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Abstract. This article presents an overview of the idea that information compression by
multiple alignment, unification and search (ICMAUS) may serve as a unifying principle in
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mation retrieval, concept hierarchies with inheritance of attributes, probabilistic reasoning,
and unsupervised inductive learning. The ICMAUS concepts are described together with an
outline of the SP61 software model in which the ICMAUS concepts are currently realised. A
range of examples is presented, illustrated with output from the SP61 model.
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1. Introduction

This article presents the idea that information compression by multiple align-
ment, unification and search (ICMAUS) may serve as a unifying principle
in artificial computing and natural cognition. In this context, multiple align-
ment has a meaning that is similar to its meaning in bio-informatics (with
important differences), unification means a simple merging of patterns or
parts of patterns that match each other, and search means searching for align-
ments yielding relatively large compression, pruning the search space using
heuristic techniques or other forms of constraint.

There is now a fairly large body of evidence in support of this conjecture,
described in Wolff (1999a, 1999b, 2000) and earlier sources cited there. This
article presents an overview of these ideas, with examples from the SP61
computer model. The aim of this paper is to explain the ICMAUS concepts
in outline and to illustrate their wide scope. A full evaluation of the concepts
is outside the scope of this paper although a few remarks on that subject
are made in Section 9. Another paper is planned to evaluate the concepts in
relation to alternative theories and empirical data.
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The emphasis in previous writings about the ICMAUS concepts has been
on the “computing” aspects of the proposals, whereas this article puts weight
on the multi-disciplinary nature of the proposals and the cognitive science
dimension.

2. Background

2.1. Cognitive economy

From the writings of William of Ockham in the 14th century and Ernst
Mach in the 19th century, a principle of parsimony has been recognised as
relevant to an understanding of thinking, perception and the workings of
brains and nervous systems. Other writings in this tradition include Zipf
(1949), Attneave (1954), Oldfield (1954), Von Békésy (1967), Barlow (1969
and many other publications over a long period), Watanabe (1972), Garner
(1974), Wolff (1988, 1993). Nice reviews of some of the issues and many
other pointers to related research are provided by Chater (1996, 1999).

In case these ideas seem a little obscure, consider the phenomenon of
recognition. Recognising someone as “the same” from one instant to another
or from one occasion to another is essentially a process of merging (and thus
compressing) many individual percepts into a single concept. If we wish to
treat a given person as a single person, it would be very inconvenient if we
did not merge our many perceptions of that person in that way.

In terms of biology, there is every reason to believe that natural selection
would have favoured brains and nervous systems with an ability to economise
on the storage and transmission of information.1 Perhaps more importantly, a
key function of neural tissue is the inductive prediction of the future from the
past and it is known that there is an intimate connection between information
compression (IC) and this kind of inductive inference (Solomonoff (1964),
Chater (1996, 1999)).

2.2. Models of language learning and Minimum Length Encoding

The ideas to be described grew more immediately out of a programme of
research developing the MK10 and SNPR computer models of first language
learning by children (see Wolff (1988, 1982) and earlier papers cited there).
A key idea emerging from this research was that many aspects of language
learning could be understood in terms of IC or, more precisely, principles of
Minimum Length Encoding (MLE)2 pioneered by Solomonoff (1964, 1986,
1997), Wallace and Boulton (1968), Rissanen (1978) and others (see Li and
Vitányi (1997)).
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The key idea in MLE is that, in grammar induction and related kinds of
processing, one should seek to minimise (G + E), where G is the size (in
bits) of the “grammar” (or comparable structure) under development and E

is the size (in bits) of the raw data when it has been encoded in terms of
the grammar. This principle guards against the induction of trivially small
grammars (where a very small G is offset by a relatively large E) and over-
large grammars (where E may be small3 but this is offset by a relatively large
G).4

Amongst other things, this idea provides a handle on how it is that a child,
apparently without the need for correction by a teacher, negative samples or
grading of samples (as postulated by Gold (1967)), can distinguish “correct”
generalisations from “incorrect” ones despite the fact that, by definition, both
kinds of generalisation have zero frequency in the child’s experience (Wolff
(1988, 1982)).

2.3. Seeing connections

The first hint (in my mind) that IC by pattern matching, unification and search
might provide a unifying framework for biological and artificial kinds of
computation arose from the following train of thought:
• A prominent feature of the MK10 and SNPR models of language

learning is a process of IC by finding patterns that match each other
and then merging (“unifying”) multiple instances to make one.5 These
models also incorporate a process of searching amongst alternative
possible unifications to find those that are relatively good in terms of
compression.

• Pattern matching and search are prominent in systems like Prolog,
designed originally for theorem proving. And “unification” in the sense
of this article (the merging of matching patterns) is a prominent part of
“unification” as it is understood in Prolog and other systems for logical
deduction.

These and other reflections on the nature of information processing led to
the first conjectural proposal that “computing” in some deep sense might be
understood as IC by the matching and unification of patterns (Wolff (1990)).6

Given the prominence of IC in diverse aspects of human cognition, perception
and neural functioning, it is natural to suppose that IC may provide a unifying
principle for both artificial computing and the processing of information in
brains and nervous systems (Wolff (1993)).

The aim of subsequent research has been to refine and develop these first
embryonic ideas, attempting to answer the many questions and issues that
arose. A key insight has been that the explanatory scope of the concepts could
be greatly increased by replacing “pattern matching” within the framework by
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the more specific concept of “multiple alignment” (similar to the concept of
multiple alignment in bio-informatics but different in important ways, as will
be described).

2.4. Related research

Since the ICMAUS concepts are an attempt to integrate ideas across a wide
area, they naturally relate to a large volume of published research. As noted
above, this article aims to present the ideas and illustrate their wide scope,
with the evaluation of the proposals in relation to existing research largely
deferred to another paper.

In general terms, this research may be seen as a contribution to Newell’s
(1992) quest for “unified theories of cognition”, alongside Soar (e.g. Laird
et al. (1987), Young and Lewis (1999)), ACT-R (e.g. Anderson and Lebiere
(1998)) and other attempts to integrate concepts in cognition. Like these
other models, the ICMAUS framework aims to avoid the pitfalls of “micro”
theories for narrow domains by developing concepts with broad scope whilst
striving for overall simplicity.

The main differences between the ICMAUS proposals and others are:
• The emphasis on IC as a unifying principle.
• The multiple alignment concept as it has been developed in this research.
• The intended scope of the proposals beyond human cognitive psycho-

logy to concepts in computing, mathematics and logic.

3. The ICMAUS Framework and the SP Models

The ICMAUS framework is founded on principles of Minimum Length
Encoding mentioned above. The framework is intended as an abstract model
of any natural or artificial system for computing or cognition.

In broad terms, the framework is an incremental process not unlike the
well-known and widely-used LZ algorithms for IC (PkZip, WinZip etc). The
system is intended to receive raw (or New) data from the environment, to
compress those data as much as possible and store them in a steadily growing
repository of Old information. Compression of New is achieved by matching
New against itself and against patterns already stored in Old, unifying those
parts that match (thus achieving the effect of recognition) and storing the parts
that do not match (which may be seen as an element of learning).

The main differences between the ICMAUS framework and the LZ
algorithms are the provision of mechanisms to achieve a relatively thorough
search of the space of alternative unifications, the ability to find good partial
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matches between patterns, and the ability to create multiple alignments of the
kind that will be described.

3.1. Information can be compressed and redundant at the same time

Paradoxical as it may seem, the idea that the workings of computers and
brains may be founded on IC is not in conflict with the uses of redundancy in
information to reduce errors or speed up processing.

It is widely accepted that databases should minimise redundancy, as far as
practicable. If, for example, the name, address etc of a given person appears
two or more times in a database, then updating of the information becomes
more complicated than if there is only a single record, and there are risks of
introducing inconsistencies. Likewise, as we noted earlier, it would be very
inconvenient if, each time we encountered a given person, we made a new
mental record of that person without any integration with previous records.
The process of recognising people and other entities may be seen to be largely
a process of compressing information (Watanabe (1972)).

However, it is standard practice to keep backup copies of databases and
other computer information to guard against catastrophic loss of that infor-
mation. And multiple copies of databases may speed up processing (e.g.
mirror copies of web sites). Likewise, it seems very unlikely that evolution
would have endowed us with a cognitive system that allows us to keep only
one mental copy of our hard-won knowledge. It seems very likely that we
will have multiple copies of our knowledge to protect us against the risk of
losing it. And those copies may also have a role in speeding up processing.

In general, the ICMAUS proposals are entirely compatible with the idea
that computers and brains may keep multiple (redundant) copies of stored
knowledge.

3.2. Representation of knowledge

Within the ICMAUS framework, all kinds of information and knowledge
are to be expressed as arrays or patterns of atomic symbols in one or more
dimensions.7 The system may also store alignments amongst those patterns.

The main motivation for adopting this very simple, uniform format for
knowledge (echoing the adoption of production systems in Soar) has been
to facilitate the manipulation and integration of diverse kinds of information
within a uniform processing environment. It is evident that all kinds of “raw”
information (speech, music, pictures, diagrams etc) can be stored as arrays of
atomic symbols (e.g. “0” and “1”) in one or more dimensions. An important
aim of the research has been to see whether or how, within a single frame-
work, this very simple format would support other kinds of representation
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such as grammars, trees, class hierarchies and so on, without the need for
specialised processing for different kinds of representation. A selection of
examples is shown below.

Another motivation for adopting a simple, uniform format for all kinds of
knowledge, with uniform mechanisms for processing knowledge, is that such
a scheme is more likely to be compatible with mechanisms in neural tissue
than a more heterogeneous system.8 This is considered briefly in Section 3.7,
below.

Within each pattern, each symbol is merely a “mark” that can be matched
in a yes/no manner with other symbols – it has no “hidden” meaning.
Thus, for example, arithmetic symbols like “+” or “×” may be used in
ICMAUS patterns but they would not have their normal meanings (“add”
and “multiply”). Any meaning that may attach to a given symbol is to be
derived from its context of other symbols and not via some extrinsic process
of interpretation.9

The “granularity” of symbols in the ICMAUS framework is undefined.
Symbols may be used to represent very fine-grained details of a body of
information (e.g. binary digits) or they may be used to represent relatively
large chunks of information.

Although concepts from mathematics, logic or related disciplines such as
theoretical linguistics cannot be used directly in ICMAUS representations,
it is anticipated that such constructs may be modelled within the ICMAUS
framework (as described in Section 5, below). Even such seemingly basic
constructs as “variable” or “negation” are excluded from the ICMAUS frame-
work. But it is possible to model these constructs within the framework, as
we shall see.

3.3. Multiple alignment

In bio-informatics, a “multiple alignment” is an arrangement of two or more
symbol sequences, one above the other, so that, by judicious stretching
of sequences where appropriate, symbols that match each other from one
sequence to another are arranged in vertical columns. A “good” alignment
is one with a relatively large number of matching symbols. This kind of
analysis, applied to sequences of DNA bases or amino acid residues, can be
helpful in elucidating the structure, function or evolution of the corresponding
molecules.

In the ICMAUS scheme, this idea has been adapted in the following ways:

• One of the patterns is designated “New” and the others are “Old”.
• A “good” alignment is one which allows the New pattern to be encoded

economically in terms of the Old patterns, as will be explained.
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• By contrast with multiple alignments in bio-informatics, any one pattern
may appear two or more times in one alignment. As will be explained
(Section 5.1.1), this is not the same as allowing two or more copies of a
pattern to appear within an alignment.

These points are illustrated and further explained in the examples
presented throughout the article.

3.4. The SP61 computer model

The ICMAUS framework is partially realised in the SP61 computer model,
described most fully in Wolff (2000). Source code for the model has now
been released under the terms of the GNU General Public License and may
be obtained (with the executable code) from www.informatics.bangor.ac.uk/
∼gerry/sp_summary.html.

The model does not attempt any learning: it is designed to process a New
pattern and to compress it, as far as possible, in terms of previously-stored
Old patterns, forming multiple alignments in the course of this processing.
All the alignments shown in this article are output from the SP61 model.

With regard to the application of MLE principles in the SP61 model, the
size of G does not vary because the model is not attempting any learning.
This means that the process of seeking to minimise (G + E) can be reduced
to a process of seeking to minimise E.

At the core of the SP61 model is a process for finding full matches between
patterns or good partial matches (Wolff, 1994). The process is a refined
version of dynamic programming (see, for example, Sankoff and Kruskall
(1983)) with advantages compared with standard methods: it can process
patterns of arbitrary length without excessive demands for memory, it can
find two or more alternative alignments for any given set of patterns, and the
thoroughness of searching can be controlled by parameters.

Within the SP61 model, the matching process is applied repeatedly so that
the system can build up the two or more “levels” of each multiple alignment
in a pairwise manner. An outline of the model is presented in Figure 1. In this
description, “unification” of an alignment means collapsing each column of
matching symbols into a single symbol so that the whole alignment can be
treated as a simple sequence of symbols.

In operation 1.2 in Figure 2 each alignment is evaluated in terms of IC.
From each alignment, a “code” can be derived as explained in Section 4.2,
below. This code is a compressed representation of the New pattern in the
alignment. The “compression score” for an alignment is Nr −Ne, where Nr is
the number of bits needed to express the New pattern in its “raw”, unencoded
state, and Ne is the number of bits needed to express the encoded form of the
New pattern.
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Figure 1. The organisation of the SP61 model.

Adjustments are also made to allow for “gaps” in alignments – sequences
of one or more unmatched symbols. Alignments with many gaps or large ones
have lower scores than alignments with gaps that are few and small. Details
of how alignments are scored are given in Wolff (2000).

3.4.1. Computational complexity
Notwithstanding the astronomically large search spaces that are the rule for
most multiple alignments, the heuristic techniques used in the SP61 model
mean that its computational complexity is within acceptable polynomial
limits. In a serial processing environment, the time complexity is estimated
to be O(log2n × nm) where n is the length of the pattern in New (in bits)
and m is the sum of the lengths of the patterns in Old (in bits). In a parallel
processing environment, it is estimated that the time complexity would be
O(log2n × n), depending on how well the parallelism is applied. The space
complexity in both types of processing environment is estimated to be O(m).

3.5. The SP70 computer model

SP70 is a successor to the SP61 model designed to achieve unsupervised
inductive learning by adding New patterns (or parts of them) to Old, creating
appropriate “codes” (as described below), and sifting out “good” patterns
from “bad” ones (in accordance with MLE principles). This model is able to
abstract plausible grammars from appropriate data but more work is needed
to realise the full potential of the model in this area.
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Figure 2. The organisation of the compress() function in the SP61 model (Figure 1).
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Incidentally, the method of scoring alignments in SP70 does not require
the adjustment for gaps required in SP61 (described in Section 3.4, above).
This is because SP70 responds to gaps by creating new patterns, each with its
own code symbols, and adding these patterns to Old. The newly-created code
symbols can be used for scoring alignments containing gaps.

An outline of the model is given in Section 8.1. A relatively full
description of the current version may be found in (Wolff (2002b)).

3.6. Information compression and probabilities

There is an intimate connection between IC and concepts of frequency, proba-
bility and probabilistic inference (Solomonoff (1964, 1986, 1997), Chater
(1996, 1999)). Compression techniques like Huffman coding and Shannon-
Fano-Elias coding (see, for example, Cover and Thomas (1991)) are founded
on concepts of probability. And estimates of absolute and relative probability
may be derived from measures of compression.

Thus the ICMAUS framework, as an expression of IC, is fundamentally
probabilistic. For this reason, it can support probabilistic inferences of various
kinds, as outlined in Section 7, below.

Each pattern in Old is assigned a frequency of occurrence in some domain
and, from these values, SP61 can calculate an absolute probability for each
alignment, relative probabilities for sets of alternative alignments and proba-
bilities for inferences that may be drawn from alignments.10 The methods of
calculation are described in Wolff (1999a).11

3.7. Symbolic and connectionist processing

Although the framework has a symbolic flavour and is currently implemented
as an ordinary software model, the framework is intended to express abstrac-
tions at a higher level than the distinction between symbolic and connectionist
models.

It seems possible that the framework could be realised using connec-
tionist mechanisms. Each pattern could perhaps be realised as a Hebbian “cell
assembly” while each symbol might be realised either as a single nerve cell or
as a small cell assembly. Detailed discussion of these possibilities is outside
the scope of the present article. Current thinking in this area is described in
Wolff (2001).
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Figure 3. The best alignment found by SP61 with “s i x o f t h e m d o” in New and
grammatical patterns in Old.

4. Natural Language Processing

Figure 3 shows how the sentence “s i x o f t h e m d o” (that is presented to the
system as New) can be aligned with patterns (in Old) representing gramma-
tical structures.12 By convention in this research, New is always shown in the
top row of each alignment with patterns from Old in the rows underneath. The
order of the rows below the top row is entirely arbitrary and has no special
significance.13

In the alignment, most of the patterns representing grammatical structures
are similar to rules in a context-free phrase-structure grammar (CF-PSG). For
example, the pattern “S NP #NP V #V #S” expresses the idea that a (simple)
sentence is composed of a noun phrase followed by a verb. In a CF-PSG,
this would be expressed by a rule like “S → NP V”. The main differences
between the two representations are that the patterns do not contain rewrite
arrows and that each structure is normally referenced by an initial symbol
(e.g. “NP”) and a termination symbol (e.g. “#NP”).

In the pattern “S NP #NP V #V #S”, each pair of symbols “NP #NP” and
“V #V” functions as a “variable” that can receive an appropriate value, as
shown in the alignment in Figure 3.

4.1. Discontinuous syntactic agreements

If we ignore row 8, the alignment in Figure 3 maps fairly directly onto the
kind of parsing one would obtain with a CF-PSG. That kind of parsing
expresses the division of the sentence into “chunks” of structure such as
phrases and words but it does not show the kind of dependency or “agree-
ment” that exists between the number of the subject (singular or plural) and
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the number of the verb. This kind of agreement is “discontinuous” in the sense
that it can bridge arbitrarily large amounts of intervening structure.

This aspect of the structure of natural languages has, for several years,
been handled quite well by various grammatical systems including Trans-
formational Grammar, Definite Clause Grammars (Pereira and Warren
(1980)), FAPR (described in Gazdar and Mellish (1989)) and others.

Figure 3 illustrates an alternative way in which syntactic agreements may
be expressed which is, as far as I can ascertain, significantly different from
any existing system. The agreement between the plural subject (“s i x”) and
the plural verb (“d o”) is expressed in row 8 of the alignment in a relatively
simple and direct manner with the pattern “S PL NP Np Q Vp #S”. The
symbols “S” and “#S” serve to tie this pattern into the main sentence pattern;
“PL” at the beginning marks the sentence as plural (and has a use which
is described shortly); the symbols “Np” and “Vp” express the connection
between the plural noun at the beginning of the sentence and the verb at the
end; and the symbol “Q” is needed to show that the “Np” in this plural pattern
refers to the noun before the qualifying phrase, not the plural noun (“t h e m”)
within that phrase.

More elaborate examples of this kind of parsing by multiple alignment
may be found in Wolff (2000), including one example that shows over-
lapping patterns of number dependency and gender dependency in French,
and another showing the interesting pattern of interlocking dependencies in
English auxiliary verbs.

4.2. Encoding of New in terms of patterns in Old

Each of the Old patterns in Figure 3 contains symbols that may be used as
an identifier or “code” for the pattern. For example, the pattern “N PL 0 t h e
m #N” may be coded using the symbols “N PL 0 #N”. These code symbols
provide the means of expressing New in a relatively succinct form in terms
of the Old patterns in the alignment.

Looking at the alignment, one might think that relatively large numbers of
code symbols would be needed to encode the whole sentence. But many of the
code symbols (e.g. “N” and “#N”) merely serve to tie patterns together within
the alignment and do not need to be included in the encoding of the sentence.
In an example like the one shown in Figure 3, a code for the sentence may be
constructed by selecting the symbols in the alignment that are not matched to
any other symbol. In this example, the code created in this way is “PL 1 2 Np
0 2”. As we shall see (next), this code can be used to reconstruct the original
sentence.
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Figure 4. The best alignment found by SP61 with “PL 1 2 Np 0 2” in New and with the same
grammatical patterns in Old as were used for Figure 3.

4.3. Production of language

An interesting feature of the ICMAUS framework (and the SP61 model) is
that, without any modification, it can support the production of language
as well as the parsing of language. This can be done by replacing the
sentence in New with an encoding of the sentence as just described. With
this substitution, the best alignment found by SP61 is shown in Figure 4.

If this alignment is unified, and if we ignore the code symbols in the
unified pattern, we obtain the words of the original sentence in their correct
order. In effect, the system achieves the apparent paradox of “decompres-
sion by compression”. A relatively full discussion of this point and how the
apparent paradox is resolved may be found in Wolff (2000).

Notice how the inclusion of the single symbol “PL” in the encoding of
the sentence eliminates the need to include the two symbols “Np” and “Vp”.
This is how patterns like the one shown in row 8 of the two alignments can
contribute to IC.

4.4. Ambiguity

It should be emphasised that SP61 normally forms several alternative align-
ments for a given set of patterns, each one with its own compression score.
Amongst these alternatives are many that look, intuitively, wrong. Almost
always, the one with the highest score (as in Figure 3) is also the one which is,
intuitively, fully correct or most nearly correct. Where there is syntactic ambi-
guity, SP61 will normally deliver two (or more) alignments with relatively
high scores.
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4.5. Integration of syntax and semantics

The way in which the ICMAUS framework might support the integration of
syntax and semantics has not yet been examined in any detail. However, as
was noted above, the very simple format for knowledge that has been adopted
was chosen deliberately with the aim of facilitating the representation of
diverse kinds of knowledge and their integration.

Examples presented below show how the framework can support aspects
of non-syntactic knowledge such as class hierarchies with inheritance of
attributes (Section 6.2) and polythetic categories (Section 6.3).

5. Computing, Mathematics and Logic

Up until the 1940s, “computing” was something done almost exclusively
by people. In those days, it would have seemed entirely natural to find
common ground between the psychological processes involved in compu-
tation and other aspects of human cognition. Indeed, a consideration of the
elements of human computation provided part of the inspiration for Alan
Turing’s brilliantly-conceived “Universal Turing Machine”. And of course
George Boole regarded mathematical theories of logic and probability as
being founded on “Laws of Thought”. The ICMAUS proposals may be seen
as an extension of these lines of thinking.

In general, the ICMAUS framework is probabilistic (Section 3.6). Given
appropriate input, it is capable of finding good partial matches between
patterns (illustrated in Section 6, below) and it is typically able to find two
or more alternative alignments for any given set of patterns in New and Old.
But constraints may be applied or the focus may be narrowed to consider only
those alignments in which each symbol in New has been matched to at least
one symbol in Old or to consider only the “best” alignment for any given set
of patterns. With these kinds of constraint, the system may be used to model
“exact” forms of calculation and reasoning.

5.1. Modelling a Universal Turing Machine and Post Canonical System

For about 60 years, the concept of a “Universal Turing Machine” (UTM), and
equivalent models such as the “Post Canonical System” (PCS), have provided
an abstract definition of the concept of “computing”. These models have been
very successful but have little to say about things like learning, fuzzy pattern
recognition, probabilistic reasoning and other topics in cognitive science and
artificial intelligence. A motivation for developing the ICMAUS framework
is to see whether or how it may be possible to plug this gap.
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Figure 5. A PCS to generate unary numbers.

In Wolff (1999b), I have argued that the operation of a PCS may be inter-
preted within the ICMAUS framework. Since any UTM can be modelled by a
PCS (see Minsky (1967)), we may also argue that the UTM can be modelled
within the ICMAUS framework.

5.1.1. Example: A PCS for the generation of unary numbers
A PCS comprises an alphabet of symbols, one or more “primitive assertions”
or “axioms”, and one or more “productions”. Figure 5 shows a PCS for the
generation of unary numbers (where 0 = 0, 1 = 01, 2 = 011, 3 = 0111, and
so on). Such a system can be run “forwards” to create unary numbers or
“backwards” to recognise unary numbers.

This example can be modelled in the ICMAUS framework if we represent
the axiom with the pattern “X a 0 #X” and the production with the pattern “X
b X #X 1 #X”. The symbols “X” and “#X” at the beginning and end of each
pattern are code symbols needed to tie the patterns together in an alignment.
The symbols “a” and “b” are code symbols needed for the scoring system
in SP61. In the second of these two patterns, the pair of contiguous symbols
“X #X” may be read as “any number” and the whole pattern may be read as
“a number comprises any number followed by ‘1’ ”. As in our example of
parsing by multiple alignment (Section 4), a pair of contiguous symbols like
“X #X” can imitate the effect of a variable.

Figure 6 (a) shows the best alignment found by SP61 with the unary
number “0 1 1 1 1” in New and patterns for the axiom and the production
in Old. The alignment confirms that the number conforms to the rules of
unary arithmetic and thus, in effect, recognises the number as a unary number.
Figure 6 (b) shows one of many alternative alignments produced by SP61
with “0” in New and the same patterns in Old. Ignoring the “service” symbols,
the alignment contains the same symbols as before, in the same order. In
effect, the system has produced the unary number “0 1 1 1 1”.

Notice that, in each of the two alignments shown in Figure 6, the pattern
“X b X #X 1 #X” appears several times. As was indicated in Section 3.3, there
is an important difference between two or more appearances of a pattern in
one alignment and two or more copies of a pattern in one alignment. In the
first case, any one symbol in one appearance should not be matched with the
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Figure 6. (a) Recognition of a unary number as a multiple alignment. (b) Production of a
unary number in the same terms.

corresponding symbol in another appearance – because this means matching
the given symbol with itself. In the latter case, no such restrictions apply.14

5.1.2. Simplicity and power
The main difference between the ICMAUS framework and earlier models
is in the provision of a capability for finding good partial matches between
patterns and the ability to build multiple alignments.

Although the ICMAUS framework is not as simple as the UTM or PCS
models, it seems that the added complexity is more than offset by an increase
in descriptive or explanatory power, particularly in areas of interest within
cognitive science and artificial intelligence.

5.2. Mathematics and logic

This subsection presents three examples to illustrate the way in which the
ICMAUS framework may be used to model concepts in mathematics and
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Figure 7. A set of patterns defining a half adder.

Figure 8. The best alignment found by SP61 with “A 0 1 S C” in New and the patterns shown
in Figure 7 in Old. The digits at the ends of the rows are row numbers, not part of the figure
itself.

logic. Much fuller discussion and more examples may be found in Wolff
(2002a).

5.2.1. Adding two numbers
The four patterns shown in Figure 7 define a function that, in computer
science jargon, is known as a “half adder”. In each row of the figure, the
two digits between “A” and “S” are two one-bit numbers, the digit following
the “S” is the sum of those two numbers and the digit following the “C” is
the “carry out” bit.

Figure 8 shows the best alignment found by SP61 with “A 0 1 S C” in
New and the patterns from Figure 7 in Old. In effect, the pattern in New is a
request to add the digits “0” and “1”. The result of the computation is the two
unmatched digits in the alignment, “1” for the sum and “0” for the carry out
bit. This is, of course, the correct result for the addition of “0” and “1”.

In order to progress beyond the addition of two one-bit numbers, it is
necessary to be able to combine functions so that the output of one function
becomes the input of another. In order to add numbers containing two or more
bits, the set of patterns shown in Figure 7 needs to be augmented so that it
becomes a “full adder” in which there is a “carry in” bit as well as a carry
out bit, and the ICMAUS framework needs to be applied recursively. This is
explained, with an example from SP61, in Wolff (2002a).

The way in which the output of one function can become the input of
another is shown next in the domain of logic.

5.2.2. Combining logical functions
The first four patterns in Figure 9 define the XOR logical function: the first
two digits in each pattern are the digits to be processed and the digit between
“A” and “#A” is the result.15
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Figure 9. Patterns for the XOR function, the NOT function and the NOTXOR function.

Figure 10. The best alignment found by SP61 with “NOTXOR 0 1 A #NX” in New and the
patterns from Figure 9 in Old.

The next two patterns in the figure define the NOT logical function: the
first digit in each pattern is the input and the last digit is the output. The last
pattern in the figure serves to combine the two functions so that the output of
the XOR function can become the input to the NOT function.

Figure 10 shows the best alignment found by SP61 with the pattern
“NOTXOR 0 1 A #NX” in New and the patterns from Figure 9 in Old. As
can be seen in the alignment, the result of the XOR computation (“1”) appears
between the “A” and “#A” columns in the middle of the alignment and this
becomes the input to the NOT function. The overall result (“0”) is shown
between the “R” and “#R” columns in the alignment.

This example is not as general as conventional functions (where there is no
need to match the name of the output area of one function with the input area
of another) but it does, nevertheless, demonstrate how, within the ICMAUS
framework, information can be passed from one function to another. It is
anticipated that, when SP70 is more fully developed, it will allow greater
generality in this area.

5.2.3. Syllogistic reasoning
Consider the following text-book example of a modus ponens syllogism:
1. All humans are mortal.
2. Socrates is human.
3. Therefore, Socrates is mortal.
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Figure 11. The best alignment found by SP61 with “Socrates human true ⇒” in New and
patterns in Old that include “X #X human true ⇒ mortal true”.

In logical notation, this may be expressed as:
1. ∀x: human(x) ⇒ mortal(x).
2. human(Socrates).
3. ∴ mortal(Socrates).

In the ICMAUS framework, the first of these propositions may be
expressed with the pattern “X #X human true ⇒ mortal true”. In the manner
of Skolemization, the variable “X #X” in the pattern represents anything at all
and may thus be seen to be universally quantified. The scope of the variable
may be seen to embrace the entire pattern, without the need for it to be
repeated. In keeping with the earlier remarks about “no hidden meanings”
(Section 3.2), the symbol “⇒” in the ICMAUS pattern serves simply as a
separator between “human true” and “mortal true”.

If this pattern is included (with other patterns) in Old and if New contains
the pattern “Socrates human true ⇒” (corresponding to “human(Socrates)”
and, in effect, a request to discover what that proposition implies), SP61 finds
one alignment (shown in Figure 11) that encodes all the symbols in New.
After unification, this alignment may be read as a statement that because it is
true that Socrates is human it is also true that Socrates is mortal.

6. Pattern Recognition and Best-Match Information Retrieval

The dynamic programming built into the SP61 model means that it can find
good partial matches between a New pattern and one or more stored patterns.
It can thus mimic the kind of “fuzzy” pattern recognition and best-match
information retrieval that is such a prominent feature of human perception and
cognition (Section 6.1, next). The ability to form multiple alignments allows
the modelling of class hierarchies with inheritance of attributes (Section 6.2)
and the modelling of polythetic categories (Section 6.3).
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Figure 12. The five best alignments found by SP61 with “i m f o r m t i x o n” in New and a
selection of correctly spelled words in Old. The alignments are shown in descending order of
their compression scores.

6.1. Fuzzy matching

Figure 12 shows how the system can achieve fuzzy recognition of words. The
figure shows, in descending order of their compression scores, the best five
alignments found by SP61 with the misspelled word “i m f o r m t i x o n” in
New and a selection of correctly-spelled words in Old. Notice how the system
can accommodate errors of omission, commission and substitution.16

Of course, this kind of pattern recognition is done quite well by systems
for spelling checking and correction. What is different about the ICMAUS
framework is the range of its capabilities (illustrated in this article), well
beyond what can be achieved with any spelling checker. Another difference –
not illustrated in this example – is that the SP61 model can bridge arbitrarily
large gaps between matching sections, unlike any ordinary spelling checker.

If the kinds of capabilities already demonstrated can be generalised to the
processing of patterns in two dimensions, they should prove useful in such
tasks as visual pattern recognition and scene analysis where it often happens
that patterns and objects are partially obscured, one behind another.
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Figure 13. The best alignment formed by SP61 with symbols representing attributes of food
in New and patterns for classes of food in Old. In this arrangement, New is in the left-most
column, with patterns from Old in the columns to the right.

6.2. Class hierarchies and inheritance of attributes

Apart from allowing fuzzy recognition or retrieval of patterns, the ICMAUS
framework allows recognition to occur through two or more levels of abstrac-
tion. Figure 13 shows a simple example where symbols for “sustains_life”,
“long” and “crusty” serve to identify an object as being a “baguette” which,
as such, is a form of “bread”, which is a form of “food”.17 As a baguette, the
object is “white” as well as being “long” and “crusty”. As bread, it is made of
“flour”, “yeast” and “water”. And as food, it is “organic” (derived from living
things) and contains “fat”, “protein” and “carbohydrate”. The proportions of
these substances (“small”, “medium”, “large”) are recorded at the level of
bread.

In the jargon of object-oriented design, the patterns for “food”, “bread”
and “baguette” represent “classes” of entity that are arranged in a “hierarchy”
(with “food” at the top in this case and “baguette” at the bottom). And “attri-
butes” at each level (e.g. “white”, “made of flour”, “contains protein” etc) are
“inherited” by all the lower levels.
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6.2.1. Class hierarchies and inheritance of attributes in human cognition
Collins and Quillian (1969) suggested that these principles operate in human
perception and cognition, and their experimental results seemed to support
the proposal. However, later experimental work cast doubt on the validity of
those early results (see, for example, Barsalou (1992) p. 178 ff.).

A full discussion of this issue is not possible here. Class hierarchies with
inheritance of attributes are such powerful ideas that it seems unlikely that
our brains would not exploit them. It is hard to believe, that, for every person
we know, we keep a complete record of all their human attributes. It seems
much more likely that knowing that someone is a person allows us to infer
most of their attributes from our general knowledge of people.

Bearing in mind the high levels of parallel processing that operate in
the brain, and bearing in mind the probability that our mental knowledge
is compressed and redundant at the same time (Section 3.1), it is very diffi-
cult to draw sound conclusions from reaction times and similar experimental
measurements.

6.3. Polythetic classes

People not only have an ability to recognise things despite errors of omission,
commission and substitution (as in the example in Section 6.1) but it seems
that many of our concepts express a “family resemblance” or are “polythetic”,
meaning that no single attribute need appear in all members of the class.
Although, in a naïf view of the nature of concepts, this aspect of “natural”
categories may be puzzling, it can actually be modelled very simply by the
use of re-write rules. For example, the following five rules: “1 → 2 3”; “2
→ A”; “2 → B”; “3 → C”; and “3 → D”, define the polythetic class “AC”,
“AD”, “BC”, “BD”. Notice that none of the attributes “A”, “B”, “C” or “D”
appear in all members of the class.

Given that these kinds of re-write rules can be modelled in the ICMAUS
framework (as we saw in Section 4), it is clear that the framework can
accommodate this aspect of human thinking.

7. Probabilistic Reasoning

There is now a vast literature relating to probabilistic reasoning: standard
parametric and non-parametric statistics; ad hoc uncertainty measures in
early expert systems; Bayesian statistics; Bayesian/belief/causal networks;
Markov networks; Self-Organising Feature Maps; fuzzy set theory and “soft
computing”; the Dempster-Shaffer theory; abductive reasoning; reasoning
with default values and nonmonotonic reasoning; autoepistemic logic, defea-
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Figure 14. The best alignment found by SP61 with “mammal Tibbs” in New and patterns for
classes of animal in Old.

sible logic, probabilistic, possibilistic and other kinds of logic designed to
accommodate uncertainty; MLE; algorithmic probability and algorithmic
complexity theory; truth maintenance systems; decision analysis; utility
theory; and so on.

No attempt can be made here to compare the ICMAUS proposals
with these many alternatives. This section merely presents some examples
suggesting how the framework can support probabilistic reasoning.

The example shown in Figure 13 illustrates the way in which inferences
may be drawn from the kinds of multiple alignment formed by SP61. As in
the examples shown in Figure 8, Figure 10 and Figure 11, the columns of any
alignment that are not aligned with any of the symbols in New may be seen
to be inferences that may be drawn from the alignment. Thus, in Figure 13,
we can infer that the object that has been recognised contains fat, protein and
carbohydrate, that it is made of flour, yeast and water, and so on.

7.1. Probabilistic “deduction” and abduction

Inheritance of attributes, as just described, may be seen as a kind of “deduc-
tion”: knowing the class or classes to which an object belongs allows us to
deduce attributes that have not been directly observed. Quote marks are used
because this kind of inference lacks the formal properties of classical kinds
of deduction. And these inferences are probabilistic because they do not need
to be constrained in the kinds of ways indicated in Section 3.6.

Figure 14 shows a simple example of this kind of deduction. New (in the
left column) records the fact that “Tibbs” is a “mammal” and the pattern in
the third column describes the attributes of mammals. The alignment allows
us to infer that “If Tibbs is a mammal, it is likely that he or she is warm
blooded, furry and so on”.

An attractive feature of the ICMAUS framework is that it is just as easy to
make “backwards” abductive inferences as the kind of “forwards” inference
just shown. Figure 15 shows the two best alignments found by SP61 with
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Figure 15. The two best alignments found by SP61 with “Tibbs warm_blooded” in New and
the same patterns in Old as were used for Figure 14.

“Tibbs warm_blooded” in New and the same patterns in Old as were used for
Figure 14. From these alignments, we may conclude that, as a warm blooded
creature, Tibbs might be either a bird or a mammal.

In the example shown in Figure 14, there is only one alignment that
matches all the symbols in New. So the relative probability of the alignment
(and inferences that may be drawn from the alignment) is 1.0. In the second
example, where there are two alignments that match all the symbols in New,
the relative probabilities calculated by SP61 are 0.59 (for Figure 15 (a)) and
0.41 (for Figure 15 (b)). Notice that these two values sum to 1.0 because, in
the “closed world” of information supplied to the system, birds and mammals
are the only kinds of warm-blooded animal.18

7.2. Chains of inference and other compound inferences

Figure 13 shows how the system can support inferences through two or
more levels. Similar “chains” of inference can be modelled if Old contains
patterns representing “if . . . then” associations like “smoke fire”, “night day”,
“black_clouds rain” etc.

A very simple whodunit example is shown in Figure 16 (a) where New (in
the left column) records an association between a “suspect” and a particular



ICMAUS AS A UNIFYING PRINCIPLE IN COMPUTING AND COGNITION 217

Figure 16. Multiple alignments representing chains of inference: (a) A whodunnit chain of
inference. (b) Finding a route between London and Edinburgh.

“motive”, whilst Old contains, inter alia, a pattern (in the second column)
recording an association between the “motive” and the “crime”, a pattern
(in the third column) recording the fact that the crime was committed at a
particular place (“scene1”) and at a particular time (“time1”), and a pattern (in
the fourth column) recording the fact that the suspect was in the same place
at the same time. The entire alignment may be seen as a chain of inference
suggesting that the suspect may have committed the crime.

Figure 16 (b) shows a similar example of “means-ends analysis”: finding
a (not very good) railway route from London to Edinburgh.

Readers will notice that, in these examples and others in this article, the
order of symbols in each pattern is critical. If, in the second column of
Figure 16 (a), the order of “crime” and “motive” had been reversed, then
the system would not have been able to complete the alignment. The links in
Figure 16 (b) are directional: the pattern “Manchester York” means there is a
train from Manchester to York but leaves unspecified whether or not there is
a train in the other direction.

Bi-directional links could, of course, be supplied explicitly. However, the
redundancy in that solution can be avoided if we adopt an arbitrary order for
symbols in all the patterns (e.g. alpha-numeric) and avoid clashes between
symbols by tying them into a “framework” pattern like the one shown in the
third column of Figure 17. Each symbol (other than the symbols used in the
framework) has its own slot in the framework so that it does not interfere with
other symbols.19

In this second whodunit scenario, New records the fact that the “accused”
was seen with “matches” near “the_barn” and that “smoke” was seen at about
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Figure 17. The best alignment found by SP61 with facts to be explained in New (on the left)
and patterns for relevant facts and associations in Old.

the same time. The patterns from Old that have been tied into the alignment
include ones showing:
• The fact that the barn was destroyed (column 2).
• The well-known association between smoke and fire (column 4).
• That the accused had petrol (column 5).
• The association between fire, matches and petrol (column 6).
• The fact that fire destroys things (column 7).

It should be clear from the examples in this section that, in general, the
ICMAUS framework can accommodate arbitrary networks and trees repre-
sented by sets of patterns. It may thus be used in other applications where
these kinds of representation are appropriate.

7.3. Nonmonotonic reasoning and default values

It has been recognised for some time that, by contrast with classical logic,
everyday human reasoning allows us to modify conclusions in the light of
new information. We may, for example, infer that Tweety can fly because
Tweety is a bird but revise this conclusion if we subsequently learn that
Tweety is a penguin (see, for example, Ginsberg (1994), Antoniou (1997)).
The ICMAUS framework provides a means of modelling this kind of
“nonmonotonic” or “defeasible” style of reasoning.20

In the example illustrated in Figure 13, the colour of a baguette was given
unambiguously as “white”. Instead of specifying the colour directly in this
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way, we can replace the symbol “white” with a pair of symbols “colour
#colour” (functioning as a variable for the colour for the loaf, unspecified
as yet) and add a new pattern to Old, “standard baguette colour white #colour
#baguette #standard”, that says, in effect, that the default value for the colour
of a standard baguette is “white”. In addition, we may add the pattern “special
baguette colour brown #colour #baguette rustic #special” to Old that says, in
effect, that there is a special “rustic” subclass of baguette where the colour is
“brown”.

Figure 18 shows the three best alignments formed by SP61 with the same
symbols in New as before and with modifications to Old as described (and,
for the sake of simplicity, without the details of fat, protein and carbohydrate).

From the first of these alignments, we may infer merely that the unknown
object is a baguette and that its colour is unspecified. From the second align-
ment (that contains the first alignment), we may infer that the colour of the
baguette could be “white”. And from the third alignment (which also contains
the first alignment), we may infer that that the colour could be “brown”.

For these alignments, SP61 calculates probabilities of the inferences that
may be drawn from the alignments. In this example, the calculated relative
probability that the unknown object is a “baguette” is 1.0, and the values for
“white” and “brown” are 0.55 and 0.45, respectively.

If we now add the symbol “rustic” to the symbols in New, only one
alignment is formed that encodes all the symbols in New. This is shown in
Figure 19. Notice how, with this additional information, the default colour for
a baguette is overridden and we learn that, as a “rustic” baguette, the colour
of the loaf is “brown”. And because there is only one alignment that encodes
all the symbols in New, the relative probability of “brown” is 1.0.

These examples illustrate the way in which inferences made by the
system may be modified in the light of new information, in the manner of
nonmonotonic reasoning.

7.4. Other kinds of probabilistic inference

Apart from the kinds of probabilistic reasoning described above, the
ICMAUS framework lends itself to at least two other forms of inference
where probabilities have a role:

• Geometric Analogy Problems. Given the translation of geometric forms
into the kind of one-dimensional patterns currently required for SP61,
it is possible to solve geometric analogy problems of the form “A is to
B as C is to ?”, with a choice of four possibilities for “?”. In essence,
these kinds of problems can be understood as a search for good partial
matches between patterns.
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Figure 18. The three best alignments formed by SP61 when the colour of a baguette is given
a default value (“white”) and Old contains a pattern for a special “rustic” class of baguette.
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Figure 19. The best alignment formed by SP61 with “sustains_life long crusty rustic” in New
and the same patterns from Old as were used for Figure 18.

• Explaining Away “Explaining Away”. If we receive a phone call at work
to say our burglar alarm has gone off, we are likely to assume there has
been a break in. However, if, at about the same time, we hear on the radio
that there has been an earthquake, and if we know that the burglar alarm
is sensitive to earthquakes, then we will probably assume that the earth-
quake is the explanation of why the alarm went off (Pearl (1988)). This
kind of “explaining away” can be modelled by SP61 in a manner that
is somewhat similar to the example of nonmonotonic reasoning, above.
As with the previous example, the addition of new information (learning
that an earthquake has occurred in this example) can change radically
what kind of alignment of patterns achieves the most compression of the
information in New.

Details of these examples may be found in Wolff (1999a).

8. Unsupervised Inductive Learning

As was noted earlier, this entire programme of research is based on
earlier work on unsupervised inductive learning of language (Section 2),
and the overall ICMAUS framework is designed to accommodate learning
(Section 3). Most of the work to date has concentrated on areas other than
learning but, as we noted in Section 3.5, the SP70 model has now been
developed as a successor to SP61, designed as a full realisation of the
ICMAUS framework, including unsupervised inductive learning. This section
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Figure 20. An alignment and corresponding grammar suggesting how a child may begin to
identify words and classes of words in language.

outlines how the SP70 model works. A relatively full description of the
current version of SP70 is presented in Wolff (2002b).

Imagine a new-born child listening to other people talking, either to the
child directly or to each other. If ICMAUS principles apply, then each “New”
portion of speech will be encoded as far as possible in terms of what is already
stored. In accordance with empiricist thinking about language learning, we
shall suppose that, initially, the child has no knowledge of language patterns.
Thus each New portion of speech cannot be encoded in terms of anything
else and is simply stored “as is”. After a time, however, as the child’s brain
gradually accumulates a collection of these speech patterns, new possibilities
for economical encoding begin to appear.

Let us suppose that (the spoken equivalent of) “i t s b e d t i m e n o
w” is already stored. Then, at some point, the child may hear something like
“i t s p l a y t i m e n o w”. Looking for matching patterns, the child finds
an alignment like the one shown at the top of Figure 20. By adding “code”
symbols at appropriate points, the child may convert the alignment into a
fragment of “grammar”, something like the patterns shown in the bottom part
of the figure. If patterns are stored in the brain as Hebbian cell assemblies, it
is not too hard to imagine additional cells being added to each assembly to
serve as identifiers or codes for the assembly.

Even at this early stage, the system has identified two discrete words and,
in accordance with the principles of distributional linguistics, it has even
recognised an embryonic grammatical class of “qualifying” words: {“play”,
“bed”}.

Notwithstanding nativist thinking about the nature of first language
learning, there is now increasing recognition that distributional techniques
can provide useful insights (Redington and Chater (1998), Redington et al.
(1998)). Demonstrations include my MK10 model of the learning of speech
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segmentation (Wolff (1975, 1977, 1980)) and my SNPR model of syntax
learning (Wolff (1982, 1988), Langley and Stromsten (2000)).

8.1. Features of SP70

This subsection indicates briefly some aspects of how the SP70 model works.

8.1.1. Sifting and sorting
Many of the alignments found by SP70 are not be as “tidy” as the example
shown in Figure 20. It does not always happen that words or classes of words
are picked out as cleanly as in the example. How can the system learn “clean”
grammatical structures in the face of the inevitable messiness in the matching
of linguistic patterns?

A related question is how children can learn “correct” grammars despite
the fact that the language that they hear is often corrupted in various ways.
That learning systems of the kind we have been discussing can cope with
“dirty data” has been demonstrated already with the SNPR model of syntax
learning.

The SNPR model can succeed in the face of dirty data because it is
constantly searching for relatively large, relatively frequent patterns. Since
“errors” in the raw data are, by their nature, relatively rare, they are sifted out
and discarded in favour of the “good” patterns in the data.

SP70 incorporates a process for “sifting and sorting” through the patterns
that have been derived from multiple alignments. This process compiles a set
of alternative grammars, each one with a score based on MLE principles. The
focus of interest is normally the best grammar produced by the program or
the top two or three.

It is anticipated that, in future versions of the model, this sifting and sorting
process will be applied at regular intervals as the system assimilates New
information from its environment. At each stage, the store of Old pattern will
be purged of all the patterns that are not part of the best grammar found by
the system. In this way, the system may, in an incremental manner, build a
store of Old patterns that are “good” in terms of MLE principles.

8.1.2. Building hierarchical structures
The toy example shown in Figure 20 suggests how structures may be created
at one level of abstraction above the raw data. Although SP70 can abstract
plausible grammars from appropriate data, a weakness of the current version
is that it is not good at finding levels of abstraction that are intermediate
between the highest and lowest levels.

It is anticipated that this problem can be overcome by a reorganisation of
the SP70 model. Incidentally, although the SNPR model lacks the generality
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Figure 21. An alignment and corresponding grammar of non-linguistic patterns.

of the ICMAUS framework, it does have the capability to discover structure
at multiple levels of abstraction.

8.1.3. Generalization of grammatical rules and correction of
overgeneralizations

Another important feature of the SNPR model is the way it can generalise
grammatical rules and then correct over-generalisations despite the fact that,
by definition, all kinds of generalisations, correct and incorrect, have zero
frequency in the corpus from which the grammar is induced. This is achieved
in a totally “unsupervised” way: without correction by a “teacher”, without
the provision of “negative” examples, and without any kind of “grading” of
the material from which the system learns (Gold (1967)).

MLE principles appear to provide the key to distinguishing between
“correct” and “incorrect” generalisations without external error correction:
correct generalisations increase the compression that can be achieved while
incorrect generalisations do the opposite.

SP70 already has an ability to make generalisations and to discriminate
“good” ones from “bad” ones but further work is needed in this area.

8.2. Unsupervised inductive learning of semantic structures

The ICMAUS framework has been developed with the intention that it should
be widely applicable, not confined narrowly to the syntax of natural language
or some other circumscribed domain. One of the motivations for aiming for
this kind of generality is that it should facilitate the learning of semantic
knowledge structures and the integration of syntax with semantics.

Figure 21 is intended to suggest how the kinds of class hierarchy
considered in Section 6.2 may be learned. The alignment at the top of the
figure is intended to suggest how the features that are shared by swans and
robins may be identified. These shared features (“wings feathers beak flies
warm_blooded”) may be abstracted into a higher-level pattern describing the
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class “bird” (“%bd wings feathers beak flies warm_blooded #bd”) and then
the two original patterns may be reduced to “%sw swan %bd #bd long_neck
#sw” and “%rb robin %bd #bd red_breast #rb”.

As with the learning of syntactic structures, it is anticipated that, when
SP70 is more fully developed, this kind of thing will be done recursively so
that arbitrarily deep hierarchical structures may be built up. At some stage,
there will be a need to integrate this kind of learning with the learning of
syntactic structures to achieve the kind of knowledge that can serve the
process of understanding language and the process of producing language
from meanings.

9. Comparative Evaluation

Although there is no space in this article to evaluate the ICMAUS frame-
work properly in relation to alternative systems, a few remarks are offered
here about how the ICMAUS system compares with Hidden Markov Models
(HMMs) and Bayesian networks.

HMMs have been popular for applications like speech recognition but
“A major limitation [for speech] is the assumption that successive observa-
tions (frames of speech) are independent, and therefore the probability of a
sequence of observations P(O,O2 . . . OT ) can be written as a product of
probabilities of individual observations . . .” (Rabiner (1989), p. 284). Also,
“. . . the Markov assumption itself, i.e. that the probability of being in a given
state at time t only depends on the state at time t − 1, is clearly inappropriate
for speech sounds” (ibid.).

These limitations of HMMs, which are true for kinds of knowledge other
than speech, do not apply to the ICMAUS framework. Dependencies amongst
observations are expressed in the ICMAUS framework by the use of patterns
and, as we saw in Section 4.1, these dependencies can bridge arbitrary
amounts of intervening structure.

With appropriate design, HMMs have a memory for past events. But the
same is true of the ICMAUS framework. In SP70, the repository of Old
patterns is the cumulative memory of all the New patterns that have been
received to date.

Bayesian networks have some attractive features for probabilistic reaso-
ning and related applications (see Pearl (1988)) but they lack the flexibility
of the ICMAUS framework for representing diverse kinds of knowledge.
They are, for example, not well suited to representing the syntax of natural
languages. By contrast, the ICMAUS framework provides a powerful means
of handling such structures, including the subtle structure of interlocking
dependencies in English auxiliary verbs (Wolff (2000)).



226 J.G. WOLFF

With regard to probabilities, each node in a Bayesian network must
contain a table of transition probabilities and these can be quite complicated.
By contrast, the ICMAUS framework stores all statistical information quite
simply by attaching a frequency value to each stored pattern. This frequency
information is used to calculate probabilities of particular contingencies as or
when they are required.

10. Conclusion

This has been a relatively brief outline of the possibilities offered by the
ICMAUS framework in understanding issues in cognitive science, artificial
intelligence, and beyond. Despite the essential simplicity of the framework,
it yields useful insights across a wide area.

A substantial programme of research has been needed to bring the ideas
to their present stage of development. Now that they are relatively mature, I
hope that other researchers will explore the several areas of application of the
framework, will evaluate the framework and develop it further. As was noted
earlier, the executable code and the source code for the SP61 model is now
available and may be obtained from www.informatics.bangor.ac.uk/∼gerry/
sp_summary.html.
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Notes

1 Different rules may apply to the genetic code itself. DNA is such an economical means of
storing information that there may be relatively little selection pressure in favour of economy.
And replication of genes may on occasion yield advantages in terms of physiological func-
tions.
2 MLE is an umbrella term for Minimum Message Length encoding (MML) and Minimum
Description Length encoding (MDL).
3 If the grammar is very poor it may not even achieve a small E.
4 The goal of minimising G and E for a grammar echoes the way science does or should aim
for theories with a favourable combination of simplicity and descriptive or explanatory power.
5 Provided they are larger than a certain minimum, patterns that match each other represent
“redundancy” in information. Hence, redundancy can be reduced (and information can be
compressed) by unifying matching patterns. This is the basis of all the simpler standard tech-
niques for information compression.
6 Solomonoff (1986) had already observed that the great majority of problems in science and
mathematics may be seen as either “machine inversion” problems or “time limited optimisa-
tion” problems, and that both kinds of problems can be solved by inductive inference using
MLE principles. Although this is not a proposal that “computing” itself might be understood
as IC, the observation does provide some support for that hypothesis.
7 In work to date, the focus has been on one-dimensional patterns but it is envisaged that,
at some stage, the concepts will be generalised to patterns in two or more dimensions. A
one-dimensional array of symbols can, of course, be described as a “sequence” or “string”.
However, the term pattern will normally be favoured as a reminder that the framework is
intended eventually to accommodate higher-dimensional arrays.
8 Although there is clearly diversity in the organisation and functioning of different parts
of the brain and nervous system, it seems likely that there is also an underlying uniformity
about the way information is organised and processed in neural tissue. It is this hypothesised
underlying uniformity that is the focus of interest in this research.
9 The principle that symbols should have no hidden meanings has been slightly bent in current
models. In the SP61 model, a distinction has been made, within each pattern, between “identi-
fication” symbols that identify the pattern and “contents” symbols that represent the substance
of the pattern. This distinction may be regarded as part of the mechanism by which the system
manages its knowledge. As such, it is rather different from meanings associated with symbols
like “+” or “×” which are part of the knowledge itself.
10 In SP70, the frequencies of patterns are derived from the learning process.
11 In brief, the absolute probability of any alignment is calculated as p = 2−L, where L is
the length, in bits, of the code derived from the alignment as outlined in Section 4.2. For any
given set of n alternative alignments, a1 . . . an, where each alignment provides a match for a
given set of symbols from New, the relative probability of the j th alignment may be calculated
as rj = pj /

∑n
1 pi . Probabilities of patterns and symbols within alignments may be derived

from these relative probabilities.
12 The grammatical patterns in Old are intended to represent knowledge that has been accu-
mulated by the system as a result of learning. In SP70, the system builds these kinds of patterns
for itself. But because SP61 does not attempt learning, the patterns are simply given to the
system at the start of processing.
13 This example and others in this article have been deliberately chosen to be relatively
simple. This is partly for the sake of clarity in exposition and partly because complex
alignments can be difficult to display within the confines of the printed page. As already
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indicated (Section 3.4.1), the computational complexity of the model is acceptable. The model
readily produces more complex alignments where appropriate. Relatively elaborate examples
of multiple alignment may be found in Wolff (2000).
14 A New pattern may be a copy of an Old pattern but, in general, Old should not contain
multiple copies of any pattern.
15 The function is the same as the half adder but without the carry out bit.
16 Given that the last four alignments shown in Figure 12 each have 6 matching pairs of
symbols, one might expect them all to have the same compression score. The reason their
scores are different is that the compression score takes account of unmatched symbols (“gaps”)
in the alignments. Alignments with many gaps or large gaps have lower scores than those with
gaps that are few and small.
17 Compared with the previous alignments in this article, the alignment shown in Figure 13 is
rotated by 90◦, with New in the left-most column and patterns from Old in the columns to the
right. This arrangement allows the alignment to be fitted more easily on to the printed page.
18 In this case, it seems also to be true of the “real” world that birds and mammals are the only
warm-blooded kinds of creature. But, like any cognitive system (natural or artificial), there is
no guarantee that stored knowledge will be an accurate reflection of the real world.
19 It should be clear that bi-directional railway journeys could be accommodated in a similar
way.
20 Owing to over-exposure in the literature, Tweety is suffering from nervous exhaustion and
will, accordingly, be replaced in the following example by a loaf of bread!
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