
Expert Update Information Compression and Multiple Alignment

INFORMATION COMPRESSION AND MULTIPLE

ALIGNMENT AS UNIFYING CONCEPTS IN AI AND

COMPUTING1

Gerry Wolff

School of Informatics,
University of Wales,

Bangor.
Email: gerry@informatics.bangor.ac.uk.

Web: www.informatics.bangor.ac.uk/∼gerry/sp summary.html.

1 Introduction

In computing, “information compression” or “data compression” is normally associated with slightly dull
utilities like WinZip or PkZip or the LZ algorithms on which they are based. Information compression
(IC) is useful if you want to economise on disk space or save time in transmitting a file but otherwise it
does not seem to have any great significance.
In this article I hope to show that there is much more to IC than this. The article aims to provide an

overview of ways in which IC can illuminate concepts and issues in artificial intelligence and, indeed, the
nature of ‘computing’ itself. More specifically, the article describes the concept of information compression
by multiple alignment, unification and search (ICMAUS) and the ways in which this framework can
be used to model such things as parsing and production of language, ‘fuzzy’ pattern recognition and
information retrieval, probabilistic reasoning, the workings of a Turing machine, and some concepts in
mathematics and logic.
Information compression may be seen as a process of maximising Simplicity in information (by ex-

traction of redundancy) whilst preserving as much as possible of its non-redundant descriptive Power.
Hence the sobriquet ‘SP’ that is sometimes used as an alternative name for the ICMAUS concepts.

2 Background and History

The ICMAUS ideas are founded on two main areas of thinking: the idea that IC is fundamental in the way
brains and nervous systems work and a quasi-independent body of research into the intimate relationship
that appears to exist between IC and inductive inference. Both these fields are briefly discussed in the
two subsections that follow. The section ends with a brief sketch of the way in which the ICMAUS ideas
originated.

2.1 Information Compression in Brains and Nervous Systems

Although they did not use the term IC, William of Occam in the 14th century and Ernst Mach (and
others) in the 19th century realised that, in human thinking, a principle of simplicity seems to operate.
Given two or more explanations of some phenomenon, we tend to prefer the shortest, simplest one
provided it does justice to the facts.
Similar principles were explored in an interesting way by G K Zipf in Human Behaviour and the

Principle of Least Effort (1949).
With the advent of Hartley-Shannon information theory in the 1940s, psychologists began to realise

that brains and nervous systems could be understood in terms of the transmission and storage of “in-
formation” in its new formal sense and they began to see the many ways in which brains and nervous
systems economise in information handling.
A well-known example is the way “lateral inhibition” in the nerve cells of the retina has the effect

of compressing visual information before it is transmitted along the relatively low bandwidth of the
optic nerve. Inhibitory connections between neighbouring units have the effect of emphasising edges

1Published in Expert Update 4(3), 22–36, 2001, bulletin/magazine of the SGES, the British Computer Society Specialist
Group on Knowledge-Based Systems and Applied Artificial Intelligence.

22

Papers Expert Update

(transitions from one uniform area to another) and thus converting the image into a kind of cartoon
sketch. Transmitting information about edges is much less costly than transmitting information from
each individual sensory unit. This is similar to the technique of “run-length coding” that is used for
compressing TV images and similar data where runs of identical digits are reduced to single instances,
with a corresponding emphasis on the transitions from one kind of digit to another.
Closer to our everyday experience, the phenomenon of “recognition” can itself be understood in terms

of IC. When we recognise something, we find an exact match or a good partial match between a pattern of
sensory data and some kind of stored record of identical or similar entities that we have seen in the past.
Finding a match does not in itself achieve IC. But if we decide to memorise the newly-recognised entity
in terms of the stored patterns, we are in effect merging the new sensory data with the previously-stored
patterns and thus compressing the new data.2

Imagine how inconvenient it would be if we did not memorise things in this kind of way. Every
momentary perception of a given person would create a completely new memory record despite the fact
that a person’s appearance and other attributes normally remain largely unchanged from one moment to
another. Apart from producing huge amounts of redundancy in our memories, this failure to merge our
perceptions of a given person into a single concept would make it very difficult to do simple things like
remembering whether or not that person likes sugar in their tea or remembering to send them a card on
their birthday.

2.2 IC and Inductive Inference

In 1964, Ray Solomonoff published two seminal papers discussing the way in which inductive inference—
predicting the future from the past—is related to IC.
The connection between these two things—which may at first sight seem obscure—lies in the use of

recurring patterns:

• In our everyday experience, we notice that, whenever something is pushed off the edge of a table,
it falls to the floor. From this regular pattern, we can infer that, if we see something pushed off
the edge of a table, it is likely to fall to the floor. Whether or not this kind of prediction can be
justified in rational terms (a subject of some debate), it is clear that this kind of inductive inference
is typical of how we think about the world.

• Most of the simpler ‘standard’ techniques for IC work by exploiting recurring patterns. We can,
for example, take advantage of the fact that words are recurrent patterns in ordinary text. If each
word in a dictionary has a relatively short reference number or ‘code’, we can compress a body of
text by replacing each word in the text by its reference number.

Inductive inference and IC come together in the concept of a ‘grammar’ for a language. The rules of
a grammar may be seen to be recurrent patterns in the language (at various levels of abstraction) and
these rules may be used like a dictionary to compress a sample of the language. They may also be used
to predict missing elements of a sample like “It’s a lovely —”.
Solomonoff realised that, if we are trying to devise a grammar for a given sample of language, there are

typically many alternative grammars that describe the sample, some better than others. It is tempting
at first sight to choose the simplest grammar but this is typically something trivial that generates lots
of ‘garbage’ as well as valid sentences. Another possibility is to choose the grammar that compresses a
sample of the language most effectively. But such a grammar will only generate the original sample and
cannot generate other valid sentences.
Solomonoff’s key insight was that, in choosing amongst the many possible grammars that one might

infer from a sample of language, one should try to minimise (G+E), where G is the size of the grammar
(measured in ‘bits’) and E is the size of the sample (in bits) after it has been encoded in terms of the
grammar. This guards against the induction of trivially small grammars (where a small G is offset by a
relatively large E) and also avoids the induction of excessively large grammars (where E may be small
but G is disproportionately large).
This and related principles have various names but perhaps the most useful umbrella term is “Mini-

mum Length Encoding” (MLE).

2It is not necessary for the new data and the stored patterns to be identical. The parts that are the same can be merged
and the parts that are different can be stored as new information. In standard compression techniques, these kinds of
differences between patterns are often called “deltas”.

23

Expert Update Information Compression and Multiple Alignment

2.3 Language Learning and the ICMAUS concepts

My interest in these kinds of ideas was sparked originally by fascinating lecturers about economical coding
in the nervous system given by Horace Barlow when I was an undergraduate at Cambridge University.
Some time later, I developed two computer models of language learning: MK10 which demonstrates

how a knowledge of the segmental structure of language (words, phrases etc) can be bootstrapped with-
out error-correction or ‘supervision’ by a ‘teacher’ and SNPR—an augmented version of MK10—that
demonstrates how grammars can be learned without external supervision. In the course of developing
these models, the importance of economical coding and MLE principles became increasingly clear.
At about that time, I became acquainted with Prolog and I was struck by the parallels that seemed to

exist between that system, designed originally for theorem proving, and my computer models of language
learning. A prominent feature of my learning models is a process of IC by searching for patterns that
match each other and a process of merging or ‘unifying’ patterns that are the same. Although IC is not
a recognised feature of Prolog, a process of searching for patterns that match each other is fundamental
in that system and the merging of matching patterns is an important part of ‘unification’ as that term is
understood in logic. It seemed possible that IC might have the same fundamental importance in logic as
it has in inductive learning.
These observations led to the thought that it might be possible to integrate inductive learning and

logical inference within a single system, dedicated to IC by pattern matching, unification and search.
Further thinking suggested that the scope of this integrated system might be expanded to include such
things as information retrieval, pattern recognition, parsing and production of language, and probabilistic
inference.
Development of these ideas has been underway since 1987. It was evident quite early that the new

system would need to be organised in a way that was rather different from the organisation of the MK10
and SNPR models. And, notwithstanding the development of Inductive Logic Programming, it seemed
that Prolog, in itself, was not suitable as a vehicle for the proposed developments—largely because
of unwanted complexity in the system and because of the relative inflexibility of the search processes
in Prolog. It seemed necessary to build the proposed new integrated system from new and ‘deeper’
foundations.
Initial efforts focussed on the development of an improved version of ‘dynamic programming’ for

finding full matches and good partial matches between pairs of patterns. About 1994, it became apparent
that the scope of the system could be greatly enhanced by replacing the concept of ‘pattern matching’
with the more specific concept of ‘multiple alignment’, similar to that concept in bio-informatics but with
important differences.

3 The ICMAUS Framework and its Implementation

The rest of this article will describe the ICMAUS framework in broad-brush terms and give some examples
of what it can do. This section briefly describes the framework and the computer models in which it
is realised. But first, a few words about IC and how it relates to such things as pattern matching and
concepts of probability.

3.1 Some Basic Principles

Text books about information theory and information compression often present the material in terms
of the associated mathematics but unless this is done carefully, it can have the effect of obscuring some
relatively simple but important ideas that underpin these topics.
Most of the simpler ‘standard’ techniques for IC work by searching for patterns that repeat two or

more times and then replacing each instance of a repeating pattern with a relatively short ‘code’ or
‘identifier’ for that pattern as it appears in some kind of repository or dictionary of patterns. In effect,
the repeated instances of a given pattern are merged or ‘unified’ with the copy of the pattern as it appears
in the dictionary.
The best patterns to choose are the ones that occur relatively frequently or are relatively large or,

ideally, are both large and frequent. Some textbook treatments of IC put emphasis on frequency and
the closely-related concept of probability3 and neglect the equally-important factor of size. However,

3In this context, the concept of ‘probability’ is simply a normalised measure of frequency.

24

Papers Expert Update

there is a trade-off between the two which means that, if patterns are large enough, they can yield useful
compression even when their frequency is as low as 2. Unless one is alert to this idea, it is all too easy to
assume that useful IC can only be achieved when frequencies or probabilities are high.
The emphasis on concepts of probability or frequency in some treatments of IC tends to obscure

the fundamental importance of matching and unification of patterns. But a little reflection shows that
these things are intimately related. Concepts of frequency and probability imply counting. And counting
implies a recognition that the entities being counted match each other at some level of abstraction and
it also implies their unification into a single concept.
That said, concepts of frequency and probability are clearly fundamental in IC, not only in the choice

of patterns to be unified but also in the choice of codes or identifiers. Other things being equal, it is
clearly best to assign short codes to frequent patterns and longer codes to less frequent patterns. This is
the basis of Huffman coding and related techniques.
The fundamental importance of frequency and probability in IC provides the link, already mentioned,

between IC and inductive inference. It also provides a foundation for probabilistic reasoning with the
ICMAUS framework as described in Section 9, below.

3.2 Overall Organisation of the Framework

In its most general form, the ICMAUS framework is envisaged as a system for the unsupervised inductive
learning of grammar-like structures that works like this:

• Starting with little or no knowledge of the ‘world’, the system receives raw data from the world via
its ‘senses’. These data are designated ‘New’.

• As each portion of New is received, the system tries to compress it as much as possible by matching
it against stored patterns (designated ‘Old’) and encoding it in terms of those patterns. If for
example, the system knows the pattern “information compression” and has given it the code “IC”,
then whenever this pattern appears in New, it may be abbreviated as “IC”. A ‘good’ match between
patterns is one that yields a relatively large compression of New.

• Portions of New that can be encoded in terms of Old, may be stored in their encoded form. Every
other portion is stored in raw form but is given a new code by the system for possible use in the
encoding of New information in the future.

• There may be periodic purging of Old to remove patterns that are not proving useful in the encoding
of New.

In broad terms, this incremental scheme is similar to the well-known and widely-used Lempel-Ziv
algorithms for information compression. What is different about the ICMAUS scheme is an emphasis on
thoroughness of searching rather than speed of processing and the way a concept of ‘multiple alignment’
has been developed to support the encoding New information in a hierarchy of ‘levels’, as will be seen in
examples below. MLE principles are an explicit foundation for this development.

3.3 Representation of Knowledge

Since the ICMAUS scheme is intended as an abstract framework for diverse kinds of information process-
ing, it seemed necessary to adopt a simple, ‘universal’ format for knowledge. Accordingly, all kinds of
knowledge in the system is stored as arrays or ‘patterns’ of atomic symbols in one or more dimensions.
So far, the focus has been on one-dimensional patterns but it is envisaged that, at some stage, the models
will be generalised for patterns in two dimensions and possibly higher. The term ‘pattern’ is used, rather
than ‘string’ or ‘sequence’ as a reminder that the system should ultimately be able to handle arrays with
more than one dimension.
Each ‘symbol’ in the system is merely a ‘mark’ that can be matched in a yes/no manner with other

symbols but otherwise has no intrinsic meaning. It is possible to use symbols like ‘+’ or ‘×’ in ICMAUS
patterns but they would not have their normal meanings (‘add’ and ‘multiply’). Any meanings that
attach to symbols in the system must derive from the context of other symbols and must not be implicit
or hidden from view.
Despite the simple format for knowledge, it is possible within the ICMAUS framework to model such

things as grammars, production rules, trees, networks and similar structures. Examples of some of these
things will be seen later.

25

Expert Update Information Compression and Multiple Alignment

3.4 The SP61 and SP70 Computer Models

The framework outlined above has been developed using computer models as a test-bed for the ideas.
These models also serve as a means of demonstrating how the framework can be used. The development
has been in two main phases:

• The SP61 model realises the first and second elements of the framework: compressing New in terms
of patterns already stored in Old. This model is largely complete and relatively robust and stable.

• The SP70 model, currently under development, contains all the elements of the SP61 model and,
in addition, has an ability to store New patterns and parts of New patterns in Old (the third and
last main part of the ICMAUS framework).

3.4.1 SP61

At the heart of the SP61 model is a process for finding ‘good’ partial matches between two patterns which
is essentially a form of dynamic programming but with advantages over standard methods, including:

• The patterns to be matched can be very much longer than can be processed by standard methods.

• The ability to find alternative matches between patterns.

• The possibility of varying the thoroughness or ‘depth’ of searching.

The dynamic programming in SP61 is applied iteratively in such a way that the system can find
alignments amongst arbitrarily large numbers of patterns, not merely two. As will be seen, this capability
means that it can build structures that reflect arbitrarily deep hierarchies in cognitive structures.

It is well known that, in this kind of processing, the abstract ‘space’ of possible alternative matches
between patterns is, in almost every case, astronomically large. This means that it is never practical to
search the entire space exhaustively. It is always necessary to constrain the search in some way, either
using ‘heuristic’ techniques or other forms of constraint. This means that it is never possible to guarantee
that the best possible solution has been found but, in many cases, one can find solutions that are “good
enough”.

The SP61 model (and the SP70 model) exploit a variety of constraints to render searching tractable
and to ensure that the computational complexity of the models is within acceptable limits.

3.4.2 SP70

SP70 works like SP61 but when it finds a pattern or part of a pattern from New that cannot be encoded
in terms of one or more patterns in Old, the system can store those full or partial patterns in Old for
possible use in the encoding of New information that comes later.

Part of this new model is a facility for sifting out patterns that are ‘good’ in terms of MLE principles
and discarding patterns that are ‘bad’.

The SP70 model already has an ability to learn simple grammars but further work is needed to solve
residual problems.

3.5 ICMAUS in Brains?

Although the examples to be shown have a ‘symbolic’ flavour, the ICMAUS framework is intended to be
more abstract than the distinction between ‘symbolic’ and ‘connectionist’ processing. Although the SP61
and SP70 models have been implemented as an ordinary programs running on a conventional computer,
it seems possible that the framework could also be implemented using the kinds of mechanisms that are
apparently available in the brain.

There is no space here to discuss this in any detail but it seems possible that ‘patterns’ in multiple
alignments (as described below) could be realised as ‘cell assemblies’ like those described by Donald Hebb
in the 1940s. Each symbol within each pattern could be realised as a single cell or, perhaps, a small cell
assembly.

26

Papers Expert Update

4 Natural Language Processing

A good introduction to the nature of the current system and its capabilities is the way it can be used for
natural language processing.

Figure 1 shows how the French sentence ‘e l l e s s o n t p e t i t e s’ (“They are small”, with feminine
gender for “they”) may be analysed into its constituent words and phrases by alignment with other
patterns representing grammatical rules, stored in Old. The sentence, shown in row 0 of the alignment,
is presented to SP61 as New.4

0 e l l e s s o n t p e t i t e s 0

| | | | | | | | | | | | | | | |

1 | | | | | | | | | A1 p e t i t #A1 | | 1

| | | | | | | | | | | | |

2 | | | | | | | | | A PL F A1 #A1 e s #A 2

| | | | | | | | | | | | |

3 | | | | | V PL s o n t #V | | | | 3

| | | | | | | | | | | |

4 | | | | | VP V | #V A | | #A #VP 4

| | | | | | | | | | | |

5 N1 F e l l e #N1 | | | | | | | | 5

| | | | | | | | | | |

6 N PL N1 | #N1 s #N | | | | | | | 6

| | | | | | | | | | |

7 S N | | #N VP | | | | | #VP #S 7

| | | | | | | |

8 N | F V | A | F 8

| | | | | |

9 N PL V PL A PL 9

Figure 1: The best alignment found by SP61 with ‘e l l e s s o n t p e t i t e s’ in New and patterns
representing grammatical rules in Old.

A pattern like ‘S N #N VP #VP #S’ in row 7 of the alignment corresponds to a re-write rule like
‘S → N VP’. The grammatical patterns used in this and similar examples differ from conventional re-
write rules because the re-write arrow is omitted, there is a ‘termination’ symbol at the end of the rule
(‘#S’) and each of the ‘code’ symbols within the rule (‘N’ and ‘VP’ in this example) is paired with the
corresponding termination symbol (‘#N’ and ‘#VP’ respectively).

If we ignore rows 8 and 9 of Figure 1, the alignment is very much like the parsing that one would
obtain using a context-free phrase-structure grammar (CF-PSG): it marks each level of the hierarchical
structure of the sentence. What is different in this case is that the bottom two rows of the alignment mark
‘discontinuous’ dependencies of gender and number within the sentence: row 8 shows how the feminine
subject (‘e l l e s’) is associated with the feminine form of the adjective (‘p e t i t e s’) at the end of
the sentence; row 9 shows the association between the plural subject, plural verb and plural form of the
following adjective.

This kind of ability to express discontinuous dependencies in syntax means that the system has more
expressive ‘power’ than an unaugmented CF-PSG, possibly sufficient to express most aspects of NL
structure in a succinct manner. Examples presented elsewhere include one showing how the ICMAUS
framework can accommodate the interesting pattern of inter-locking constraints in English auxiliary
verbs.

4.1 Evaluation of Alignments

Alignments like the one shown in Figure 1 are evaluated in terms of the compression of New that may
be achieved by encoding it in terms of the patterns from Old that appear in the alignment.

4By convention, in alignments like the one shown in Figure 1, New is always shown in the top row of each alignment
with patterns from Old underneath. The order of the rows below the first row is entirely arbitrary and has no special
significance. As we shall see, alignments can also be rotated through 90o and in these cases New is always shown on the
left.

27

Expert Update Information Compression and Multiple Alignment

Given the close relation, already noted, between information compression and probability, each align-
ment may also be evaluated in terms of probability. SP61 makes the necessary calculations using infor-
mation which is provided about the frequency of occurrence in some domain of each pattern in Old.

4.2 Production of Language

An interesting feature of the ICMAUS framework is that, without any modification it is possible to use
it to produce sentences as well as parse them. This is done by replacing the sentence in New with an
encoded version of the sentence and running the model again. The result is an alignment which is, apart
from the top row, the same as the alignment shown in Figure 1. Since it has the correct words in the
correct order it is, in effect, an expression of the original sentence.
There is insufficient space here to describe more fully this aspect of the framework. It is similar in

some ways to the way a suitably-designed Prolog program can be run forwards or backwards, depending
on the data supplied.

4.3 Semantics

As we saw earlier (Section 3.3), the ICMAUS framework has been designed to accommodate a wide
variety of kinds of knowledge so it should be able to represent ‘semantic’ structures as well as syntactic
patterns and to integrate the two. As we shall see (Section 8), the framework does lend itself to the
representation of ‘non-linguistic’ structures like class hierarchies but no attempt has yet been made to
examine how syntax and semantics may be integrated.

5 Interpreting ‘Computing’ within the ICMAUS Framework

For about 60 years, it has been widely accepted that the concept of ‘computing’ may be defined in terms
of Alan Turing’s elegantly simply Universal Turing Machine (UTM) and models that are recognised
as equivalent such as Lambda Calculus and Post’s Canonical System (PCS). These models have been
extremely successful and provide the theoretical underpinning for most modern digital computers.
The motivation for re-examining the concept of computing is that, notwithstanding Turing’s own

vision of the possibility of artificial intelligence, a raw computer without special programming is singularly
lacking in the kinds of abilities that we recognise as ‘intelligent’. There is increasing success in developing
programs that imitate these abilities but there is a need for rationalisation, integration and simplification
across these models. This is the motivation behind the development of the ICMAUS framework.
If we examine the Turing model, with its endless ‘tape’, ‘read-write head’ and ‘transition function’, it

is not very obvious how it might relate to the ICMAUS framework. Fortunately, it has been known for
many years that any UTM can be modelled by a PCS5 and it is much easier to see how a PCS may be
modelled within the ICMAUS framework.
Writing mainly in the 1940s, Emil Post argued that any kind of computation could be achieved using

a system comprising an ‘alphabet’ of symbols, one or more ‘primitive assertions’ or ‘axioms’, and one or
more ‘productions’.
Productions in a PCS are very much like rewrite rules in a CF-PSG and they can be represented very

straightforwardly by ICMAUS-style patterns, in much the same way as grammatical rules are represented
by patterns in the example shown in Figure 1. The axioms can also be represented by patterns. And
the alphabet is implicit in the symbols used within the patterns. The net result is that, for any chain of
computation in a PCS, there is a corresponding alignment that can be formed in the ICMAUS framework.

5.1 Why another model of computing?

Since there are already several models of computation that are known to be equivalent to a UTM, readers
might object that the ICMAUS framework is merely an addition to that list.
What is different about the ICMAUS framework is that, although it is not quite as simple as the UTM

and equivalent models, it appears to have much more explanatory ‘power’. By contrast with the UTM,
PCS and other existing models of computation, the ICMAUS framework, without the kind of extensive

5This is very well described in Marvin Minsky’s Computation, Finite and Infinite Machines (Prentice-Hall, 1967).

28

Papers Expert Update

ICMAUS ICMAUS

ICMAUS

Conventional computer

S

IC
M

A
U

S

C

IC
M

A
U

S
S

Proposed ‘SP’ computer

Figure 2: Schematic view of a conventional computer and an ICMAUS computer. Key: ‘C’ = the ‘core’ of
the conventional computer and the SP computer. ‘ICMAUS’ (in small type) = ICMAUS mechanisms in
various relatively restricted forms. ‘ICMAUS’ (in large type) = ICMAUS mechanisms in a relatively fully
developed and generic form. ‘S’ = software covering a wide range of applications. In the conventional
computer, S includes many instances of (small) ICMAUS—more than the three instances shown here. It
is assumed that the data to be processed is the same for both computers.

programming required in other models, can be applied directly to several of the areas of application that
have been the focus of interest in artificial intelligence and cognitive science.
Not only do traditional models require extensive programming to do anything useful, but across a

range of applications and even within one application, there is often a considerable amount of duplication
or near-duplication of operations. In particular, ICMAUS mechanisms appear repeatedly, in various
more-or-less restricted forms, in a wide range of applications and operations. By providing a single,
relatively sophisticated general-purpose process for ICMAUS, it should be possible to achieve an overall
simplification of computing systems.
This is illustrated schematically in Figure 2. In the conventional computer, relatively restricted forms

of ICMAUS mechanisms appear both in the core of the computer and repeatedly in various software
applications. In the proposed ‘SP’ computer, the ICMAUS core of the computer would be larger but the
expectation is that this would eliminate the need for repeated programming of ICMAUS mechanisms in
software. The net effect should be an overall reduction in complexity.

6 Mathematics and Logic

In another article, I have argued that many aspects of mathematics and logic may be understood as
information compression. Many of the forms and structures used in maths and logic may be seen as
examples of standard techniques for information compression. And in many cases it is also possible to
interpret the dynamics of calculation or inference in terms of the matching and unification of patterns,
leading to the compression of information.
As an indication of the possibilities, this section describes briefly how ICMAUS concepts may pro-

vide an interpretation for the execution of functions, the conversion of a ‘bag’ or ‘multiset’ into the
corresponding set and the union and intersection of sets.

6.1 Execution of Functions

Figure 3 shows a set of patterns representing the structure of a one-bit adder.
The letters in the four patterns serve as place markers to avoid ambiguity in alignments. In each

pattern, the first two binary digits are the two numbers to be added, the digit following ‘S’ is the sum of
the numbers and the digit following the ‘C’ is the carry-out bit.

29

Expert Update Information Compression and Multiple Alignment

A 1 1 S 0 C 1
A 1 0 S 1 C 0
A 0 1 S 1 C 0
A 0 0 S 0 C 0

Figure 3: Four patterns representing a table to define the function for the addition of two one-bit numbers
in binary arithmetic, with provision for the carrying out of one bit.

0 A 0 1 S C 0

| | | | |

1 A 0 1 S 1 C 0 1

Figure 4: The best alignment found by SP61 with ‘A 0 1 S C’ in New and the patterns shown in Figure
3 in Old. The first and last digit in each row is a row number, not part of the pattern for that row.

Figure 4 shows the best alignment formed by SP61 with the pattern ‘A 0 1 S C’ in New and the four
patterns from Figure 3 in Old. The two digits in the alignment that are not aligned with anything in
New may be seen as the result of the addition of ‘0’ and ‘1’: the sum is ‘1’ and the carry-out bit is ‘0’.

In order to add numbers containing two or more bits, it is necessary to generalise the scheme illustrated
here so that the addition of single bits is applied recursively. Elsewhere, I have shown how this can be
done in the ICMAUS framework. Instead of using a set of patterns like those in Figure 3 (which, in
computer science jargon, is known as a ‘half adder’), it is necessary to use patterns that contain a field
for a carry-in bit as well as the carry-out bit (a ‘full adder’). Given these patterns in Old and an
appropriate input pattern in New, SP61 constructs alignments in which the carry-out bit from one level
becomes the carry-in bit for the next level. In this way, the system can add numbers containing two or
more bits.

6.2 Creating a Set from a Bag or Multiset

The ‘New’ patterns within the ICMAUS framework may contain two or more patterns that are identical—
so New is like a ‘bag’ or ‘multiset’ in logic.

If New were to contain a range of patterns like this: {(tiger)(dog)(ostrich)(horse)(ostrich)(tiger)(dog)
(ostrich)(horse)(horse)(ostrich)(horse)}, it is not hard to see how, with Old initially empty, the alignment
and unification of patterns would reduce New to a set of patterns in Old like this: {(ostrich)(dog)(horse)
(tiger)}. Bold type is used here to show when a pattern is the result of unification of two or more identical
copies of that pattern.

This examples shows how the process of converting a bag into the corresponding set containing a
single example of each type of element in the bag may be seen as a process of information compression
by the matching and unification of patterns.

6.3 Union and Intersection of Sets

If the set {(dog)(horse)(tiger)(giraffe)(penguin)} were in New and the set {(ostrich)(dog)(horse)(zebra)
(giraffe)} were the entire contents of Old, it is not hard to see that, in much the same way as just
described, the result would be: {(ostrich)(dog)(horse)(tiger)(zebra)(giraffe)(penguin)}. This set is the
union of the first two sets and their intersection is the patterns that have been unified, shown in bold
type: the set {(dog)(horse)(giraffe)}.

In general, we can see that the union and intersection of two sets may be seen as IC by matching and
unification of elements of the sets.

30

Papers Expert Update

0 i n p f r m a t i x n 0

| | | | | | | | |

1 i n f o r m a t i o n 1

0 i n p f r m a t i x n 0

| | | | |

1 p a r a f f i n 1

0 i n p f r m a t i x n 0

| | | |

1 p a r a f f i n 1

Figure 5: The three best alignments found by SP61 with ‘i n p f r m a t i x n’ in New and a small
dictionary in Old.

7 ‘Fuzzy’ Pattern Recognition, Scene Analysis and Best-Match

Information Retrieval

The ‘dynamic programming’ feature of the ICMAUS framework (and the SP61 model) means that it
is just as much at home with partial matches between patterns as with full (‘exact’) matches between
patterns. This is the key to the system’s ability to recognise patterns in a ‘fuzzy’ manner—like systems
for spelling checking or, indeed, human capabilities for recognising patterns and objects.

Figure 5 shows, in order of their compression scores, the three best alignments found by SP61 with
the mis-spelled word ‘i n p f r m a t i x n’ in New and a small dictionary of correctly spelled words in
Old. The first alignment shows how the correctly-spelled word may be found despite additions, omissions
and substitutions in the query word.

7.1 Scene Analysis and Best-Match Information Retrieval

The system’s ability to find good partial matches between patterns suggests that it may be generalised
in the future to imitate the way we can recognise objects in a typical scene despite the fact that most
objects are partially obscured by others.

As with pattern recognition, the system’s ability to find good partial matches between patterns means
that it can achieve best-match retrieval of information from a database—finding good partial matches
between a ‘query’ pattern and zero or more patterns in a database.

8 Classes, Subclasses and Inheritance of Attributes

A prominent feature of the way we recognise objects and patterns is that we seem often to identify things
at two or more levels of abstraction. For example, we may recognise something as a copy of Pride and

Prejudice, which belongs in the class ‘fiction’, which itself belongs in the class ‘book’.

This kind of multi-level recognition is illustrated in Figure 6.6 In the alignment, New (in the left
column) contains a few of the features of the novel, while patterns from Old in the columns to the right
represent different classes of entity, each one with characteristic attributes.

In effect, the alignment expresses the idea that the unknown entity described as ‘Pride Austen
has pages’ has been recognised as an instance of Pride and Prejudice, that it is a work of fiction and that
it may be classified as a book. From each of these classes, it inherits such attributes as being made of
paper and that it has a cover (from the class ‘book’), that it is a creative work (from the class ‘fiction’)
and the particulars of its text (from the class ‘instance1’).

6Compared with other alignments in this article, this one has been rotated by 90o to make it fit better on the page. New
is in the column on the left

31

Expert Update Information Compression and Multiple Alignment

instance1

fiction -- fiction

book ------ book

title ---------------- title

Pride ---------------------------- Pride

and

Prejudice

#title --------------- #title

author --------------- author

Jane

Austen --------------------------- Austen

#author -------------- #author

has_cover

has_pages - has_pages

paper

#book ----- #book

creative

#fiction - #fiction

the_text

#instance1

Figure 6: The best alignment found by SP61 with a few of the features of Pride and Prejudice in New
and patterns representing relevant classes in Old. In this orientation, New appears in the column on the
left.

0 bird Tweety 0

| |

1 | name Tweety #name 1

| | |

2 bird name #name canfly wings feathers beak crop lays_eggs ... #bird 2

Figure 7: The best alignment found by SP61 with ‘bird Tweety’ in New and a small database of patterns
about different kinds of animals in Old.

9 Probabilistic Reasoning

Figure 6 illustrates the way in which alignments can support reasoning. As noted in the last section,
knowing the unknown object is a book allows us to infer that it is (probably) made of paper and that it
(probably) has a cover. Knowing part of the title and part of the author’s name allows us to infer the
complete title and the complete name of the author. In general, the symbols in Old and New are the
propositions that are the basis of reasoning. In the best alignment or alignments that are found, each
symbol in a pattern from Old that is not aligned with any symbol in New represents an inference made
by the system.
In general, these inferences are probabilistic because there is a probability associated with each align-

ment.

9.1 Probabilistic ‘Deduction’

Figure 7 illustrates the way in which the ICMAUS framework may be used for probabilistic ‘deduction’:
from knowing that Tweety is a bird we can infer that it can fly (and also that it has other attributes of
birds such as feathers, beak etc). The probability associated with the alignment represents the probability
of the corresponding inferences. In this example, the probability is 1.0 because the alignment shown is
the only one that matches all the symbols in New.
In reality, of course, we know that some birds cannot fly. But this information was not recorded in the

small database of patterns supplied to SP61 in this case. The way SP61 can handle a more true-to-life
example is described briefly in Section 9.4, below.

32

Papers Expert Update

0 Tweety canfly 0

| |

1 name Tweety #name | 1

| | |

2 bird name #name canfly wings feathers beak crop lays_eggs ... #bird 2

0 Tweety canfly 0

| |

1 name Tweety #name | 1

| | |

2 bat name #name fur canfly eats_insects ... #bat 2

Figure 8: The two best alignments found by SP61 with ‘Tweety canfly’ in New and a small database of
patterns about different kinds of animals in Old.

0 engine_not_starting 0

|

1 1 engine_not_starting no_fuel 1

|

2 no_fuel 1 tank_empty 2

|

3 tank_empty 1 leaking_fuel_line 3

0 engine_not_starting 0

|

1 2 engine_not_starting no_spark 1

|

2 no_spark 2 battery_flat 2

|

3 battery_flat 2 short_circuit 3

Figure 9: Two of the alignments formed by SP61 with ‘engine not starting’ in New representing a fault
in a car and a set of patterns in Old representing causal associations.

9.2 Abduction

The nice thing about this framework is that it works just as well in a ‘backwards’ abductive style as in the
‘forward’ style just shown. Figure 8 shows how a knowledge that Tweety can fly leads the system to infer
that he or she could be a bird or, alternatively, that he or she could be bat. Each of these possibilities
has an associated probability, calculated by SP61 to be 0.8 in the first case and 0.2 in the second.

9.3 Chains of Reasoning

Apart from the kinds of one-step reasoning described in Sections 9.1 and 9.2, we can of course reason in
‘chains’: “If A then B, if B then C” and so on. The ICMAUS scheme lends itself very well to this kind
of reasoning as can be seen in the example in Figure 9.
This figure shows two of the several alignments formed by SP61 when New contains the symbol

‘engine not starting’—representing a fault in a car—and Old contains patterns representing causal asso-
ciations such as ‘1 engine not starting no fuel’ and ‘no spark 2 battery flat’. The digits that appear in
these patterns are required for the coding system used by SP61.
For each of these chains of reasoning, SP61 calculates an associated probability. In a real diagnostic

situation, these probabilities may be used to decide the order in which diagnostic tests should be applied.
Apart from simple chains like the ones shown, the ICMAUS framework has the flexibility to accom-

modate more subtle kinds of composite reasoning. Although systematic comparisons have not yet been
made, the ICMAUS framework appears to provide a viable alternative to Baysian networks and related

33

Expert Update Information Compression and Multiple Alignment

systems.

9.4 Default Values, Nonmonotonic Reasoning and ‘Explaining Away’

As noted above, it is not true to life to assert that all birds can fly. To be more realistic, the knowledge
that Tweety is a bird should lead to an inference that, probably, Tweety can fly. If, subsequently, we
learn that Tweety is a penguin, it should be possible to reverse our default assumption that Tweety can
fly and reach the conclusion that Tweety cannot fly.
In the words of Judea Pearl, the phenomenon of ‘explaining away’ may be characterised as: “If A

implies B, C implies B, and B is true, then finding that C is true makes A less credible. In other words,
finding a second explanation for an item of data makes the first explanation less credible.” (his italics).
As an example, one might receive a telephone call at work to say that one’s burglar alarm (at home) has
sounded. Normally, this would mean a burglary at the house. But, if the burglar alarm is sensitive to
earthquakes and if there had been a radio announcement that an earthquake had occurred recently, one
would probably conclude that this was the cause of the burglar alarm going off.
As described elsewhere, both these phenomena can be modelled quite neatly in the ICMAUS frame-

work. The key in both cases is that if extra information is added to New, this can radically change which
alignments score best in terms of IC. If New records merely that Tweety is a bird, then the best alignments
found by SP61 show that, probably, Tweety can fly although there is a possibility that Tweety cannot
fly. But if New records that Tweety is a penguin, that possibility becomes a certainty. Likewise, knowing
about a radio announcement of an earthquake can make a big difference to the kinds of alignments that
best explain the available data.

10 Unsupervised Inductive Learning

As was noted earlier (Section 3), this entire programme of research is based on earlier work on unsu-
pervised inductive learning of language and the overall ICMAUS framework is designed to accommodate
learning. Most of the work to date has concentrated on areas other than learning but SP70, when it is
complete, should provide a full realisation of the ICMAUS framework, including unsupervised inductive
learning. This section outlines current thinking about how the model will work.
In current work developing SP70, it is envisaged that the system will search for alignments between

portions of ‘raw’ linguistic data and then process these alignments to extract significant patterns and
classes of patterns, with system-generated codes to facilitate the subsequent use of these structures in
other contexts.
For example, an alignment like the one shown in Figure 10 may be processed by the system to yield a

‘grammar’ like the one shown in Figure 11. The transition from the alignment to the grammar is achieved
by unifying the parts of the patterns that match each other, extracting the parts that do not match each
other, and inserting system-generated ‘code’ symbols (‘%1’, ‘%2’, ‘#2’, ‘0’ etc) at appropriate points.

0 c o m e o v e r h e r e 0

| | | | | | | |

1 c o m e u p h e r e 1

Figure 10: The best alignment formed by SP61 with ‘c o m e o v e r h e r e’ in New and other patterns
in Old including ‘c o m e u p h e r e’.

%1 c o m e %2 #2 h e r e #1

%2 0 o v e r #2

%2 1 u p #2

Figure 11: A ‘grammar’ derived from the alignment shown in Figure 10.

Notice how, even with this toy example, it is possible to isolate discrete words and to identify a
disjunctive class like {‘o v e r’, ‘u p’}, marked as one class by the assignment of the pair of code symbols
‘%2 ... #2’ to each of the two words.

34

Papers Expert Update

The efficacy of this kind of ‘distributional’ approach to learning (pioneered by structural linguists
like Z. S. Harris and C. C. Fries) has been demonstrated already in the MK10 model of the learning
of segmental structure in natural language (words, phrases etc) and in the SNPR model of grammar
learning.
The example just shown suggests how structures may be created at one level of abstraction above the

raw data. It is anticipated that the same kinds of principles can be applied recursively so that patterns
of code symbols formed in the early stages can themselves be incorporated into higher level structures.
This kind of capability is incorporated in the SNPR model.
It is to be expected that many of the alignments formed in the course of learning will not be as ‘tidy’

as the example shown in Figure 10. It is likely that the system will isolate quite a lot of ‘wrong’ patterns
as well as ‘correct’ patterns. Accordingly, it is anticipated that there will be a need for some kind of
process of sifting and sorting of patterns to retain those that are good in terms of MLE principles and to
discard those that are bad. Some progress has already been made on this front and these expectations
are largely confirmed.

10.1 Generalisation of Grammatical Rules and the Correction of Overgener-

alisations

One of the benefits of the earlier work was to demonstrate how, without error correction by a ‘teacher’,
without the provision of ‘negative’ samples of any kind, and without any kind of ‘grading’ of material, a
child may learn to distinguish between correct generalisations and incorrect over-generalisations, despite
the fact that, by definition, both kinds of generalisation have zero frequency in the child’s experience.
The principle of Minimum Length Encoding appears to provide the key: most compression is achieved
when ‘correct’ generalisations are included in the developing grammar and ‘incorrect’ ones are excluded.
The new model of unsupervised inductive learning will aim to capture this and other insights from

the earlier work while, at the same time, retaining the explanatory potential of the ICMAUS framework
in the other areas that have been described (fuzzy pattern recognition, probabilistic reasoning etc). The
explanatory scope of the resulting model should be very much broader than the earlier models.

10.2 Unsupervised Inductive Learning of ‘Semantic’ Structures

The ICMAUS framework has been developed with the intention that it should be widely applicable, not
confined narrowly to the syntax of natural language or some other circumscribed domain. One of the
motivations for aiming for this kind of generality is that it should facilitate the learning of ‘semantic’
knowledge structures and, as we noted earlier, the integration of syntax with semantics.
Figure 12 is intended to suggest how the kinds of class hierarchy considered in Section 8 may be

learned. The alignment at the top of the figure is intended to suggest how the features that are shared
by swans and robins may be identified. These shared features (‘wings feathers beak’) may be abstracted
into a higher-level pattern describing the class ‘bird’ (‘%bd wings feathers beak #bd’) and then the two
original patterns may be reduced to ‘%sw swan %bd #bd long-neck #sw’ and ‘%rb robin %bd #bd
red-breast #rb’.

Alignment:

0 swan wings feathers beak long-neck 0

| | |

1 robin wings feathers beak red-breast 1

Derived fragment of ‘grammar’:

%bd wings feathers beak #bd

%sw swan %bd #bd long-neck #sw

%rb robin %bd #bd red-breast #rb

Figure 12: An alignment and corresponding ‘grammar’ of non-linguistic patterns.

As with the learning of syntactic structures, it is anticipated that this kind of thing can be done
recursively so that arbitrarily deep hierarchical structures may be built up. At some stage, there will be

35

Expert Update Information Compression and Multiple Alignment

a need to integrate this kind of learning with the learning of syntactic structures to achieve the kind of
knowledge that can serve the process of understanding language and the process of producing language
from meanings.

11 Conclusion

This has been a necessarily brief summary of the ICMAUS framework and some of its applications. I
hope the ideas and examples that have been described will be enough to show the potential of these ideas
and will encourage readers to look closer.
Further information, including other publications, may be found at: http://www.informatics.bangor.

ac.uk/∼gerry/sp summary.html.

36

