars and which seems also
to apply to other systems. Efficiency in this discussion
means ‘doing a lot with relatively little’. It corresponds
with the intuitive notion of ‘elegance’ or ‘prettiness’ of
design.

A method of calculating simplicity (size), power and
efficiency of grammars is described in the Appendix.

2.3.1 An abstract space for grammars and computing
systems

Fig. 2 summarises the ideas introduced so far. It is a set
of graphs representing an abstract ‘space’ within which
any grammar, formal system, knowledge structure or
computing system may be placed. Each structure is a
point in the space. The x axis records the size of a
structure; the y axis records its descriptive power. These
graphs represent imaginary data but are similar to
unpublished graphs obtained from program SNPR - the
program for grammatical inference which is described in
Ref. 13.

Ceiling on power

Efficiency

Power —»
)

Size ——»
Figure 2. An abstract space for grammars and computing
systems.

Each of the curves in the figure represents the trade-off
between size and power. Each of the higher curves
represents a set of well-structured, efficient systems with
good ratios of power to size. The lower curves are for
poorly structured, inefficient systems with low ratios of
power to size.

Where a structure should be positioned up or down a
curve depends on the relative importance of size and
power, and this will vary with the application. However,
in all circumstances the aim should be to maximise
efficiency — the ratio of power to size. In grammatical
inference, we need to find or create grammars which fall
on or near the line marked ‘1’ in the figure. In the design
of computing systems we need to create systems which
fall on or near that line.

No system can have more descriptive power than the
raw data to which it relates. Hence the ‘ceiling on power’
in Fig. 2.

2.4 An analogy

It may be helpful at this point to describe an everyday
analogy for the relationships shown in Fig. 2. The
analogy is fairly accurate but not completely so.

The relationship between size and power (in the senses
intended here) is similar to the relationship between cost
and value in the purchase of goods or services. The trade-
off between size (simplicity) and power is like the
dimension from ‘down market’ to ‘up market’ which is
so familiar when we are buying things. For a given type
of commodity we may choose to go for lower cost and
less value or we may choose to pay more for something
which is higher quality or in some other way more
valuable. Of course, we all know that you do not always
‘get what you pay for’. Independent of the upmarket/
down-market dimension is the notion of ‘value for
money’. Whether we are buying at the low or high ends
of the market, a given sum of money can yield either
poor value or good value. The notion of value for money
is analogous to the notion of efficiency introduced
earlier.

The cost and value analogy should not be stretched
too far. Value, in particular, can be subjective and
relative to a particular buyer. By contrast, the notions of
size, power and efficiency can in principle be measured
precisely in terms of information theory and without
reference to subjective judgements.

2.5 Constraint and freedom, power and simplicity, AND
relations and OR relations

The trade-off between simplicity and expressive power in
a grammar corresponds with a balance between freedom
and constraint in the grammar. The second primitive
grammar in Fig. 1 provides the freedom to generate an
infinite range of strings using the basic symbols. The first
primitive grammar in Fig. 1 is constrained to one string
of symbols.

‘Freedom’ in this context corresponds to OR relations
and ‘constraint’ corresponds to AND relations in the
grammar. The trade-off between compactness and
expressiveness is mirrored by the balance between OR
relations and AND relations in a grammar.

These ideas also map on to basic information theory:
‘freedom’ means choice, which means low information
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content; ‘constraint’ means reduced choice and raised
information content.

Fig. 3. illustrates the way the dimensions of ‘freedom-
constraint’, ‘simplicity-complexity > and degrees of ‘ func-
tionality’ are related. At the top of the diagram is a ‘raw’
computing machine representing relative simplicity,
a high degree of freedom but low functionality. Below
this are layers of organization representing decreasing
freedom but increasing complexity and increasing
functionality.

freedom/simplicity/low
functionality

raw machine

microcode

assembler

high level language

application program constraint/complexity/high
functionality

Figure 3.

2.6 Efficiency and redundancy extraction

The efficiency of our two well-structured grammars was
achieved by the extraction of redundancy in the original
data and a corresponding compression of those data.
Extraction of redundancy appears to be the key to
achieving a favourable ratio of simplicity to power.

2.6.1 Avoid repetition of information

The basicidea in extracting redundancy from information
is to avoid storing information more than once when
once will do. Here are three ways in which this can be
achieved:

@ Method 1. In the two well-structured grammars in
Fig. 1, the patterns A,B,C,D and P,Q,R, which
repeat themselves irregularly in the raw data, are
stored once and accessed via pointers or references
from inside the grammar in the case of the first well-
structured grammar and from outside the grammar
in the case of the second.

@ Method 2. These two patterns

A,B,C,D,P,E,F,G,H
A! B’C9D’Q’ E, F’G’H

may be reduced to A,B,C,D,x,E,F,G,H, where
x—P|Q. Alternatively, the two patterns may be
represented as A, B,C,D(P|Q)E, F, G, H.

@ Method 3. Where a pattern or type of pattern repeats
in a sequence of contiguous instances, this may be
reduced to a single instance with some indication that
it repeats. A sequence like A,A, A, A, A, A, A A A A,
may be reduced to a recursive rule or it may be
treated as ‘iteration’.

The first of these examples illustrates the principle of
structure sharing as a means of reducing or eliminating
redundancy in data: a repeating pattern of information
is stored once and accessed via references from the
several contexts in which it occurs. 4 major motivation
for using references in computing is to achieve the
extraction of redundancy from data by means of structure
sharing. A commonplace example is the use of named
procedures and functions in computer programs, and

calls to those procedures or functions from diverse
contexts.

2.7 Pattern matching and the hill-climbing search for
efficient structures

The three methods of extracting redundancy from
information, described above, all depend on pattern
matching and unification of patterns. Where a pattern of
information repeats itself, the repetition can be avoided
by creating one copy to replace all instances of the
pattern: the replicated patterns are unified.

In most realistically large bodies of data there is a very
large number of alternative ways in which patterns may
be matched and unified. In these circumstances, the set of
unifications to choose is the one which maximizes C
where

i=n

C=3Xfs,
i=1

fis the frequency of pattern i in a body of raw data, s is
its size (in bits or some equivalent measure) and 7 is the
number of different kinds of pattern.

The patterns A,B,C,D and P,Q,R used in the two
well-structured grammars in Fig. 1 are better according
to this measure than the patterns Q,R,A,B and C,D,P
used in the two badly structured grammars.

There is no algorithmic way of ensuring that C is
always maximised. Except for trivially simple cases, it is
always necessary to use the kinds of search technique
familiar in artifical intelligence (most notably, hill
climbing). These techniques cannot guarantee a perfect
solution, but they provide a practical means of finding at
least an approximation to the desired goal.

An example of the application of hill climbing to
redundancy reduction by pattern matching and unifica-
tion is described in detail in Wolff.?* Winston (Ref. 12,
ch. 4) provides a useful introduction to the concept,
including the idea of ‘local peaks’ and methods of
avoiding them. In the context of computing with
simulated neural networks, the technique of ‘simulated
annealing’ has proved to be an effective means of
reducing the chances of the system getting stuck on local
peaks.*

2.8 De-referencing as pattern matching and unification

As described above, when two or more patterns have
been unified, references are often used to mark the
contexts in which the original patterns occurred. A
pattern may be brought back into its original context by
de-referencing its identifier. But de-referencing is itself an
example of pattern matching and unification of patterns.
To achieve de-referencing, a match must be found for the
reference elsewhere in the structure —and the two
matching patterns must be unified.

A good example to illustrate this point is the way a
named procedure in a computer program may be ‘called’
from several different contexts. The procedure name is
associated with the body of the procedure in one part of
the program. A reference to the procedure appears
wherever the procedure is needed in other parts of the
program. A ‘call’ to the procedure means searching for
the name which matches the reference and unifying
them.
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Memory ‘pointers’ and memory ‘addresses’ may also
be seen in these terms. Accessing an area of memory
means searching for the address which matches a pointer
and unifying them. The search process in this case is
rather simple but it is search, nevertheless.

2.9 Modelling the world

As we have seen, there is a close connection between the
concept of structure and the concept of efficiency.
Efficient grammars are well-structured grammars and
they are also the grammars which capture the redundancy
(or structure) in the raw data.

When these ideas are generalised to other kinds of
computing system, we find ourselves in familiar territory:
a computing system is well-structured to the extent that
it reflects (‘captures’, ‘models’) the structure of its inputs
and of its outputs. This principle has been propounded
most persuasively by Jackson.® It figures in the use of
‘entity-relationship models’ as a basis for the design of
commercial software systems.” The principle is also an
important part of the philosophy of object-oriented
design.!'3

The principle of modelling a computer system on the
structure of the material it has to deal with is well
recognised, but the significance of this principle is perhaps
not fully appreciated. Normally it is justified on the
grounds that it facilitates thinking about design and
makes it easier to modify designs. Both these justifications
are sound, but there is the additional, and related, reason
that it is a means of maximising the functionality of the
system for a given cost in the complexity of the system
(or minimising complexity for a given functionality).
Systems designed to conform to this principle are more
efficient (in the sense defined above) than otherwise.

In general, systems which are ‘efficient’ are ones whose
structure reflects or models the ‘natural’ structures in the
external data. ‘Natural structures’ are patterns in the
data which are ‘coherent’. Patterns are ‘coherent’ when
they repeat frequently in the data. Natural structures in
this sense include such things as ‘objects’, ‘entities’,
‘relationships’ and, as we shall see later, ‘classes’ of
these things.

2.10 Useful and useless redundancies

The idea that ‘elegance’ or ‘prettiness’ in design is
closely bound up with the extraction of redundancy in
information is not in conflict with the well-known uses of
redundancy in computing systems to increase speed of
processing or the reliability of systems or both.

For example, it is normal practice in computing to
create ‘backup’ or security copies of information as a
protection against losing the information altogether. A
backup copy is redundant in the sense that it replicates
the original data. Here the redundancy between the
original and its copy is useful. By contrast, redundancy
within each copy arising from poor structuring of the
information is not useful and should be minimised.
‘Management of redundancy’ means, to a large extent,
the removal of unnecessary redundancy or complication
in a structure.

The use of references or identifiers to achieve structure
sharing is an interesting example of useful redundancy.
To achieve this effect, the identifier must appear in

association with what it identifies, and it must also
appear in each of the contexts where the material is
referenced. In this case a small amount of redundancy is
introduced into a knowledge structure as a means of
achieving a relatively large reduction in redundancy:
structure sharing only makes sense if the material to be
shared is bigger than the identifier used to achieve the
sharing.

2.11 Summary

Here is a summary of the ideas introduced so far.

(1) Fundamental principles for the organisation of
formal systems and computing systems may be seen in a
relatively transparent form in the organisation of simple
grammars.

(2) Any grammar, other formal system, knowledge
structure or computing system may be seen as a means of
succinctly describing information which is external to the
system — inputs, outputs or both.

(3) Any system has a place in a space defined by two
dimensions: simplicity (or size or complexity — meaning
the information content of the system) and expressive or
descriptive power (meaning the effectiveness with which
the system can represent or manipulate its external
information).

(4) There is a trade-off between simplicity and power..

(5) The balance between simplicity and power in a
system corresponds to the balance between OR relations
and AND relations in the system.

(6) The efficiency of a system is the ratio of power to
size.

(7) Efficiency is obtained by capturing or extracting
the redundancy in the external information.

(8) Efficiency in this sense seems to correspond to the
intuitive notions of ‘good structure’ in a system,
‘elegance’ or ‘prettiness’ in design. A well-structured
system reflects or models the structure of its external
data: objects or entities, relationships and classes.

(9) The basic principle of redundancy extraction is to
avoid recording a pattern more than once when once will
do. Often this means the use of the principle of structure
sharing, and this means the introduction of references
between one structure and another.

(10) Redundancy extraction may be achieved more
generally by pattern matching and the search (by hill
climbing or equivalent process) for as much unification as
possible. Notions of ‘reference’ and ‘de-referencing’
may be subsumed by these notions.

3. ORGANIZING PRINCIPLES

A main proposition from the last section is that any
system may be placed anywhere in the space of possible
systems by the application of two basic organising
principles, AND relations and OR relations. Another
main proposition from the last section is that efficiency
(in the sense previously defined) may be achieved by the
extraction of redundancy from information. Important
mechanisms in this connection are structure sharing,
referencing and de-referencing. More generally, redun-
dancy extraction may be achieved by pattern matching
and the search (by hill climbing or equivalent process) for
the greatest possible unification of patterns. These
principles appear to have a fundamental significance in
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the organisation and use of formal systems, knowledge
structures and computing systems of all kinds.

Some of the importance of AND relations and OR
relations is recognised in Jackson’s principle® that any
sequential file of data may be described in terms of
sequence, selection and iteration; and likewise for any
program using that file as data (see also Ref. 2). In
general, however, the fundamental significance of the
principles which have been described in previous sections
seems not to be widely recognised.

To get a feel for the generality of the organising
principles we can briefly survey some of the ways in
which they currently appear in computing.

3.1 AND relations
Here are some examples of AND relations in computing.

@ Sequences of statements in a program.

@ The relationship between a and b in If a then b else ¢

statements.

The relationship between the fields in a table in a

relational database.

The sequence of structures in the body of a Prolog

Horn clause.

The relationship between the head and the body of a

Prolog Horn clause.

The relationship between an identifier and what it

identifies in a wide variety of computing systems.

The relationship between a structure in the syntax of

any computing language and the semantics of that

structure.

@ The relationship between the (formal or actual) items
in a parameter list for a function or procedure.

@ The relationship between the fields of a Pascal record
or COBOL record or C struct.

AND relations are often treated as being ordered;
probable exceptions in the examples just given are fields
in a relational table, fields in records or structs and the
relationship between a syntactic structure and its
semantics.

3.2 OR relations
Examples of OR relations in computing.

The relationship between b and ¢ in If a then b else ¢
statements.

Case statements.

The relationship between items in a Pascal enumer-
ated type.

The relationship between Horn clauses in a Prolog
procedure.

The relationship between the rows in a table in a
relational database.

The relationship between items in a C union and the
relationship between the variants in a Pascal ‘record
with variants’.

3.3 Identifiers and references

The types of identifier for an object (and thus the means
by which it may, be referenced) include the following.

(1) The position of the object in (actual or virtual)
memory.

(2) The position of the object in a ‘naming space’.
‘Scoping rules’ may be used so that a given name may be
used in more than one context.

(3) A ‘path’ through a tree or network (e.g. Unix files
or the ‘dot’ notation in Pascal). Path names may be
abbreviated if the ‘scoping’ assumption is made that the
current context is the default context.

(4) The contents of the structure, as in ‘content-
addressable memory’.

The use of identifiers in conjunction with AND
relations and OR relations results in the trees and
networks which are so widespread in computing:
hierarchical directories of files, the structure of function
or procedure calls in a typical computer program, plex
structures in a network database, the structure of
‘include’ files in a typical C program or system, the
structure of a non-overwriting filestore like ADAM.?

The first three methods of identification may be seen as
being ‘content-addressable’ if the information used to
identify an object is seen as being a part of that object.

The extreme case of identifying an object by its
constituents is where the whole object stands for itself.
This may seem an idiosyncratic, perhaps meaningless
view of the notion of identification, but if we do not
allow this notion we are forced into arbitrary distinctions
which lead to unwelcome complications in our view of
the subject.

As an illustration of the idea of an object standing for
itself, each word in this text may be seen as an AND
group of references to its constituent letters. Each letter
is an object which stands for (is a reference to) itself.
Creating special identifiers for each letter is less econ-
omical than using the letters directly.

3.4 Pattern matching, hill climbing and unification

Pattern matching is a recognised technique in computing
(see, for example, Ref. 12 ch. 14), but the possibility that
all kinds of computing may be seen as the extraction of
redundancy by pattern-matching and hill-climbing search
for the best possible unification seems not to be generally
recognised : the section on pattern matching is omitted
from the second edition of Winston’s book and the topic
does not even get an entry in the index.!?

From the following examples we can see some of the
range of applications of pattern matching in existing
systems and, to a lesser extent, search for good
unifications.

@ Resolution theorem proving: pattern matching and
unification are basic mechanisms. .

@ De-referencing of identifiers may be seen as a form of
pattern matching and unification.

@ Parsing is clearly an application of pattern matching
and unification. Many parsers are designed to deliver
only one ‘correct’ parsing of any given input string.
More sophisticated parsers will deliver alternative
parses and distinguish ‘good’ ones from ‘bad’ ones.

@ Information may be retrieved from databases by
pattern matching (query-by-example).

@ The creation of human-like capabilities in pattern
recognition clearly requires pattern matching.

@ Inductive learning is largely a matter of pattern
matching allied to search mechanisms designed to
seek the greatest possible unification of patterns.'®
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4. THE SP LANGUAGE

The syntax of the SP language, shown in Fig. 4, is
extremely simple. Since it represents a distillation of
existing ideas in computing, there should be no surprise
that the language is similar in certain respects to existing
languages. SP owes its greatest debt to Prolog but differs
from Prolog in interesting ways.

@ There is nothing in SP equivalent to the distinction in
Prolog between the head and the body of a Horn
clause. SP deals only in ‘patterns’.

@ The rules for matching and unification are signifi-
cantly different from Prolog.

@ Indeterminacy in the results of a computation is
expressed in SP by creating a disjunctive structure
rather than creating a set of alternative results not
incorporated in any structure. This is significant in
relation to inductive learning.

@ In SP, variables do not have explicit names. A
variable may be given a name by associating the
variable with the name inside a structure, e.g.
(Clementine, _). In this way the connection between
variables and their names is recognised as being an
AND relation and is brought within the small range
of basic constructs in the language without any
ad hoc principle.

@ The fact that variables are not explicitly named
means that there is nothing in the language like the
principle in Prolog that repeated instances of a
named instantiated variable within one Horn clause
refer to the same structure. This has a bearing on how
‘context-sensitive’ structures are represented, as will
be described in Section 5.4.

Although this will be less obvious, the language also
owes a debt to object-oriented languages like Simula,
Smalltalk and LOOPS. As I shall show in Section 5.3, it
supports the notions of classes and sub-classes, in-
heritance of attributes and part-whole relations. SP
differs from all current OO languages in being signifi-
cantly simpler and, in a theoretical sense, more ‘clean’.
The Lisp-like qualities of the language will be obvious.

4.1 The syntax

Object - Ordered-AND-object |
Unordered- AN D-object |
OR-object | Simple-object ;

Ordered-AND-object - (’, body, ‘)’;

Unordered-AND-object [, body, ‘]’;

OR-object - ‘{’, body, ‘}’;

body—~b|NULL;

b— Object, body;

Simple-object - symbol | _’;

symbol — character, s;

s—symbol| NULL;

character -~ ‘a’|...|‘z’|‘0’|...|‘9’;

Figure 4. The syntax for SP.

Between any two simple objects which are immediately
contiguous there must be at least one space, comma or
new line. Otherwise, as an aid to readability, zero or
more spaces, commas or new lines may be used in any
desired combination between objects.

A ‘symbol’ may be a single character or a string of

characters. In terms of the definition of SP, a string is
an Ordered-AND-object of characters. The reason for
having ‘symbol’ as a distinct construct (and not using
the term ‘string’) is that symbols, unlike Ordered-AND-
objects, will be treated as atomic.

To be practical, the SP language would need such
constructs as ‘integer’ and ‘real’. The assumption here is
that such concepts and the operations which relate to
them (addition, multiplication, etc.) may be defined in SP
and need not be supplied as primitives. Justification of
this claim is beyond the scope of this paper.

4.2 The semantics of SP: how it is intended to work

This section describes the possible ways in which the
language may be made to work —i.e. to do some
computing. A formal definition of the semantics has not
yet been attempted.
The meanings of the types of object should be
reasonably clear from their names.

® An Ordered-AND-object (OAO) represents a se-
quence: a collection of structures where the order of
the structures is significant. An OAO represents
what, in taxonomic linguistics, used to be called
‘syntamatic’ relations.
® An Unordered-AND-object (UAO) represents a
‘bag’ of structures: the order of structures in the bag
is not significant. Any given item may be repeated in
a UAO but, for reasons which will become clear, any
such repetition is likely to be removed as computing
proceeds.
® An OR-object (ORO) represents a collection of items
from which one or more may be selected. It represents
an ‘inclusive’ OR relation amongst its constituents.
An ORO represents what, in taxonomic linguistics,
used to be called ‘paradigmatic’ relations.
Simple-objects are the ‘atoms’ of the language.
The *_’ character represents a ‘variable’, i.e. a place
holder to which an object may be ‘assigned’. Like
Prolog, values are assigned to variables by unification
of patterns. Like Prolog and unlike most conventional
programming languages, the value of a variable may
not be changed once it has been assigned. In general,
the language works in a ‘non-overwriting’ mode:
non-redundant information is never destroyed in the
course of computing.

The symbols ‘-’ and ’...” which appear later in the
article are not part of the SP language. ‘-’ is used to
show when one SP object gives rise to another in the
course of computing. ‘..." is used in SP examples to show
where other information would go in a more fully
developed description.

4.2.1 Computing

To create ‘results’ using SP, the ‘data’ and the ‘program’
must be associated. This is done by joining them together
within an AND object. Quote marks have been used for
‘results’, “data’ and ‘ program’ because these distinctions
are not recognised in the system and a uniform notation
is used for them all.

All computing is done by searching within the
composite program-data object to find patterns which
match each other; when patterns do match they may be
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unified. The search space is usually very large; where
there is recursion, the search space is infinite.
Pattern matching may be ‘free’ or ‘constrained’.

@ SPin ‘free’ mode lives in an impractical world where
all possible matches are sought and all possible
unifications are delivered. This version of SP will not
be discussed.

@ SP in ‘constrained’ mode has restrictions on the
kinds of match which may be sought or the kinds of
unification which may be delivered.

There is a variety of ways in which constraint may
be applied in the SP system and varying degrees of con-
straint —and there can be corresponding varieties of
the SP language.

(1) “Broad® SP. The most general kind of constraint
relies on the notion of ‘goodness’ or ‘economy’ in
matching and unification. The aim is always to achieve as
much unification as possible or, equivalently, to reduce
the size of an SP structure as much as possible.

There is no algorithmic way to ensure that the
maximum possible amount of unification is always
achieved. Any practical version of ‘broad’ SP will have
to use hill-climbing search techniques of the kind
described in Wolff (1982). These may reliably find more
or less ‘good’ unifications, but cannot guarantee that the
best will always be found. To cope with big search spaces
in a practical way, Broad SP also demands high levels of
parallel processing in pattern matching and unification.

Like chess programs, versions of Broad SP may vary
in how deeply the search tree is explored before decisions
are made. Alternatively, the depth of exploration in
Broad SP may be controlled by a parameter.

Broad versions of SP may be regarded as the canonical
forms of SP. All other versions may be regarded as
approximations to the ideal.

(2) ‘Narrow’ SP. Superficially, the reliance of the
most general constrained version of SP on search
techniques seems to mean that computing with SP is
different from the clockwork nature of conventional
computing. However, on a ‘simplicity and power’ view,
all computing systems rely on search techniques of some
kind even when this is not explicitly recognised. For
example, any practical parser on a conventional computer
embodies a ‘biggest is best’ principle to help it find the
‘correct’ parsing from amongst the many ‘incorrect’
parses which the grammar may otherwise allow. The
clockwork nature of Prolog derives from constraints
applied to how pattern matching may be done and what
will count as ‘true’.

SP may be constrained to work more like Prolog or a
conventional programming language (e.g. Pascal, C or
functional languages like Lisp) by being more restrictive
about how the search for matching patterns is done.
Here are three of the more obvious kinds of restriction.

(i) The search for matches for the constituents of an
object may be done always in left-to-right sequence. This
reduces the range of possible matches which can be
found and gives the language a ‘procedural’ flavour. If
this restriction is applied only to OAOs these objects
become ‘processes’, and UAOs represent ‘concurrency’
amongst their constituents.

(i) Nearest is dearest. When the system seeks a match
for any given object it will try other objects in order of
their ‘distance’ from the given object in the total structure

of objects rather in the manner of scoping rules in
languages like Pascal.

(iii) All-or-nothing matching. In most computer lan-
guages, the search for matching patterns is greatly
reduced by insistence on all-or-nothing matching, par-
ticularly for identifiers. This kind of restriction is implied
by the atomic nature of the ‘symbol’ construct of SP.
This feature should, perhaps, be removed in any ‘broad’
version of SP.

These and other kinds of restriction on pattern
matching may be regarded as ways of reducing the size of
the space of possible unifications which the system has to
search, and thus making the search tractable within the
limits on processing power imposed by currently available
hardware. The penalty of these restrictions is that they
limit the range of problems which the computing system
may solve.

4.2.2 Rules for matching and unification

Here are the rules required for pattern matching and
unification in SP.

(1) Matching simple objects. Simple objects which are
not variables and which match (e.g. 4 and A) give a copy
of either object as the unification.

(2) Matching with variables. An SP variable matches
any object. In all cases, including when a variable is
matched with another variable, the result of unifying a
variable with another object (or objects) is a copy of the
other object(s). For example, [4, _] matches [4, B] giving
[4, B]; [4, -] matches with [4, B, C] giving [A4, B, C].

(3) Matching two OAOs. Two OAOs may match
completely or partly. In both cases, unification is possible.

(i) When one or more constituents of an OAO match
one or more constituents of another OAQ, in the same
order, each constituent of the one OAO may be unified
with the corresponding constituent of the other. Ob-
viously order is irrelevant when only one constituent
from each OAO is involved. Notice that ordinal position
is not significant. For example, 4 and B in (X, 4, B) may
be unified with 4 and B in (4, Y, B).

(i) When two OAOs match only partly, the resulting
unification contains all the unmatched constituents from
both OAOs —in the appropriate position relative to the
constituents which have been unified. These unmatched
constituents are formed into one or more OROs, each in
an appropriate position in the unified pattern. For
example, the unification of (X, Y, 4, B) and (P, Q, R, 4, B)
will give ({(X, Y) (P, Q, R)} A, B).

(iii) Where alternative partial unifications are possible,
the one giving the greatest amount of unification is
preferred (unless there is a tie, in which case an arbitrary
choice is made). For example, if unification were sought
between (4, B,C,P,D,E,F)and (4, B,C, Q, D, E, F) then
(4, B, C{P, Q}D, E, F) would be better than ({(4, B, C, P)
(A,B,C,Q)}D, E,F).

It is normal for there to be many alternative possible
unifications. A more realistic example appears in Section
5.1. The ‘best’ set of unifications is the one which reduces
the size of the structure by the greatest amount. As we
have seen, there is no algorithmic method which is
guaranteed to find the best set of unifications in all cases.
An SP ‘engine’ will depend on hill-climbing search
techniques or something equivalent.

(4) Matching with UAOs. The rules for matching a
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UAO against another UAO or an OAO are the same as
for matching two OAOQs, except that ordering constraints
do not apply.

(5) Matching with OROs. Two rules apply, as follows.

(i) An ORO matches any other object if one of
its constituents matches that object. The resulting
unification is a copy of the given object. For example,
{A, B, C} matched with A4 gives A.

(i) An ORO matches another ORO if one or more of
its constituents can be matched with one or more
constituents of the other ORO. The unification is an
ORO whose constituents are the result of unifying the
constituents which match, unless there is only one such
unified pair of constituents, in which case the result of
unifying the two OROs is that unification. For example,
the unification of {4, B,C} and {B,C,D} is {B,C}. The
unification of {4, B,C} and {C,D, E} is C.

In general, the effect of unifying two OROs is to form
the intersection of the two sets of constituents.

The rules described in this section are not fully
developed — more work is needed in this area. There is a
case, in future work, for introducing ‘weights’ on SP
objects to reflect (absolute and contextual) frequencies of
objects in the raw data. The metric which evaluates
alternative unifications will need to accommodate these
weights. The introduction of weights is likely to lead to
some modification in the rules just described, particularly
the rules for matching and unification with OROs. Two
OROs may be unified by taking the union of their
constituents (rather than the intersection) but assigning
higher weights to items which are in the intersection.

5. APPLICATIONS

In this section I shall illustrate the workings of SP and the
principles on which it is based, using examples from
several areas of computing.

5.1 Parsing with a simple grammar

This first example, showing how SP may be used to
represent a simple grammar and parse a simple ‘sen-
tence’, may at first sight seem remote from the
mainstream of computing. The justification for first
illustrating the workings of SP in this way is the belief
that many aspects of computing may be seen in these
terms.

In many ways SP has the organisation of simple
phrase-structure grammars. In Section 5.4 I will show
how SP overcomes the limitations of such grammars and
has the power to handle ‘context-sensitive’ features in
representations of knowledge.

[
(S(NP,-)(VP,-))
(NP{john, mary})
(VP(V,-)(NP,.))
(W{loves, hates})

]

Figure 5. A grammar written in SP.

Fig. 5 shows a little grammar written in SP. In this and
later examples of grammars, the distinction between
upper- and lower-case letters has no formal significance;
it merely helps one to see which objects are serving as

‘non-terminal symbols’ and which represent ‘text’. To
forestall misunderstanding, it should be stressed that SP
is not a re-write system. The matching and unification
mechanisms in SP may imitate the effect of a re-write
system, but they are more general.

The example grammar may be used to parse a sentence
by associating the sentence with the grammar inside a
UAO, as shown in Fig. 6.

[(john, loves, mary)

[
(S(NP,_)(VP,.))
(NP{john, mary})
(VP(V,-)(NP,.))
(V{loves, hates})

1

Figure 6. Association of a sentence with a grammar.

Consider, first of all, a ‘top down’ parsing, where the
processes of matching and unification are driven by the
‘top level’ rulein the grammar: (S(NP,_) (VP,_)). Taking
the components of this object in turn, left to right, the
system tries to unify as much as possible of this object
with other objects in the ‘universe’ of objects in the
combined sentence and grammar. The same applies to
any new objects created by unification. The sequence of
matchings and unifications is shown here.

1 (S(NP,_)(VP,.))
2 (S(NP{john,mary}) (VP,_))
/*By unification of (NP, _) with (NP{john, mary})*/
3 (S(NP,john){(VP,_)(loves, mary)})
/*By unification of {john, mary} with ‘john’ in (john,
loves, mary)* /
4 (S(NP,john){(VP(V,_)(NP,_))(loves, mary)})
/*By unification of (VP,_) with (VP(V,_)(NP,_))*/
5 (S(NP,john){(VP(V{loves, hates}) (NP, _)) (loves,
mary)})
/*By unification of (V,_) with (V{loves, hates})*/
6 (S(NP,john)(VP(V,loves){(NP,_) (mary)}))
/*By unification of {loves, hates} with ‘loves’ in (loves,
mary)*/
7 (S(NP,john)(VP(V,loves){(NP{john,mary})(mary)}))
/*By unification of (NP,_) with (NP{john, mary})*/
8 (S(NP,john) (VP(V,loves) (NP, mary)))
/*By unification of {john, mary} with ‘mary’*/

Figure 7. Unification in a ‘top down’ parsing of the sentence in
Fig. 6 using the grammar in Fig. 6.

Some comments on Fig. 7.

@ In stage 2 we see the use of the variable ‘_’.

@® In stage 3 we see how an ORO, {john, mary}, is
reduced to a singleton, ‘john’, when one of its
constituents matches that singleton.

@ Also in stage 3 we see how SP forms a disjunction
when two matched patterns both contain unmatched
components. After ‘john’ within (john, loves, mary)
has been unified with {john, mary} within (S(NP{john,
mary}) (VP,_)), the residues of the two larger objects
are formed into an ORO: {(VP, _) (loves, mary)}.

Fig. 8 shows how the system may work in a ‘bottom up’
mode, where unification starts with the sentence rather
than the top rule of the grammar.
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—

(john, loves, mary)

2 ((NP,john),loves, mary)

/*By unification of ‘john’ in (john, loves, mary) with
(NP{john, mary})*/

3 (S(NP,john){(VP,_) (loves, mary)})

/*By unification of (NP,john) with (S(NP,_)
(VP,_)). There is a conflict here because (NP, john)
may also be unified with (VP(V,_)(NP,_)) giving
((VP(V,_) (NP, john)) (loves, mary)). In this example,
this second ‘bad’ alternative will not be followed
through. This kind of conflict is discussed in the
text.*/

4 (S(NP,john){(VP,_)((V,loves), mary)})

/*By unification of (V{loves, hates}) with ‘loves’ in
(loves, mary)*/

5 (S(NP,john){(VP,_)(VP(V,loves) {(NP, ), mary})})
/*By unification of ((V, loves), mary) with (VP(V,_)
(NP, ))*/

6 (S(NP,john) (VP(V,loves){(NP,_), mary}))

/*By unification of (VP,_) with (VP(V,loves)
(NP, ), mary})*/

T (S(NP,john) (VP(V,loves){(NP,_), (NP, mary)}))
/*By unification of ‘mary’ with (NP{john, mary})*/

8 (S(NP,john) (VP(V,loves) (NP, mary)))

/*By unification of (NP,_) with (NP, mary)*/

Figure 8. Unification in a ‘bottom up’ parsing of the sentence in

Fig. 6 using the grammar in Fig. 6.

In Fig. 8 we see an example, at stage 3, of how rival

unifications can arise. They represent alternative solu-
tions to the problem in hand. In principle, the system
may be allowed to compute all possible alternative
solutions. For most purposes, it will be necessary to nip
off any branch of the search tree if it seems to be leading
in an unhelpful direction. In terms of the theory on which
SP is based, ‘unhelpful’ means uneconomical. If the
‘bad’ path is followed at stage 3 of Fig. 8 it will lead to
this parsing:

((VP(V{loves, hates}) (NP, john)),
loves (VP(V{loves, hates}) (NP, mary)))

No further unification is possible without violating the
order constraints on the sentence. This solution is clearly
much less economical than the ‘correct’ parsing and may
be rejected on those grounds.

5.2 Logic and logical inference

SP has potential as a medium for expressing logical
propositions and making logical inferences. This is
perhaps not surprising, given the significance in the
language of the simple logical relations, AND and
inclusive OR.

Here is a familiar and elementary example:

All men are mortal.
Socrates is a man.
Therefore Socrates is mortal.

In first-order predicate calculus this may be expressed as:

V xe man.mortal(x)
A Socrates € man
= mortal(Socrates)

In SP, the same premises and the inference may be
expressed like this:

[[mortal[man, _]]
[man, Socrates]]
— [mortallman, Socrates]]

Remember that ‘—’ is not part of SP. It simply shows
what is produced in the course of computing. In the first
line, the pattern [man,_] matches any UAO which has
‘man’ as a constituent object. Thus it may be read as all
men’ or ‘any man’. The underscore symbol removes the
need for a universal quantifier rather in the way that
Skolemization may be used to remove universal quanti-
fiers in predicate calculus. (Existential quantifiers are not
needed either because any given object may be named.)

The conjunction of ‘mortal’ with [man,_] gives the
pattern [mortallman, _]]. This represents ‘All men are
mortal’. Likewise, [man, Socrates] represents ‘ Socrates is
a man’. When these two patterns are matched and
unified, the result is [mortallman, Socrates]] which may be
read as ‘ Socrates is a man and he is mortal’. Thus SP does
not derive [mortal, Socrates] directly from the two original
propositions but creates a pattern with which [mortal,
Socrates] will unify. In this way, the proposition ‘ Socrates
is mortal’ is validated.

The problems mentioned earlier in finding matches
between patterns and in differentiating between ‘good’
and ‘bad’ matches suggest that SP is too uncertain a
medium on which to base logical inference. But it is
already known that every formal system which is
expressive enough to be useful is also ‘incomplete’ in the
sense that there are truths which are expressible in the
system but which cannot be proved within the system.
The uncertainty of matching and unification in infinite
search spaces may provide a reason for the existence of
incompleteness in formal systems.

5.2.1 ‘True’ and ‘false’

SP has no explicit concept of ‘true’ or ‘false’. These
concepts, which are primitives in other views of com-
puting, may be seen as emergent properties of the SP
system.

If every SP object is regarded as some kind of
statement (it is, without doubt, a body of information),
it may be regarded as true if it matches some other
object, much in the way that a Prolog Horn clause is
regarded as true if a match can be found for it within a
set of clauses.

SP differs from Prolog, of course, in that it allows
partial matching. Correspondingly, it supports the notion
of degrees of truth. In general, truth in an SP system will
be modelled by the metrics which guide the search for
‘good’ structure within the system. There is no space
here to discuss fully the ramifications of these ideas.

5.3 Object-oriented design and entity-relationship
models

This section discusses a set of interrelated ideas associated
with object-oriented (OO) design and with the creation
of conceptual models.
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The distinctive features of OO systems (e.g. Simula,
Smalltalk and LOOPS) are as follows.

@ That all data structures and procedural code are
organised as objects. An object is an association of
data structures with the procedural code (‘ functions’
or ‘methods’) with which those data structures may
be manipulated. In most systems, data structures are
accessed only by means of ‘messages’ sent to object
methods and may thus be protected from modifi-
cation in illegal ways.

@ Objects in an OO system may be grouped into classes
(including super-classes and sub-classes) in the same
way that biologists group animals and plants. This
has the psychological advantage that groupings may
be set up corresponding to the way we naturally think
of these things.

@ A (related) advantage is that any structure (‘ property’
or ‘attribute’) in an object may be recorded just once
at the appropriate level of generality and it may then
be inherited by the lower levels. This saves space; by
allowing redundancy to be minimized, it helps avoid
problems of inconsistency in design and facilitates
the modification of designs.

In the more sophisticated OO systems (e.g. LOOPS),
cross-classification is possible, with the possibility of a
class having multiple inheritance of attributes from two
or more higher-level classes. A structure of interlocking
hierarchies like this is sometimes called a ‘heterarchy’. In
OO languages, classes serve as models for the creation of
object ‘instances’. This is similar to the way in which
types serve as models for the assignment of values to
variables in other languages. In most OO systems, classes
are themselves objects which are instances of ‘meta-
classes’.

An idea which is complementary to the notion of class-
inclusion relations is the notion of part-whole relations.
This idea tends not to be explicitly recognised in OO
systems but is there none the less in the kinds of
groupings and sub-groupings of objects which can be
formed. Part-whole relations form hierarchies and
heterarchies as AND trees and AND networks.

Related to OO systems are the kinds of ‘entity-
relationship’ (ER) models which are the stock-in-trade
of systems analysis.” Such models typically identify
significant ‘entities’ in the domain being modelled,
‘attributes’ of those entities and named ‘relationships’
between entities.

Although they do not usually figure in discussions of
OO systems and ER models, three other concepts will be
mentioned here which relate to classes and categories. A
class may be defined extensionally by listing all the
members of the class. It may also be defined intensionally
by describing the properties of the class. The third notion
is that many of the classes we regularly use in everyday
life are polythetic. What this means is that there need be
no single attribute which is found in every example of the
class. This property of natural categories has proved
puzzling to theorists who try to characterize classes in
terms of defining characteristics. Polythetic classes need
not have any defining characteristics.

All the concepts described in the foregoing may be
accommodated by the concept of an ‘object’ in SP:
‘class’, ‘super-class’ and ‘sub-class’, ‘metaclass’, ‘in-
stance’, ‘function’, ‘method’, ‘message’, ‘class-hier-

archy’ and ‘heterarchy’, ‘part-whole hierarchy’ and
‘heterarchy’, ‘entity’, ‘attribute’, ‘relationship’, ‘exten-
sional definition’, ‘intensional definition’ and ‘poly-
thetic class’.

5.3.1 Class-inclusion relations, part—whole relations and
inheritance of attributes

Fig. 9 shows how class-inclusion relations, part-whole
relations and inheritance of attributes may be integrated.

[person [name, _]

((head ((eyes...)(nose...)...))
(body...)(legs...))
[eats...][sleeps...][breaths ...]...
[profession

{[tinker ...]

[tailor ...]

|
[gender

{lmale...]

[female...]

1l

Figure 9. The integration of class-inclusion relations, part—whole
relations and inheritance of attributes.

The sets of three dots (‘...") show where other
information would go in a more fully developed
description. This structure shows the class ‘person’ as
having the attributes ‘head’, ‘body’, ‘legs’, ‘eats’,
‘sleeps’, etc. These are the parts of which the concept of
a person is composed ; parts may have sub-parts down to
any level.

‘ Persons’ have sub-classes ‘tinker’, ‘tailor’, etc. and
they are also cross-classified as ‘male’ or ‘female’. Any
number of levels is possible in this kind of classification
scheme.

Notice how part-whole relations equate with AND
relations, while class-inclusion relations equate with OR
relations.

An ‘instance’ of a person may be represented as

[person [name, Tom), _, [ profession[tinker, _]]
[gender[male, _]]]

or even more succinctly as
[ [, Tom], _, [, [tinker, _]) [, [male, _]]].

Either pattern will unify with the class schema giving a
full description of ‘ Tom’ something like this:

[person [name, Tom]
(head((eyes ...) (nose...)...))
(body...)(legs...)
(eats...)(sleeps...) (breaths...)...
[profession [tinker...]]
[gender [male...]]]

Pattern matching and unification provides a mech-
anism by which attributes may be inherited by an
instance (or sub-class) in the sense understood in object-
oriented design. In SP, unlike most other OO systems,
the concepts of class-inclusion relation, and inheritance
of attributes are integrated with the concept of part-whole
structure.
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5.3.2 Methods and messages

Narrow SP has potential as a ‘procedural’ language,
although the details will not be pursued here. An SP
object may contain constituent objects corresponding to
‘methods’ in other OO languages. For example, a class
‘person’ containing the method ‘eat’ may be represented
something like this:

[person, [name, _], [ea!] food, ], ...],...].

The first set of three dots corresponds to the details of
how eating is done. The second set represents the many
other attributes of the class ‘ person’. A particular person
may be represented as, for example:

[person,[name, Mary), _]

or, moere succinctly, [person, Mary, _].
If Mary is to eat something one can send a ‘message’
to the object which represents her something like this:

[ person, Mary, [eat, ham-sandwich], _]

Thus, in SP, both ‘methods’ and ‘messages’ may be
treated as objects, not essentially different from other
kinds of knowledge. One advantage of treating ‘methods’
and ‘messages’ uniformly with other kinds of knowledge
is that ‘inheritance’ may be exploited within them. A
‘method’ may be inherited by other objects and it may
itself inherit objects from elsewhere. Likewise for
‘messages’. Knowledge-engineering systems like KEE go
some way down this path.

5.3.3 Class, meta-class, instance and the evolution of
classes

Most OO systems make a sharp distinction between
‘classes’ and ‘instances’. Classes serve as templates for
the creation of instances, but instances may not be
templates for anything. The structure of classes is
established by a designer before the system runs, and
remains fixed while the system runs. As it runs it may
create new instances of classes dynamically but not new
classes. Since classes, in most systems, are regarded as
objects, this means that they must be instances of
something. To avoid classes being instances of classes
(which would violate the sharp distinction between
instances and classes) it is necessary to introduce the
concept of ‘meta-class’. Classes may then be instances of
meta-classes. There is an infinite regress because meta-
classes must be instances of meta-meta-classes —and so
on (see Ungar & Smith, 1987).

In SP, the concepts of ‘instance’, ‘class’ and ‘meta-
class’ are merged. There is no attempt to create ‘strict’
hierarchies or avoid Russell’s paradox. The advantage of
this breaking down of the distinction between classes and
instances is the removal of unnecessary rigidities in the
system: any object may serve as a template for the
creation of other objects (i.e. any object may serve as a
class), and any object may be created dynamically as the
system runs. In other words, the structure of classes of
the system may evolve as the system runs.

Many people find it difficult to abandon the distinction
between classes and instances. The reason seems to be
that the things which, in everyday life, are conventionally
regarded as instances of classes (e.g. individual people)
are highly salient, coherent concepts. The fact that an

individual person (dog, cat, table, chair) is a very highly
coherent concept should not disguise the fact that such
things are in fact collections of more primitive percepts.
In short, they are classes of visual, auditory and tactile
images. Something which would conventionally be
regarded as an instance, e.g. ‘Mary’, may be specialised
into such concepts as ‘Mary-as-wife-and-mother’,
‘Mary-as-magistrate’, etc. These are sub-classes of the
class ‘Mary’.

5.3.4 Entity-relationship models

Representing the relationship between two or more
entities in SP is no different from representing the
structure of a given entity. The relationship may be
expressed as an AND relation between the relationship
identifier and identifiers of the entities to be related. For
example.

[employs, John,[Harry, Mary], _]
in the context of this schema:

[employs
[employer, _]
[employees, _]

expresses the idea that ‘John’ employs ‘Harry’ and
‘Mary’. The ellipsis represents other information (e.g.
company law) that may be associated with the re-
lationship between employers and employees.

5.3.5 Polythetic classes

As already mentioned, most ‘natural’ categories are
polythetic, meaning that there need not be any single
attribute which is found in all examples of the class. We
can recognize something as, say, a cat when any one (or
perhaps more) of its distinctive features is missing or
replaced by something else. This property of natural
categories is puzzling if one assumes that there must be
defining characteristics for classes, but it can be accom-
modated quite easily by SP.

As a simple example, the SP object ({4, B}{C, D}
{E, F}) represents the class of three-letter strings com-
prising ACE, ACF, ADE, ADF, BCE, BCF, BDE and
BDF. No single attribute (letter) is found in every
example of the class. In general, polythesis is a reflection
of disjunction (OR relations) in the organisation of
knowledge.

5.4 ‘Context-sensitive’ power in SP

The expressive power of systems for constructing context-
free grammars is limited. Systems of this type (e.g. BNF)
cannot, for example, adequately represent the syntax and
semantics of most natural languages.

Although SP resembles BNF, it can succinctly rep-
resent structures in natural language —such as ‘dis-
continuous dependencies’ in syntax — which are beyond
the scope of BNF. SP has at least the expressive power
of ‘context-sensitive’ systems like Definite Clause
Grammars (DCGs).®

In the French sentence Les plumes sont vertes there are
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two overlapping sets of discontinuous dependencies.
They are shown here by underscores:

Les plumes sont vertes

Les plumes sont vertes

In the first case, the features of the sentence which make
it plural are marked. All these parts must agree even
though they may be separated by any amount of
intervening structure. Likewise, in the second case, the
parts of the sentence which express feminine gender must
agree.

In the DCG formalism, which is a notational variant of
Prolog, these dependencies would be expressed through-
out the grammar in a number of rules, including the
highest-level rule shown here:

S(Num, Gen, s(NP, V P)) - np(Num, Gen, NP), vp(Num,
Gen, VP).

In this rule ‘Num’ and ‘Gen’ are variables recording
number and gender, respectively. Agreement is assured
because of the ‘meta’ rule of Prolog that repeated
examples of an instantiated variable within a clause all
refer to a single structure. If the first instance of ‘ Num’
in the rule is instantiated to ‘singular’ then all the others
are too. Likewise for ‘plural’. The ‘ Gen’ variable behaves
in the same way for ‘masculine’ and ‘feminine’.

With SP, the same effect is achieved without any need
for the meta rule. Fig. 10 shows a small grammar which
can generate the example sentence amongst others. The
‘top-level’ rule is simpler than the top-level rule in the
DCG formalism because it does not attempt to record
discontinuous dependencies at this level. The grammar
as a whole is significantly smaller than the equivalent
DCG grammar.

[

(S(NP,)(VP,_))

(NP(D,_)(N,-))

(VP(V,){(4, ) ((P,-) (NP, ))})

(P{sur, sous,...})

(V{(SINGHest, ... }) (PL{sont, ... })})
(D{(SING{(FEM{une, la, ...}) (MASC{un,le, ... })})
(PL{les, ...})})

(N(NS, ) (SUF1,.))

(NS{(FEM{plume, ...}) (MASC{papier, ...})})
(SUFIK{(SING, 0)(PL, 5)})
(A(A4S,-)(SUF2,_)(SUFI1,.))
(AS{noir,vert,...})

(SUF2{(FEM, e)(MASC,0)})
(-,D,SING,_,N,_,SUFI, SING, _,

V,SING, _{(4,_,SUFI1, SING, _)_})
(D,PL,_,N,_ ,SUFI,PL,_,

V,PL, {(A,_,SUFI1,PL,_)_})
(-.D,_,FEM,_,N,_,FEM, _{(A,_,SUF2,FEM,_)_})
(-.D,_,MASC, _,N,_,MASC,

{(4,_,SUF2,MASC, _)_})

Figure 10. A fragment of French syntax written in SP.

Discontinuous dependencigs for ‘singular’, ‘plural’,
‘feminine’ and ‘masculine* forms are expressed by the
last four rules in the grammar, in that order. The ‘_’
symbol, which will match arbitrarily large amounts of
structure, appears wherever there is structure which is
irrelevant to the dependencies being expressed. In this

way the dependencies can be shown directly and plainly
as OAOQ:s.

5.5 Pattern recognition and inductive learning

Perhaps the most interesting aspect of SP is its potential
for pattern recognition, for inductive learning and for
their integration with other areas of computing.

Computing in SP means searching for patterns which
match each other and unifying them; where alternative
unifications are possible, which is almost always the case,
the SP system must choose the ‘best’ one, meaning the
one which allows the greatest amount of unification and
a correspondingly large simplification of structure.

This and the way SP treats partial matching means
that a working SP system is likely to be applicable to
practical problems of pattern recognition. It is likely to
have the kind of flexibility long recognised in human
pattern recognition: the ability to recognise whole
patterns from partial patterns and to recognise patterns
despite distortion or fragmentation.

The subject of the second paragraph in this section was
computing. But essentially the same thing can be said
about inductive learning. The inductive learning of a
grammar, for example, can be achieved by processes
which at heart are pattern matching and unification, with
the selection of ‘good’ (meaning economical) structures
in preference to ‘bad’ ones.!31®

Here is a very simple example to illustrate how an SP
system may achieve inductive learning:

(John, runs)
(Mary, runs)
(John, walks)
(Mary, walks)
]

would be reduced by the SP system to:
({John, Mary} {runs, walks})

This is functionally equivalent to a grammar which can
‘generate’ the four sentences from which it was derived.

To infer grammars like those in Figs 5 and 10, the
SP system would need to be able to create new identifiers
for structures (e.g. NP in (NP{john,mary}) and VP in
(VP(V,_)(NP,_)) and introduce them at appropriate
points.

The potential applications of a system with inductive
learning capabilities include: automation of the process
of building natural-language grammars; automation of
the process of ‘knowledge acquisition’ for expert
systems; optimisation of database structures; inductive
learning of structures for pattern recognition ; automatic
programming.

The inductive properties of SP give the added
dimension of adaptability to pattern-recognition appli-
cations. A pattern-recognition system based on SP is
likely to have the capability to learn new general schemas
from unprocessed input. It has long been recognised that
much of the power of human pattern recognition in, for
example, speech recognition, lies in the dynamic adap-
tation of the system to changes in the input. Pattern
recognition and inductive learning are intimately related.
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5.6 Other applications and attributes

There is no space in this article to discuss fully all the
possible applications of SP. This section will briefly
describe some other areas where SP may be applied and
properties of SP which may prove useful.

Configuration management. In software development
and many other applications of computers there is a need
to control the ‘versions’ or ‘variants’ of programs,
documents and other information objects. Most such
objects come in parts and sub-parts, and each such part
or sub-part may come in more than one version. The
main problem is to keep track of the required combi-
nations of versions and parts. A related problem is to
keep track of associations between objects as, for
example, between each item of source code and its
corresponding object code.

Many of the ideas described in Section 5.3 — on the
representation of class-inclusion relations, part-whole
relations and ‘relationships’ between entities — may be
applied to problems of configuration management.

There is scope here for the integration of configuration
classes with other classes in a software system: the
creation of a new version of a body of software would
mean the creation of new sub-class of the appropriate
class in the system. '

Software re-use. A significant problem in the software
industry is the difficulty of incorporating existing software
in new developments and the consequent waste of
development effort. This difficulty arises from three main
sources, as follows.

@ The diversity of languages and formalisms used in
software development makes integration difficult.

@® Even when old and new software are written in the
same language, many programming languages have
only limited means of integrating old with new. In
particular, most programming languages lack the OO
mechanisms of inheritance which can greatly facilitate
the integration of old software with new.

@ There are difficulties in identifying and retrieving
software to serve a given purpose.

SP may alleviate these problems on all three fronts.

@ It has potential as a ‘broad-spectrum’ language with
a wide range of applications. It has potential as a
standard for the organization of software systems
and may thus promote the integration of old software
with new.

@ Through the inheritance mechanism which is an
implicit part of its organization, SP, like other OO
languages, facilitates integration.

@ Since SP has potential as a language for information
retrieval (see below) it may prove useful in the
identification of existing software to serve a given
purpose.

Rules for expert systems, probabilistic inference and
reasoning with uncertain and incomplete knowledge.
‘Production rules’ of the kind commonly used in expert
systems may be expressed directly in SP. For example, a
rule to express the common observation that ‘Clouds
(probably) mean rain’ may be expressed as

[[cloud, {black, white}] {rain, hail, snow}].

If this rule is matched with [[cloud, black], _] represent-
ing the question ‘ What do black clouds mean ?’, the object

[[cloud, black]{rain, hail, snow}] will be returned, showing
that rain is a possibility.

The rule may work backwards: from the existence of
rain may be inferred the certainty of there being clouds.
In general SP supports the retrieval of complete patterns
from partial patterns. It will also support forwards and
backwards chaining.

It should be clear from this example that SP can
support the drawing of ‘probabilistic’ inferences. It
would be natural in making these inferences to utilise the
‘weights’ mentioned earlier, reflecting the frequencies of
objects in the raw data.

Uncertainty can be represented directly in SP using
OROs. Gaps in knowledge may be represented with
variables (‘_’). The design of SP accommodates un-
certainty and incomplete knowldge without ad hoc
provision.

The representation of plans and automatic planning.
There is a good correspondence between the main
constructs of SP and those commonly recognised in
project planning.

@® An OAO may be used to represent a sequence of
activities.

@® A UAO may be used to represent activities which are
independent of each other, where their ordering is not
important. This corresponds to the slightly inaccurate
use of the term parallel in project planning. ‘Parallel’
activities may be performed in parallel or they may be
performed in some arbitrary sequence, depending on
the resources available and the required timescales.

@® An ORO may be used to represent activities which
are alternatives in a plan. This is not very common in
ordinary projects, but the concept is recognised in the
term ‘contingency planning’.

What is missing from SP as a medium for expressing
plans is any explicit concept of ‘iteration’. However, an
equivalent effect may be achieved by means of recursion.

It is not possible to be very precise at this stage, but it
seems likely that the inferential processes embodied in
the semantics of SP will lend themselves to the kind of
‘automatic planning’ which figures in some commercially
available systems to support project planning and which
has been the subject of extensive research (see, for
example, Ref. 10.).

Database organisation, information retrieval and con-
tent-addressable memory. SP provides a framework for
organising information in databases which is similar to,
but not identical with the relational model. It would be
rash at this stage to claim that SP is superior to the
relational model (although it may be) but it clearly has
potential in this area. Amongst the potential benefits of
an SP database are these.

@ Integration of database constructs with ‘program-
ming’ and software design constructs.

@ Integration of databases with expert systems.

@ The economy and integration which may be achieved
by the use of a single language both for structuring
the database and for querying it. The example,
above, of querying an expert system rule base
illustrates the potential of SP as a flexible ¢ query-by-
example’ means of accessing information in a
database.

@ An SP system may retrieve information using special

532 THE COMPUTER JOURNAL, VOL. 33, NO. 6, 1990

220z 1snBny z0 uo 1sanb Aq 01.01.G€/81G/9/EE/E10NIE/|UlWOoo/W0d dNo DjWepeo.//:SA]Y WOy Papeojumoq



SIMPLICITY AND POWER -SOME UNIFYING IDEAS IN COMPUTING

keys or identifiers, but it also provides the func-
tionality of content-addressable memory.

@ By virtue of the pattern matching and unification
mechanisms, an SP database may have capabilities
for automatic normalisation of the database and
removal of redundancies.

Software design and the formal specification of com-
puting systems. The way SP supports OO constructs has
already been discussed at length. The benefit of these
constructs in software design is in the creation of
software which is easy to understand, to modify and to
maintain. However, there are other potential benefits of
SP in software development.

The simple and regular nature of SP, its close relation
to logic (discussed above), and its complete independence
of any machine-oriented concepts, means that it should
be regarded as a specification language and not a
‘programming’ language in the conventional sense.

Like Prolog, it has potential as an ‘executable’
specification language. An SP specification may run
immediately without the need for the time-consuming
and error-prone processes of ‘refining’ a specification to
become an ‘implementation”’ or ‘program’ followed by
‘verification’ that the ‘program’ conforms to the
specification. Of course, it does not eliminate the need to
validate the specification against the user’s requirements.

Much software design entails the re-creation of
routines for pattern matching and unification in a variety
of guises. By providing powerful and ‘ universal’ methods
of processing patterns, SP can save much re-invention of
the wheel.

Translation between computer languages and porting of
software. SP has potential application in the translation
between computer languages which is needed from time
to time. SP may also facilitate the porting of software
from one machine to another (since porting of software
may be regarded as a form of translation).

In any kind of translation (including translation
between natural languages) there are advantages in using
an ‘interlingua’ or base form as an intermediary between
languages. The main reason for this is that the number of
translators which need to be developed may be reduced :
for all combinations of N languages the number of two-
way translators required is N/ without an interlingua but
only N with an interlingua. If SP does indeed capture the
essentials of computing in the way which has been
claimed, it should be a good choice as an interlingua for
translation between existing computer languages.

Integration of diverse kinds of knowledge. A common
problem in computing is the need for integration — the
need to have simple and uniform methods of storing and
using diverse kinds of information. In the preparation of
documents, for example, there is a need for an integrated
approach to the storage and manipulation of text and
diagrams. In databases to support computer-aided design
and in integrated project support environments (IPSEs)
there is a similar need to be able to integrate the varied
kinds of knowledge which are used.

SP has the potential to provide the general format
which is needed for the uniform storage and use of
diverse kinds of knowledge. It may not always be
convenient to map every body of knowledge to the SP
syntax. In these cases, SP can serve a useful purpose as
a framework within which ‘alien’ bodies of knowledge

may be stored. It can, for example, be used to show (in
a UAO) the association between a program written in,
say, COBOL, and its corresponding compiler.

The user interface. The usability of any system depends,
in part, on simplicity in its organisation and consistency
across a wide range of applications. The simple syntax of
SP and the scope of its semantics can mean a simple user
interface which is consistent in a variety of applications.

6. CONCLUSION

SP and the theory on which it is based has potential to
integrate and rationalise diverse concepts in computing.
The basic conjecture is that the organisation and use of
all kinds of formal system, knowledge structure or
computing system may usefully be seen in terms of the
management of redundancy in information.

In this article I have tried to show with examples how
a few carefully chosen basic constructs may illuminate a
wide range of concerns is computing. No attempt has
been made to show how SP would apply to such things
as numerical computing, the representation and use of
(2-D and 3-D) geometric information, concepts associ-
ated with the interface between a computer and its
human user, or the representation and use in compu-
tational form of concepts of time.

There is a substantial programme of work needed to
explore the adequacy or otherwise of SP constructs in the
kinds of areas mentioned. If SP and its underlying theory
are sound, they should have something useful to say
about areas like these. It should be possible to create
‘higher-level” constructs from the basic constructs in SP
to meet the needs of particular domains.

It may be that the basic constructs in SP will need to
be modified or augmented. However, in all circumstances
we should resist the temptation to postulate new basic
constructs in an ad hoc manner. In accordance with the
best scientific traditions, we should try to achieve
descriptive and explanatory power with a small range of
theoretical devices. In short, we should aim in our
thinking for a favourable combination of simplicity and
power.
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The size (s,), in bits, of a grammar may be calculated
as
SG = nECE’
where n_ is the number of symbols used in the grammar,
excluding any symbols which are required only for
reasons of readability (e.g. some instances of meta-
symbols) and ¢, is the ‘cost’ (in bits) of each symbol
calculated in the same way as c,.
The descriptive power (p,) of a grammar may be
defined, with reference to a given body of raw data, as

pg = 85— Se-

The efficiency (e,) of a grammar, with reference to a
given body of raw data is:

€, = Pg/S,.
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