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The SP theory of intelligence, with its realization in the SP computer model, aims to

simplify and integrate observations and concepts across artificial intelligence, mainstream

computing, mathematics, and human perception and cognition, with information

compression as a unifying theme. This paper describes how abstract structures and

processes in the theory may be realized in terms of neurons, their interconnections, and

the transmission of signals between neurons. This part of the SP theory—SP-neural—is

a tentative and partial model for the representation and processing of knowledge in

the brain. Empirical support for the SP theory—outlined in the paper—provides indirect

support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of

knowledge are represented with patterns, where a pattern is an array of atomic symbols

in one or two dimensions. In SP-neural, the concept of a “pattern” is realized as an array

of neurons called a pattern assembly, similar to Hebb’s concept of a “cell assembly”

but with important differences. Central to the processing of information in SP-abstract is

information compression via the matching and unification of patterns (ICMUP) and, more

specifically, information compression via the powerful concept of multiple alignment,

borrowed and adapted from bioinformatics. Processes such as pattern recognition,

reasoning and problem solving are achieved via the building of multiple alignments,

while unsupervised learning is achieved by creating patterns from sensory information

and also by creating patterns from multiple alignments in which there is a partial match

between one pattern and another. It is envisaged that, in SP-neural, short-lived neural

structures equivalent to multiple alignments will be created via an inter-play of excitatory

and inhibitory neural signals. It is also envisaged that unsupervised learning will be

achieved by the creation of pattern assemblies from sensory information and from the

neural equivalents of multiple alignments, much as in the non-neural SP theory—and

significantly different from the “Hebbian” kinds of learning which are widely used in

the kinds of artificial neural network that are popular in computer science. The paper

discusses several associated issues, with relevant empirical evidence.
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1. INTRODUCTION

The SP theory of intelligence, and its realization in the
SP computer model, is a unique attempt to simplify and
integrate observations and concepts across artificial intelligence,
mainstream computing, mathematics, and human perception
and cognition. The name “SP” derives from the central
importance in the theory of information compression, something
that may be seen as a process of maximizing the Simplicity
of a body of information, by removing information that is
repeated, whilst retaining as much as possible of its non-
repeated expressive Power. Also, the theory itself may be seen
to compress empirical information by combining simplicity
in the theory with wide-ranging explanatory and descriptive
power.

This paper, which draws on Wolff (2006, chapter 11) with
revisions and updates, describes how abstract structures and
processes in the SP theory may be realized in terms of neurons,
their interconnections, and the transmission of impulses between
neurons. This part of the SP theory—called SP-neural—may
be seen as a tentative and partial theory of the representation
and processing of knowledge in the brain. As such, it may
prove useful as a source of ideas for theoretical and empirical
investigations in the future. For the sake of clarity, the abstract
parts of the theory, excluding SP-neural, will be referred to as
SP-abstract.

It is envisaged that SP-neural will be further developed in the
form of a computer model. As with the existing computer model
of SP-abstract (which, unless otherwise stated, will be referred
to as “the SP computer model”), the development of the new
computermodel of SP-neural will help to guard against vagueness
in the theory, it will serve as a means of testing ideas to see
whether or not they work as anticipated, and it will be a means of
demonstrating what the model can do, and validating it against
empirical data.

The next section says something about the theoretical
orientation of this research. Then SP-abstract will be described
briefly as a foundation for the several sections that follow, which
describe aspects of SP-neural and associated issues.

2. THEORETICAL ORIENTATION

Cosmologist John Barrow has written that “Science is, at root,
just the search for compression in the world” (Barrow, 1992,
p. 247), an idea which may be seen to be equivalent to Occam’s
Razor because, in accordance with the remarks above about the
name “SP” and the theory itself, a good theory should combine
conceptual Simplicity with descriptive or explanatory Power.

This works best when the range of phenomena to be described
or explained is large. But this has not always been observed in
practice: Newell (1973, p. 303) urged researchers in psychology
to address “a genuine slab of human behavior”; and McCorduck
(2004, pp. 417, 424) has described how research in artificial
intelligence became fragmented into many narrow sub-fields.

In the light of these observations, and in the spirit of
research on “unified theories of cognition” (Newell, 1990)

and “artificial general intelligence1,” the SP programme of
research has attempted to simplify and integrate observations
and concepts across a broad canvass, resisting the temptation to
concentrate only on one or two narrow areas.

3. SP-ABSTRACT IN BRIEF

As a basis for the description of SP-neural, this section provides
a brief informal account of SP-abstract. The theory is described
most fully in Wolff (2006) and quite fully but more briefly in
Wolff (2013). Details of other publications in the SP programme,
most of them with download links, are shown on (http://www.
cognitionresearch.org/sp.htm).

3.1. Origins and Foundations of the SP
Theory
The origins of SP theory are mainly in a body of research by
Attneave (1954) and Barlow (1959, 1969) and others suggesting
that much of the workings of brains and nervous systems may be
understood as compression of information, and my own research
on language learning (summarized in Wolff, 1988) suggesting
that, to a large extent, the learning of languagemay be understood
in the same terms. There is more about the foundations of the
theory in Wolff (2014d).

3.2. Elements of SP-Abstract
In SP-abstract, all kinds of knowledge are represented with
patterns, where a pattern is an array of atomic symbols in one
or two dimensions. At present, the SP computer model2 works
only with 1D patterns but it is envisaged that the model will
be generalized to work with 2D patterns. In this connection, a
“symbol” is simply a “mark” that can make a yes/no match with
any other symbol—no other result is permitted.

In most of the examples shown in this paper, symbols are
shown as alphanumeric characters or short strings of characters
but, when the SP system is used to model biological structures
and processes, such representations may be interpreted as low-
level elements of perception such as formants or formant ratios
in the case of speech or lines and junctions between lines in the
case of vision (see also Section 4.2).

To help cut through mathematical complexities associated
with information compression, the SP system—SP-abstract and
its realization in the SP computer model—is founded on a
simple, “primitive” idea: that information may be compressed
by finding full or partial matches between patterns and merging
or “unifying” the parts that are the same. This principle—
“Information Compression via the Matching and Unification
of Patterns” (ICMUP)—provides the foundation for a powerful
concept of multiple alignment, borrowed and adapted from
bioinformatics. The multiple alignment concept, outlined in
Section 3.5, below, is itself central in the workings of SP-abstract

1See, for example, “Artificial General Intelligence”, Wikipedia, http://bit.ly/

1ZxCQPo, retrieved 2016-01-19.
2The current version of the SP computer model is SP71, the source

code for which may be downloaded via a link near the bottom of

www.cognitionresearch.org/sp.htm. This version of the computer model is very

similar to SP70, described in Wolff (2006, Sections 3.9.2, 9.2).
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and is the key to versatility and adaptability in the SP system.
It has the potential to be as significant for the understanding
of “intelligence” in a broad sense as is DNA for biological
sciences.

3.3. SP Patterns, Multiple Alignment, and
the Representation and Processing of
Knowledge
In themselves, SP patterns are not very expressive. But in the
multiple alignment framework (Section 3.5) they become a very
versatile medium for the representation of diverse forms of
knowledge. And the building of multiple alignments, together
with processes for unsupervised learning (Sections 3.4, 3.7), has
proved to be a powerful means of modeling diverse aspects of
intelligence.

The two things together—SP patterns and multiple
alignment—have the potential to be a “Universal Framework
for the Representation and Processing of Diverse Kinds of
Knowledge” (UFK), as discussed in Wolff (2014c, Section III).

An implication of these ideas is that there would not,
for example, be any difference between the representation
and processing of non-syntactic cognitive knowledge and the
representation and processing of the syntactic forms of natural
language. A framework that can accommodate both kinds of
knowledge is likely to facilitate their seamless integration, as
discussed in Section 3.8.2.

3.4. Early Stages of Learning
The SP theory is conceived as a brain-like system that receives
New patterns via its “senses” and stores some or all of them, in
compressed form, asOld patterns. In broad terms, this is how the
system learns.

In the SP system, all learning is “unsupervised3,” meaning
that it does not depend on assistance by a “teacher,” the
grading of learning materials from simple to complex, or the
provision of “negative” examples of concepts to be learned—
meaning examples that are marked as “wrong” (cf. Gold, 1967).
Notwithstanding the importance of schools and colleges, it
appears that most human learning is unsupervised. Other kinds
of learning, such as “supervised” learning (learning from labeled
examples)4, or “reinforcement” learning (learning with carrots
and sticks)5, may be seen as special cases of unsupervised learning
(Wolff, 2014b, Section V).

At the beginning of processing by the system, when the
repository of Old patterns is empty6, New patterns are stored as
they are received but with the addition of system-generated “ID”
symbols at the beginning and end. For example, a New pattern
like “t h e b i g h o u s e” would be stored as an Old
pattern like “A 1 t h e b i g h o u s e #A.” Here,

3See “Unsupervised learning,”Wikipedia, bit.ly/22nEPL2, retrieved 2016-03-17.
4See “Supervised learning,”Wikipedia, bit.ly/1nR4ybK, retrieved 2016-03-17.
5See “Reinforcement learning,”Wikipedia, bit.ly/1R0RoDv, retrieved 2016-03-17.
6Although it is likely that, contrary to what Noam Chomsky and others have

suggested, a newborn child does not have any kind of detailed knowledge of the

structure of natural language, it is likely he or she does have inborn knowledge

such as how to suck milk from a breast. In this respect (and others), the SP theory,

insofar it is seen as a model of human cognition, is not entirely accurate.

the lower-case letters are atomic symbols that may represent
actual letters but could represent basic elements of speech (such
as formant ratios or formant transitions), or basic elements of
vision (such as lines or corners), and likewise with other sensory
data.

Later, when some Old patterns have been stored, the
system may start to recognize full or partial matches
between New and Old patterns. If a New pattern is
exactly the same as an Old pattern (excluding the ID-
symbols), then frequency measures for that pattern and
its constituent symbols are incremented. These measures,
which are continually updated at all stages of processing,
have an important role to play in calculating probabilities
of structures and inferences and in guiding the processes of
building multiple alignments (Section 3.5) and unsupervised
learning.

With partial matches, the system will form multiple
alignments like the one shown in Figure 1, with a New pattern
in row 0 and an Old pattern in row 1.

From a partial match like this, the system creates Old patterns
from the parts that match each other and from the parts that
don’t. Each newly-created Old pattern will be given system-
generated ID-symbols. The result in this case would be patterns
like these: “B 1 t h e #B,” “C 1 h o u s e #C,” “D 1

s m a l l #D,” and “D 2 b i g #D.” In addition, the
system forms an abstract pattern like this: “E 1 B #B D #D

C #C #E” which records the sequence [“B 1 t h e #B,” (“D
1 s m a l l #D” or “D 2 b i g #D”), “C 1 h o u s

e #C”] in terms the ID-symbols of the constituent patterns.
Notice how “s m a l l” and “b i g” have both been

given the ID-symbol “D” at their beginnings and the ID-symbol
“#D” at their ends. These additions, coupled with the use of the
same two ID-symbols in the abstract pattern “E 1 B #B D #D

C #C #E” has the effect of assigning “s m a l l” and “b i

g” to the same syntactic category, which looks like the beginnings
of the “adjective” part of speech.

The overall result in this example is a collection of SP patterns
that functions as a simple grammar to describe the phrases the
small house and the big house.

In practice, the SP computer model may form many other
multiple alignments, patterns and grammars which are much less
tidy than the ones shown. But, as outlined in Sections 3.5, 3.7, the
system is able to home in on structures that are “good” in terms
of information compression.

As we shall (see Sections 3.5, 3.8.1, and 6), SP patterns, within
the SP system, are remarkably versatile and expressive, with
at least the power of context-sensitive grammars (Wolff, 2006,
Chapter 5).

0 t h e s m a l l h o u s e 0

||||||||

1 A 1 t h e b i g h o u s e #A 1

FIGURE 1 | A multiple alignment produced by the SP computer model

showing a partial match between a New pattern (in row 0) and an Old

pattern (in row 1).
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0evarbehtsruovafenutrof0

||||||||||||||||||||||

1|||||||||rV#ruovaf6rV|||||||1

||||||||||||||||||

2 | | | | | | | V 7 Vr #Vr s #V | | | | | | | | 2

|||||||||||||||||

3PV#PN#||||||||PNV#V3PV|||||||3

|||||||||||||||||||

4||||||||||||N#enutrof4N4

||||||||||||||

5||||||||||||PN#N#N2PN5

||||||||||||||

6S#PV#||||||||||PVPN#PN0S6

| | | | | | | | | |

7 | | | | N 5 b r a v e #N | 7

| | | | | | |

8 NP 1 D | | | #D N #N #NP 8

| | | | |

9 9D#eht8D

FIGURE 2 | The best multiple alignment produced by the SP computer model with a New pattern representing a sentence to be parsed and a

repository of user-supplied Old patterns representing grammatical categories, including words. In the multiple alignment, the New pattern appears in row 0

and some of the Old patterns supplied to the system appear in rows 1 to 9, one pattern per row.

3.5. The Multiple Alignment Concept
The multiple alignment shown in Figure 1 is unusually simple
because it contains only two patterns. More commonly, the
system forms “good” multiple alignments like the one shown
in Figure 2, with one New pattern (in row 0) and several Old
patterns (one in each of rows 1–9)7. As a matter of convention,
the New pattern is always shown in row 0, but the order of the
Old patterns across the other rows is not significant.

Amultiple alignment like the one shown in Figure 2 is built in
stages, using heuristic search at each stage to weed out structures
that are “bad” in terms of information compression and retaining
those that are “good.” Problems of computational complexity are
reduced or eliminated by a scaling back of ambition: instead of
searching for theoretically-ideal solutions, one merely searches
for solutions that are “good enough.”

In this example, multiple alignment achieves the effect of
parsing the sentence into parts and sub-parts, such as a sentence
(“S”) defined by the pattern in row 6, one kind of noun phrase
(“NP”) defined by the pattern that appears in row 5, and another
kind of noun phrase shown in row 8, a verb phrase (“VP”)
defined by the pattern in row 3, nouns (“N”) defined by the
patterns in rows 4 and 7, and so on. But there is much more
than this to the multiple alignment concept as it has been
developed in the SP programme. It turns out to be a remarkably
versatile framework for the representation and processing of
diverse kinds of knowledge—non-verbal patterns and pattern
recognition, logical and probabilistic kinds of “rules” and several
kinds of reasoning, and more (Sections 3.8.1, 6).

A point worth mentioning here is that, although the multiple
concept is entirely non-hierarchical, it can model several kinds
of hierarchy and heterarchy (Section 3.8.1), as illustrated by
the parsing example in Figure 2. And such hierarchies or
heterarchies may not always be “strict” because any pattern may
be aligned with any other pattern and, within one multiple

7In this case, the SP computer model was supplied with an appropriate set of Old

patterns. It did not learn them for itself.

alignment, any pattern may be aligned with two or more other
patterns.

3.6. Deriving a Code Pattern from a
Multiple Alignment
From a multiple alignment like the one shown in Figure 2, the
SP system may derive a code pattern—a compressed encoding of
the sentence—as follows: scan the multiple alignment from left to
right, identifying the ID-symbols that are not matched with any
other symbol and create an SP pattern from the sequence of such
symbols. In this case, the result is the pattern “S 0 2 4 3 7

6 1 5 #S.” This code pattern has several existing or potential
uses including:

• It provides a basis for calculating a “compression score” for
the Old patterns in the multiple alignment, meaning their
effectiveness as a means of compressing the New pattern.
Compression scores like that have a role in sifting out one or
more “good” grammars for any given set of New patterns.

• If the code pattern is treated as a New pattern then, with the
same Old patterns as when the code pattern was produced, the
SP system can recreate the original sentence, as described in
Section 8.

• When SP-abstract is developed to take account of meanings
as well as syntax, it is likely that each ID-symbol in the code
pattern will take on a dual role: representing each syntactic
form (word or other grammatical structure) and representing
the meaning of the given syntactic form.

• It is envisaged that, with further development of the SP
computer model, code patterns will enter into the learning
process, as outlined in Section 3.7, next.

3.7. Later Stages of Learning
As we saw in Section 3.4, the earliest stage of learning in
SP-neural—when the repository of Old patterns is empty or
nearly so—is largely a matter of absorbing New information
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directly with little modification except for the addition of system-
generated ID-symbols. Later, when there are more Old patterns
in store, the system begins to create Old patterns from partial
matches between New and Old patterns. Part of this process
is the creation of abstract patterns that describe sequences of
lower-level patterns.

As the system begins to create abstract patterns, it will also
begin to formmultiple alignments like the one shown in Figure 2.
And, as it begins to formmultiple alignments like that, it will also
begin to form code patterns, as described in Section 3.6.

At all stages of learning, butmost prominent in the later stages,
is a process of inferring one or more grammars that are “good” in
terms of their ability to encode economically all the New patterns
that have been presented to the system. Here, a “grammar” is
simply a collection of SP patterns8.

Inferring grammars that are good in terms of information
compression is, like the building multiple alignments, a stage-by-
stage process of heuristic search through the vast abstract space
of alternatives, discarding “bad” alternatives at each stage, and
retaining a few that are “good.” As with the building of multiple
alignments, the search aims to find solutions that are “good
enough,” and not necessarily perfect. These kinds of heuristic
search may be performed by means of genetic algorithms,
simulated annealing, and other heuristic techniques.

It is envisaged that the SP computer model will be developed
so that, in this later phase of learning, learning processes will
be applied to code patterns as well as to New patterns. It is
anticipated that this may overcome two weaknesses in the SP
computer model as it is now: that, while it forms abstract
patterns at the highest level, it does not form abstract patterns at
intermediate levels; and that it does not recognize discontinuous
dependencies in knowledge (Wolff, 2013, Section 3.3).

In Wolff (2006, Chapter 9), there is a much fuller account of
unsupervised learning in the SP computer model.

3.8. Evaluation of SP-Abstract
The SP theory in its abstract form may be evaluated in terms of
“simplicity” and “power” of the theory itself (discussed in Section
3.8.1 next), in terms of its potential to promote simplification
and integration of structures and functions in natural or artificial
systems that conform to the theory (Section 3.8.2 below), and in
comparison with other AI-related systems.

3.8.1. Simplicity and Power
In terms of the principles outlined in Section 2, the SP
system, with multiple alignment center stage, scores well. One
relatively simple framework has strengths and potential in the
representation of several different kinds of knowledge, in several
different aspects of AI, and it has several potential benefits and
applications:

• Representation and processing of diverse kinds of knowledge.
The SP system (SP-abstract) has strengths and potential
in the representation and processing of: class hierarchies

8The term “grammar” has been adopted partly because of the origins of the SP

system in research on the learning of natural language (Wolff, 1988) and partly

because the term has come to be used in areas outside computational linguistics,

such as pattern recognition.

and heterarchies, part-whole hierarchies and heterarchies,
networks and trees, relational knowledge, rules used in several
kinds of reasoning, patterns with pattern recognition, images
with the processing of images (Wolff, 2014a), structures in
planning and problem solving, structures in three dimensions
(Wolff, 2014a, Section 6), knowledge of sequential and parallel
procedures (Wolff, 2014b, Section IV-H). It may also provide
an interpretive framework for structures and processes in
mathematics (Wolff, 2014d, Section 10).

There is a fuller summary in Wolff (2014c, Section III-B)
and much more detail in Wolff (2006, 2013).

• Strengths and potential in AI. The SP theory has things to
say about several different aspects of AI, as described most
fully in Wolff (2006) and more briefly in Wolff (2013). In
addition to its capabilities in the parsing of natural language,
described above, the SP system has strengths and potential
in the production of natural language, the representation
and processing of diverse kinds of semantic structures,
the integration of syntax and semantics, fuzzy pattern
recognition, recognition at multiple levels of abstraction,
computer vision and modeling aspects of natural vision
(Wolff, 2014a), information retrieval, planning, problem
solving, and several kinds of reasoning (one-step “deductive”
reasoning; abductive reasoning; reasoning with probabilistic
decision networks and decision trees; reasoning with “rules”;
nonmonotonic reasoning and reasoning with default values;
reasoning in Bayesian networks with “explaining away”; causal
diagnosis; reasoning which is not supported by evidence; and
inheritance of attributes in an object-oriented class hierarchy
or heterarchy). There is also potential for spatial reasoning
(Wolff, 2014b, Section IV-F.1) and what-if reasoning (Wolff,
2014b, Section IV-F.2). The system also has strengths and
potential in unsupervised learning (Wolff, 2006, Chapter 9).

• Many potential benefits and applications. Potential benefits
and applications of the SP system include: helping to solve
nine problems associated with big data (Wolff, 2014c); the
development of intelligence in autonomous robots, with
potential for gains in computational efficiency (Wolff, 2014b);
the development of computer vision (Wolff, 2014a); it may
serve as a versatile database management system, with
intelligence (Wolff, 2007); it may serve as an aid in medical
diagnosis (Wolff, 2006); and there are several other potential
benefits and applications, some of which are described inWolff
(2014e).

In short, the SP theory, in accordance with Occam’s Razor,
demonstrates a favorable combination of simplicity and power
across a broad canvass. As in other areas of science, this should
increase our confidence in the validity and generality of the
theory.

3.8.2. Simplification and Integration
Closely related to simplicity and power in the SP theory are two
potential benefits arising from the use of one simple format (SP
patterns) for all kinds of knowledge and one relatively simple
framework (chiefly multiple alignment) for the processing of all
kinds of knowledge:
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• Simplification. Those two features (one simple format for
knowledge and one simple framework for processing it) can
mean substantial simplification of natural systems (brains)
and artificial systems (computers) for processing information.
The general idea is that one relatively simple system can
serve many different functions. In natural systems, there is
a potential advantage in terms of natural selection, and in
artificial systems there are potential advantages in terms of
costs.

• Integration. The same two features are likely to facilitate
the seamless integration of diverse kinds of knowledge and
diverse aspects of intelligence—pattern recognition, several
kinds of reasoning, unsupervised learning, and so on—in
any combination, in both natural and artificial systems. It
appears that that kind of seamless integration is a key part
of the versatility and adaptability of human intelligence
and that it will be essential if we are to achieve human-
like versatility and adaptability of intelligence in artificial
systems.

With regard to the seamless integration of diverse kinds of
knowledge, this is clearly needed in the understanding and
production of natural language. To understand what someone is
saying or writing, we obviously need to be able to connect words
and syntactic structures with their non-syntactic meanings, and
likewise, in reverse, when we write or speak to convey some
meaning.

This has not yet been explored in any depth with the SP-
abstract conceptual framework but preliminary trials with the
SP computer model suggest that it is indeed possible to define
syntactic-semantic structures in a set of SP patterns and then,
with those patterns playing the role of Old patterns, to analyse a
sample sentence and to derive its meanings (Wolff, 2006, Section
5.7, Figure 5.18), and, in a separate exercise with the same set of
Old patterns, to derive the same sentence from a representation
of its meanings (Wolff, 2006, Figure 5.19).

3.8.3. Distinctive Features and Advantages of the SP

System Compared with Other AI-Related Systems
In several publications, such as Wolff (2006, 2007, 2014e),
potential benefits and applications of the SP system have been
described.

More recently, it has seemed appropriate to say what
distinguishes the SP system from other AI-related systems and,
more importantly, to describe advantages of the SP system
compared AI-related alternatives. Those points have now been
set out in some detail inThe SP theory of intelligence: its distinctive
features and advantages (Wolff, 2016). Of particular relevance to
this paper are the several advantages of the SP system compared
with systems for deep learning in artificial neural networks
(Wolff, 2016, Section V).

Since many AI-related systems may also be seen as models of
cognitive structures and processes in brains, Wolff (2016) may
also be seen to demonstrate the relative strength of the SP system
in modeling aspects of human perception and cognition.

In this connection, the SP system appears to have some
advantages compared with concepts developed in research in

“neural-symbolic computation,” described in d’Avila Garcez
et al. (2015), de Penning et al. (2011), d’Avila Garcez et al.
(2009), Komendantskaya et al. (2007), and d’Avila Garcez (2007)
amongst other publications. The main apparent advantages are:

• The AI scope of the SP system. The scope of SP-abstract in
AI, meaning the range of AI-related capabilities where it
has strengths and potential (summarized in Section 3.8.1),
appears to be greater than the range of AI-related capabilities
considered in research on neural-symbolic computation.
There is potential for SP-neural to inherit that same wide
scope.

• Problems with deep learning in artificial neural networks, and
potential SP solutions. As mentioned above, the SP system has
the potential to overcome several problems with deep learning
in artificial neural networks (Wolff, 2016, Section V).

4. INTRODUCTION TO SP-NEURAL

As we have seen in Section 3, SP-abstract is a relatively simple
system with descriptive and explanatory power across a wide
range of observation and phenomena in artificial intelligence and
related areas. How can such a system have anything useful to
say about the extraordinary complexity of brains and nervous
systems, both in their structure and in their workings?

An answer in brief is that SP-neural—a realization of SP-
abstract in terms of neurons, their interconnections, and the
transmission of impulses between neurons—may help us to
interpret neural structures and processes in terms of the relatively
simple concepts in SP-abstract. To the extent that this is
successful, it may—like any good theory in any field—help us
to understand empirical phenomena in our area of interest, it
may help us to make predictions, and it may suggest lines of
investigation.

It is anticipated that SP-neural will work in broadly the same
way as SP-abstract, but the characteristics of neurons and their
interconnections raise some issues that do not arise in SP-abstract
and its realization in the SP computer model. These issues will be
discussed at appropriate points in this and subsequent sections.

This section introduces SP-neural in outline, and sections that
follow describe aspects of the theory in more detail, drawing
where necessary on aspects of SP-abstract that have been omitted
from or only sketched in Section 3.

4.1. Sensory Data and the Receptor Array
Figure 3, to be discussed in this and the following subsections,
shows in outline how a portion of the multiple alignment
shown in Figure 2, may be realized in SP-neural. with associated
patterns and symbols.

In the figure, “sensory data” at the bottom means the visual,
auditory or tactile data entering the system which, in this case,
corresponds with the phrase “t h e b r a v e.” In a more realistic
illustration, the sensory data would be some kind of analog signal.
Here, the letters are intended to suggest the kinds of low-level
perceptual primitives outlined below.

It is envisaged that, with most sensory modalities, the receptor
array would be located in the primary sensory cortex. Of course,
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FIGURE 3 | A schematic outline of how part of the multiple alignment shown in Figure 2, with associated patterns and symbols, may be expressed in

SP-neural as neurons and their inter-connections. The meanings of the conventions in the figure, and some complexities that are not shown in the figure, are

explained in this main section and ones that follow.

a lot of processing goes on in the sense organs and elsewhere
between the sense organs and the primary sensory cortices. But
it seems that most of this early processing is concerned with the
identification of the perceptual primitives just mentioned.

As with SP-abstract, it is anticipated that SP-neural will, at
some stage, be generalized to accommodate patterns in two
dimensions, such as visual images, and then the sensory data may
be received in two dimensions, as in the human eye.

Between the sensory data and the receptor array (above it
in the figure), there would be, first, cells that are specialized
to receive particular kinds of input (auditory, visual, tactile

etc.). These send signals to neurons that encode the sensory
data as neural symbols, the neural equivalents of “symbols” in
SP-abstract. In the receptor array, each letter enclosed in a solid
ellipse represents a neural symbol, expressed as a single neuron
or, more likely, a small cluster of neurons. As we shall see Section
5.1, the reality is more complex, at least in some cases.

In vision, neural symbols in the receptor array would
represent such low-level features as lines, corners, colors, and
the like, while in speech perception, they would represent such
things as formants, formant ratios and transitions, plosive and
fricative sounds, and so on. Whether or how the SP concepts can
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be applied in the discovery or identification of features like these
is an open question (Wolff, 2013, Section 3.3). For now, we shall
assume that they can be identified and can be used in the creation
and use of higher-level structures.

4.2. Pattern Assemblies
In the rest of Figure 3, each broken-line rectangle with rounded
corners represents a pattern assembly—corresponding to a
“pattern” in SP-abstract. The word “assembly” has been adopted
within the expression “pattern assembly” because the concept is
quite similar to Hebb’s concept of a “cell assembly”—a cluster
of neurons representing a concept or other coherent mental
entity. Differences between Hebb’s concept of a cell assembly
and the SP concept of a pattern assembly are described in the
Appendix.

Within each pattern assembly, as represented in the figure,
each character or group of characters enclosed in a solid-line
ellipse represents a neural symbol which, as already mentioned,
corresponds to a “symbol” in SP-abstract. As with neural symbols
in the receptor array, it is envisaged that each neural symbol
would comprise a single neuron or, more likely, a small cluster
of neurons.

It is supposed that, within each pattern assembly, there are
lateral connections between neural symbols—but these are not
shown in the figure.

It is envisaged that most pattern assemblies would represent
knowledge that is learned and not inborn, and would be located
mainly outside the primary sensory areas of the cortex, in other
parts of the sensory cortices. Pattern assemblies that integrate two
or more sensory modalities may be located in “association” areas
of the cortex.

Research with fMRI recordings from volunteers (Huth
et al., 2016) has revealed “semantic maps” that “show that
semantic information is represented in rich patterns that are
distributed across several broad regions of cortex. Furthermore,
each of these regions contains many distinct areas that
are selective for particular types of semantic information,
such as people, numbers, visual properties, or places. We
also found that these cortical maps are quite similar across
people, even down to relatively small details”9. Of course, this
research says nothing about whether or not the knowledge is
represented with pattern assemblies and their interconnections.
But it does apparently confirm that knowledge is stored in
several regions of the cortex and throws light on how it is
organized.

Although most parts of the mammalian cerebral cortex has
six layers and many convolutions, it may be seen, topologically,
as a sheet which is very much broader and wider than it is
thick. Correspondingly, it is envisaged that 1D and 2D pattern
assemblies will be largely “flat” structures, rather like writing or
pictures on a sheet of paper. That said, it is quite possible, indeed
likely, that pattern assemblies would take advantage of two or
more layers of the cortex, not just one.

9From the website of the Gallant Lab at UC Berkely, retrieved 2016-05-02,

http://bit.ly/1WvvLhX. See also “Brain ‘atlas’ of words revealed,” BBC News, 2016-

04-27, bbc.in/1SGESLz.

Incidentally, since 2D SP patterns may provide a basis for 3D
models, as described inWolff (2014a, Sections 6.1, 6.2), flat neural
structures in the cortex may serve to represent 3D concepts.

4.3. Connections between Pattern
Assemblies
In Figure 3, the solid or broken lines that connect with neural
symbols represent axons, with arrows representing the direction
of travel of neural impulses. Where two or more connections
converge on a neural symbol, we may suppose that, contrary
to the simplified way in which the convergence is shown in the
figure, there would be a separate dendrite for each connection.

Axons represented with solid lines are ones that would be
active when the multiple alignment in Figure 2 is in the process
of being identified. Broken-line connections show a few of the
many other possible connections.

As mentioned in Section 4.2, it is envisaged that there would
be one or more neural connections between neighboring neural
symbols within each pattern assembly but these are not marked
in the figure.

Compared with what is shown in the figure, it likely
that, in reality, there would be more “levels” between basic
neural symbols in the receptor array and ID-neural-symbols
representing pattern assemblies for relatively complex entities
like the words “one,” “brave,” “the,” and “table,” as shown in the
figure.

In this connection, it is perhaps worth emphasizing that,
as with the modeling of hierarchical structures in multiple
alignments (Section 3.5), while pattern assemblies may form
“strict” hierarchies, this is not an essential feature of the concept,
and it is likely that many neural structures formed from pattern
assemblies may be only loosely hierarchical or not hierarchical
at all.

4.4. SP-Neural, Quantities of Knowledge,
and the Size of the Brain
Given the foregoing account of how knowledge may be
represented in the brain, a question that arises is “Are there
enough neurons in the brain to store what a typical person
knows?” This is a difficult question to answer with any precision
but an attempt at an answer, described in Wolff (2006, Section
11.4.9), reaches the tentative conclusion that there are. In brief:

• Given that estimates of the size of the human brain range from
1010 up to 1011 neurons,10 we may estimate, via calculations
given in Wolff (2006, Section 11.4.9), that the “raw” storage
capacity of the brain is between approximately 1000 and
10,000 MB.

• Given a conservative estimate that, using SP compression
mechanisms, compression by a factor of 3 may be achieved
across all kinds of knowledge, our estimates of the storage
capacity of the brain will range from about 3000 MB up to
about 30,000 MB.

10This is consistent with another estimate, not quoted in Wolff (2006, Section

11.4.9), that there may be as many as 86 billion neurons in the human brain

(Herculano-Houzel, 2012).
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• Assuming: (1) That the average person knows only a relatively
small proportion of what is contained in the Encyclopedia
Britannica (EB); (2) That the average person knows lots
of “everyday” things that are not in the EB; (3) That the
“everyday” things that we do know are roughly equal to the
things in the EB that we do not know; Then (4), we may
conclude that the size of the EB provides a rough estimate of
the volume of information that the average person knows.

• The EB can be stored on two CDs in compressed form.
Assuming that most of the space is filled, this equates to 1300
MB of compressed information or approximately 4000 MB of
information in uncompressed form.

• This 4000 MB estimate of what the average person knows is
the same order of magnitude as our range of estimates (3000
to 30,000 MB) of what the human brain can store.

• Even if the brain stores two or three copies of its compressed
knowledge—to guard against the risk of losing it, or to speed
up processing, or both—our estimate of what needs to be
stored (lets say 4000× 3 = 12, 000 MB) is still within the 3000
to 30,000 MB range of estimates of what the brain can store.

4.5. Neural Processing
In broad terms, it is envisaged that, for a task like the parsing of
natural language or pattern recognition:

1. SP-neural will work firstly by receiving sensory data and
interpreting it as neural symbols in the receptor array—with
excitation of the neural symbols that have been identified:

• Excitatory signals would be sent from those excited neural
symbols to pattern assemblies that can receive signals from
them directly. In Figure 3, these would be all the pattern
assemblies except the topmost pattern assembly.

• Within each pattern assembly, excitatory signals will spread
laterally via the connections between neighboring neural
symbols.

• Pattern assemblies would become excited, roughly in
proportion to the number of excitatory signals they receive.

2. At this stage, there would be a process of selecting amongst
pattern assemblies to identify one or two that are most excited.

3. From those pattern assemblies—more specifically, the neural
ID-symbols at the beginnings and ends of those pattern
assemblies—excitatory signals would be sent onwards to other
pattern assemblies that may receive them. In Figure 3, this
would be the topmost pattern assembly (that would be reached
immediately after the first pass through stages 2 and 3).

As in stage 1, the level of excitation of any pattern assembly
would depend on the number of excitatory signals it receives,
but building up from stage to stage so that the highest-level
pattern assemblies are likely to be most excited.

4. Repeat stages 2 and 3 until there are no more pattern
assemblies that can be sent excitatory signals.

The “winning” pattern assembly or pattern assemblies, together
with the structures below them that have, directly or indirectly,
sent excitatory signals to them, may be seen as neural analogs
of multiple alignments (NAMAs), and we may guess that they

provide the best interpretations of a given portion of the sensory
data.

If the whole sentence, “f o r t u n e f a v o u r

s t h e b r a v e,” is processed by SP-neural with pattern
assemblies that are analogs of the SP patterns provided for the
example shown in Figure 2, we may anticipate that the overall
result would be a pattern of neural excitation that is an analog of
the multiple alignment shown in that figure.

When a neural symbol or pattern assembly has been
“recognized” by participating in a winning (neural) multiple
alignment, we may suppose that some biochemical or
physiological aspect of that structure is increased as an at
least approximate measure of the frequency of occurrence of the
structure, in accordance with the way in which SP-abstract keeps
track of the frequency of occurrence of symbols and patterns
(Section 3.4).

Some further possibilities are discussed in Sections 5, 9.

5. SOME MORE DETAIL

The bare-bones description of SP-neural in Section 4 is probably
inaccurate in some respects and is certainly too simple to work
effectively. This section and the ones that follow describe some
other features which are likely to figure in a mature version of
SP-neural, drawing on relevant empirical evidence where it is
available.

5.1. Encoding of Information in the
Receptor Array
With regard to the encoding of information in the receptor array,
it seems that the main possibilities are these:

1. Explicit alternatives. For the receptor array to work as
described in Section 4, it should be possible to encode sensory
inputs with an “alphabet” of alternative values at each location
in the array, in much the same way that each binary digit (bit)
in a conventional computer may be set to have the value 0
or 1, or how a typist may enter any one of an alphabet of
characters at any one location on the page. At each location in
the receptor array, each option may be provided in the form
of a neuron or small cluster of neurons. Here, there seem to be
two main options:

a. Horizontal distribution of alternatives. The several
alternatives may be distributed “horizontally,” in a plane
that is parallel to the surface of the cortex.

b. Vertical distribution of alternatives. The several alternatives
may be distributed “vertically” between the outer and inner
surfaces of the cortex, and perpendicular to those surfaces.

2. Implicit alternatives. At each location there may be a neuron
or small cluster of neurons that, via some kind of biochemical
or neurophysiological process, may be “set” to any one of the
alphabet of alternative values.

3. Rate codes. Something like the intensity of a stimulus may
be encoded via “an interaction between [the] firing rates and
the number of neurons [that are] activated by [the] stimulus.”
(Squire et al., 2013, p. 503).
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4. Temporal codes. A stimulus that varies with time may be
encoded via “the time-varying pattern of activity in small
groups of receptors and central neurons.” (Squire et al., 2013).

In support of option 1.a, there is evidence that neurons in the
visual cortex (of cats) are arranged in columns perpendicular
to the surface of the cortex, where, for example, all the
neurons in a given column respond most strongly to a line
at one particular angle in the field of view, that—within a
“hypercolumn” containing several columns—the preferred angle
increases progressively from column to column, and that there
aremany hypercolumns across the primary visual cortex (Barlow,
1982). “Hubel and Wiesel point out that the organization their
results reveal means that each small region, about 1mm2 at the
surface, contains a complete sequence of ocular dominance and
a complete sequence of orientation preference.” (Barlow, 1982,
pp. 148–149).

Leaving out the results for ocular dominance, these
observations are summarized schematically in Figure 4. In
terms of this scheme, the way in which the receptor array is
shown in Figure 3, is a considerable simplification—each neural
symbol in the receptor array in that figure should really be
replaced by a hypercolumn.

With something like the intensity of a stimulus, it seems that,
at least in some cases: “... activity in one particular population of
somatosensory neurons ... leads the CNS to interpret it as painful
stimulus ....” (Squire et al., 2013, p. 503), while “An entirely
separate population of neurons ... would signal light pressure.”
(Squire et al., 2013). Since it is likely that relevant receptors
appear repeatedly across one’s skin, this appears to be another
example of option 1.a.

There seems to be little evidence of encoding via option 1.b.
Indeed, since the concept of a cortical column is, in effect, defined
by the fact that all the neurons in any one column have the same
kind of receptive field, this seems to rule out the 1.b option (see
also Section 5.2).

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...
.  .  . .  .  . .  .  . .  .  .
.  .  . .  .  . .  .  . .  .  .
.  .  . .  .  . .  .  . .  .  .

FIGURE 4 | Schematic representation of one hypercolumn in the

receptor array in the cortex. Each letter represents a neural symbol that

responds to a particular small pattern in the sensory data. The ellipsis, “...,” in

each row and each column represents other neural symbols that would be

shown in a more comprehensive representation of the given hypercolumn.

Each vertical sequence of letters, all of one kind such as “a” or “b,” represents

a simple column in the cortex.

But, with respect to option 2, it appears that in some cases, as
noted above, the intensity of a stimulus may be encoded via the
rates of firing of neurons, together with the numbers of neurons
that are activated (option 3). And, since we can perceive and
remember time-varying stimuli such as the stroking of a finger
across one’s skin, or the rising or falling pitch of a note, some kind
of temporal encoding must be available (option 4).

Here, it must be acknowledged that options 3 and 4 appear
superficially to be outside the scope of the SP theory, in view of
the emphasis in many examples on discrete atomic symbols. But,
as we know from the success of digital recording, or indeed digital
computing, any continuum may be encoded digitally, in keeping
with the digital nature of the SP theory. How the SP theory may
be applied to the digital encoding and processing of continua has
been discussed elsewhere in relation to vision (Wolff, 2014a) and
the development of autonomous robots (Wolff, 2014b).

5.2. Why Are There Multiple Neurons with
the Same Receptive Fields in Columns in
the Cortex?
Aswe have seen (Section 5.1), some aspects of vision aremediated
via columns of neurons in the primary visual cortex in which each
column contains many neurons with receptive fields that are all
the same, all of them responding, for example, to a line in the
visual field with a particular orientation.

Why, at each of several locations across the visual cortex,
should there be many neurons with the same receptive field, not
just one? There seem to be two possible answers to this question
(and they are not necessarily mutually exclusive):

• Encoding of sensory patterns. If, in the receptor array, we wish
to encode two or more patterns such as “m e t” and “h e

m,” they need to be independent of each other, with repetition
of the “e” neural symbol, otherwise there will be the possibly
unwanted implication that such things as “m e m” or “h e

t” are valid patterns.
• Error-reducing redundancy. At any given location in the

receptor array, multiple instances of neurons representing a
given neural symbol may help to guard against the problems
that may arise if there is only one neuron at that location and
if, for any reason, it becomes partially or fully disabled.

With regard to the first point, the receptor array may have a
useful role to play, inter alia, as a short-term memory for many
sensory patterns pending their longer-term storage (Section 11).
In vision, for example, the receptor array may store many short
glimpses of a scene, as outlined in Section 5.6, until such time as
further processingmay be applied to weld themany glimpses into
a coherent structure (Wolff, 2014b) and to transfer that structure
to longer-term memory.

5.3. The Labeled Line Principle
Section 4.5 suggests that normally, at some early stage in
sensory processing, raw sensory data is encoded in terms of the
excitation of neuronal symbols in a receptor array, then excited
neural symbols send excitatory signals to appropriate neural
symbols within pattern assemblies, and pattern assemblies that
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are sufficiently excited send excitatory signals on to other pattern
assemblies, and so on. As we shall see (Section 9), it is likely
that, in this processing, there will also be a role for inhibitory
processes.

At first sight, it may be thought that, in the same way that
each location in the receptor array should provide an alphabet of
alternative encodings (Section 5.1), the same should be true for
the location of each neural symbol within each pattern assembly.
But if a neural symbol in a pattern assembly (let’s call it “NS1”)
receives signals only from neural symbols in the receptor array
that represent a given feature, let us say, “a,” then, in accordance
with the “labeled line” principle (Squire et al., 2013, p. 503), NS1
also represents “a.”

For most sensory modalities, this principle applies all the
way from each sense organ, through the thalamus, to the
corresponding part of the primary sensory cortex11. It seems
reasonable to suppose that the same principle will apply onwards
from each primary sensory cortex into non-primary sensory
cortices and non-sensory association areas.

5.4. How the Ordering or 2D Arrangement
of Neural Symbols May Be Respected
In SP-neural, as in SP-abstract and the SP computer model, the
process of matching one pattern with another should respect the
orderings of symbols. For example, “A B C D” matched with
“A B C D” should be rated more highly in terms of information
compression than, for example, “A B C D” matched with “C A

D B12.”
It appears that this problem may be solved by the adoption,

within SP-neural, of the following feature of natural sensory
systems:

“Receptors within [the retina and skin surface] communicate

with ganglion cells and those ganglion cells with central neurons

in a strictly ordered fashion, such that relationships with

neighbors are maintained throughout. This type of pattern, in

which neurons positioned side by side in one region communicate

with neurons positioned side-by-side in the next region, is called a

typographic pattern.” (Squire et al., 2013, p. 504) (emphasis in the

original).

5.5. How to Accommodate the Variable
Sizes of Sensory Patterns
A prominent feature of human visual perception is that we can
recognize any given entity over a wide range of viewing distances,
with correspondingly wide variations in the size, on the retina, of
the image of that entity.

11Thus, for example, “Even within one function, mappings of neurons [within the

thalamus] are preserved so that there is separation of neurons providing touch

information from the arm vs. from the leg and of neurons responding to low

vs. high sound frequencies ....” (Squire et al., 2013, p. 507). Also, “Nuclei in the

central pathways often contain multiple maps.” but “The functional significance of

multiple maps in general, however, remains to be clarified.” (Squire et al., 2013).
12A possible exception is when one pattern is a mirror image or inversion of

another, since Leonardo da Vinci, by repute, could read mirror writing as easily

as ordinary writing, and it is now well established that people wearing inverting

spectacles can learn quite quickly to see the world as if it was the right way up

(Stratton, 1897).

For any model of human visual perception that is based on
a simplistic or naive process for the matching of patterns, this
aspect of visual perception would be hard to reproduce or to
explain. But the SP system is different: (1) Knowledge of entities
that we may recognize are always stored in a compressed form;
(2) The process of recognition is a process of compressing the
incoming data; (3) The overall effect is that an image of a thing
to be recognized can be matched with stored knowledge of that
entity, regardless of the original size of the image.

As an example, consider how the concept of an equilateral
triangle (as white space bounded by three black lines all of
the same length) may be stored and how an image of such a
triangle may be recognized. Regarding storage, there are three
main redundancies in any image of that kind of triangle: (1) The
white space in the middle may be seen as repeated instances of
a symbol representing a white pixel; (2) Each of the three sides
of the triangle may be seen as repeated instances of a symbol
representing a black pixel; and (3) There is redundancy in that
the three sides of the triangle are the same.

All three sources of redundancy may be encoded recursively
as suggested in Figure 513, which shows a multiple alignment
modeling the recognition of a one-dimensional analog of a
triangle.

Column 0 shows information about the triangle to be
recognized, comprising three “corners” and three sides of the
triangle, each one represented by just two “points.”

The pattern “LN ln1 point LN #LN #LN” in columns 1
and 2 is a self-referential and thus recursive definition of a line as
a sequence of “points.” It is self-referential because, within the
body of the pattern, it contains a reference to itself via the symbols
at the beginning and end of the pattern: “LN #LN.” Because there
is no limit to this recursion, it may represent a line containing any
number of points. In a similar way, a second side is encoded via
the same pattern in columns 6 and 7, and, again with the same
pattern, the third line is encoded in columns 12 and 12.

In columns 4, 9 and 15 in the figure, the pattern “SG sg1

CR #CR LN #LN #SG” shows one of the three elements of a
triangle as a corner (“CR #CR”) followed by a line (“LN #LN”).
And the recursion to encode multiple instances of that structure
is in self-referential occurrences of the pattern “TR tr1 SG

#SG TR #TR #TR” in columns 5, 10, and 22. Strictly speaking,
the encoding is for a polygon, not a triangle, because there is
nothing to stop the recursive repetition of “SG sg1 CR #CR

LN #LN #SG.” And, in terms of the problem, as described
above, the representation is incomplete because there is nothing
to show that the three sides of the triangle are the same.

These encodings account for the redundancy in the repetition
of points along a line and also the redundancy in the repetition of
three sides of a triangle. In a 2D version, they would also account
for the redundancy in the white space within the body of the
triangle, because they would allow most of the white space to be
eliminated via shrinkage of the representation to the minimum
needed to express the concept of a triangle.

13Compared with the multiple alignments shown in Figures 1, 2, this multiple

alignment has been rotated by 90◦. The choice between these alternative

presentations of multiple alignments depends entirely on what fits best on the page.
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FIGURE 5 | A multiple alignment produced by the SP computer model showing how a one-dimensional analog of how an equilateral triangle may be

perceived, as described in the text. Adapted from Wolff (2016, Figure 8), with permission.

5.6. We See Much Less than We Think We
See
Most people with normal vision have a powerful sense that their

eyes are a window on to a kind of cinema screen that shows what

we are looking at with great detail from left to right and from top
to bottom. But research shows otherwise:

• In the phenomenon of inattentional blindness, people may fail
to notice salient things in their visual fields when they are
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looking for something else, even if they are trained observers.
In a recent demonstration (Drew et al., 2013), radiologists were
asked to search for lung-nodules in chest x-rays but many of
them (83%) failed to notice the image of a gorilla, 48 times the
size of the average nodule, that was inserted into one of the
radiographs.

• In the phenomenon of change blindness, people often fail
to notice large changes to visual scenes. For example, if a
conversation between two people—the investigator and the
experimental subject—is interrupted by a door being carried
between them, the experimental subject may fail to notice,
when the door has gone by, that the person they are speaking
to is different from the person they were speaking to before
(Simons and Ambinder, 2005).

• Although each of our eyes has a blind spot14, we don’t notice
it, even when we are viewing things with one eye (so that there
is no possibility that the blind spot in one eye will be filled in
via vision in the other eye). Apparently, our brains interpolate
what is likely to be in the blind part of our visual field.

It seems that part of the reason for this failure to see things is that
photoreceptors are concentrated at the fovea (Squire et al., 2013,
p. 502), and cones are only found in that region (Squire et al.,
2013), so that, with two eyes, we are, to a large extent, looking at
the world through a keyhole composed of two circumscribed and
largely overlapping views, one from each eye.

It seems that our sense that the world is displayed to us on a
wide and deep cinema screen is partly because our perception of
any given scene draws heavily on our memories of similar scenes
and partly because we can piece together what will normally be a
partial view of what we are looking at from many short glimpses
through the “keyhole” as we move our gaze around the scene.

The SP theory provides an interpretation for these things as
follows:

• The theory provides an account in some detail of how New
(sensory) information may be related to Old (stored)
information and how an interpretation of the New
information may be built up via the creation of multiple
alignments. When sensory information provides an
incomplete description of some entity or scene (which is
normally the case), we fill in the gaps from stored knowledge.

• The theory provides an account of how we can piece together
a picture of something, or indeed a 3D model of something,
from many small but partially-overlapping views, in much the
same way that: (1) With digital photography, it is possible to
create a panoramic picture from several partially-overlapping
images; (2) The views in Google’s Streetview are built up from
many partially-overlapping pictures; (3) A 3D digital image of
an object may be created from partially-overlapping images of
the object, taken from viewpoints around it. These things are
discussed in Wolff (2014a, Sections 5.4, 6.1).

With regard to the second point, it should perhaps be said that
partial overlap between “keyhole” views is not an essential part
of building up a big picture from smaller views. But if two or
more views do overlap, it is useful if they can be stitched together,

14See “Blind spot (vision),”Wikipedia, bit.ly/1oI0vyI, retrieved 2016-04-08.

thus removing the overlap. And partial overlap may be helpful in
establishing the relative positions of two or more views.

5.7. A Resolution Problem and Its Possible
Resolution
As we have seen (Section 5.1), each hypercolumn in the primary
visual cortex of cats occupies about 1mm2 at the surface of the
cortex, and it seems likely that each such hypercolumn provides
a means of encoding one out of an alphabet of perceptual
primitives, such as a line at a particular angle.

Assuming that this interpretation is correct, and if we view
the primary visual cortex as if it was film in an old-style camera
or the image sensor in a digital camera, it may seem that the
encoding of perceptual primitives, with 1mm2 for each one, is
remarkably crude. How could such a system—with the area of
the primary visual cortex corresponding to the area of our field
of view—create that powerful sense that, through our eyes, we
see a detailed “cinema screen” view of the world (Section 5.6).

Part of the answer is probably that we see much less than we
think we see (Section 5.6). But it seems likely that another part
of the answer is to reject the assumption that the whole of the
primary visual cortex corresponds to the area of our field of view.
In the light of the remarks in Section 5.6, it seems more likely
that, normally, in each of the previously-mentioned glimpses of
a scene, all of the primary visual cortex or most of it is applied
in the assimilation and processing of information capture by the
fovea and, perhaps, parts of the retina that are near to the fovea.

In support of this idea: “Cortical magnification describes how
many neurons in an area of the visual cortex are ‘responsible’
for processing a stimulus of a given size, as a function of visual
field location. In the center of the visual field, corresponding to
the fovea of the retina, a very large number of neurons process
information from a small region of the visual field. If the same
stimulus is seen in the periphery of the visual field (i.e., away from
the center), it would be processed by a much smaller number
of neurons. The reduction of the number of neurons per visual
field area from foveal to peripheral representations is achieved
in several steps along the visual pathway, starting already in the
retina (Barghout-Stein, 1999)”15.

With this view of visual processing, what appears superficially
to be a rather course-grained recording and analysis of visual
data, may actually be very much more detailed. As described in
Section 5.6, it seems likely that our view of any scene is built up
partly from memories and partly from many small snapshots or
glimpses of the scene. And it seems like that each such snapshot
or glimpse is processed using a relatively large neural resource.

5.8. Grandmother Cells, Localist and
Distributed Representations
In terms of concepts that have been debated about how
knowledge may be represented in the brain, the ID-neural-
symbols for any pattern assembly are very much like the concept
of a grandmother cell—a cell or small cluster of cells in one’s
brain that represents one’s grandmother so that, if the cell or

15See “Cortical magnification,”Wikipedia, bit.ly/1qJsQX1, emphasis in the original,

retrieved 2016-04-14.
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cells were to be lost, one would lose the ability to recognize one’s
grandmother16.

It seems that the weight of observational and experimental
evidence favors the belief that such cells do exist (Gross, 2002;
Roy, 2013). This is consistent with the observation that people
who have suffered a stroke or are suffering from dementia may
lose the ability to recognize members of their close family.

Since SP-neural, like Hebb’s (1949) theory of cell assemblies,
proposes that concepts are represented by coherent groups of
neurons in the brain, it is very much a “localist” type of theory.
As such, it is quite distinct from “distributed” types of theory
that propose that concepts are encoded in widely-distributed
configurations of neurons, without any identifiable location or
center.

However, just to confuse matters, SP-neural does not propose
that all one’s knowledge about one’s grandmother would reside
in a pattern assembly for that lady. Probably, any such pattern
assembly would, in the manner of object-oriented design as
discussed in Section 6 and illustrated in Figure 6, be connected
to and inherit features from a pattern assembly representing
grandmothers in general, and from more general pattern
assemblies such as pattern assemblies for such concepts as
“person” and “woman.” And again, a pattern assembly for
“person” would not be the sole repository of all one’s knowledge
about people. That pattern assembly would, in effect, contain
“references” to pattern assemblies describing the parts of a
person, their physiology, their social and political life, and so on.

Thus, while SP-neural is unambiguously localist, it proposes
that knowledge of any entity or concept is likely to be encoded
not merely in one pattern assembly for that entity or concept but
also inmany other pattern assemblies in many parts of the cortex,
and perhaps elsewhere.

5.9. Positional Invariance
With something simple like a touch on the skin, or a pin prick, it
is not too difficult to see how the sensation may be transmitted to
the brain via any one of many relevant receptors located in many
different areas of the skin. But with somethingmore complex, like
an image on the retina of a table, a house, or a tree, and so on, it is
less straightforward to understand how we might recognize such
a thing in any part of our visual field.

For each entity to be recognized, it seems necessary at first
sight to provide connections, directly or indirectly, from every
part of the receptor array to the relevant pattern assembly. In
terms of the schematic representation shown in Figure 3, it
would mean repeating the connections for “t h e” and “b r

a v e” in each of many parts of the receptor array. Bearing in
mind the very large number of different things we may recognize,
the number of necessary connections would become very large,
perhaps prohibitively so.

However, things may be considerably simplified via either or
both of two provisions:

1. For reasons outlined in Section 5.6, it seems likely that, with
vision, we build up our perception of a scene, partly from
memories of similar scenes and partly via many relatively

16See “Grandmother cell,”Wikipedia, bit.ly/1UDulyV, retrieved 2016-08-26.

narrow “keyhole” views of what is in front of us. If that is
correct, and if, as suggested in Section 5.7, most of the primary
visual cortex is devoted to analysing information received via
the fovea and, perhaps, via parts of the retina that are very
close to the fovea, then the need to provide for any given
pattern in many parts of the receptor array may be greatly
reduced. Since, by moving our eyes, we may view any part of a
scene, it is possible that any given entity would need only one
or two sets of connections between the receptor array and the
pattern assembly for that entity.

2. As noted in Section 4.3, it seems likely that, with regard to
Figure 3, there would, in a more realistic example, be several
levels of structure between neural symbols in the receptor
array and relatively complex structures like words. At the
first level above the receptor array there would be pattern
assemblies for relatively small recurrent structures, and the
variety of such structures would be relatively small. This
should ease any possible problems in connecting the receptor
array to pattern assemblies.

If it turns out that the number of necessary connections is indeed
too large to be practical, or if there is empirical evidence against
such numbers, then a possible alternative to what has been
sketched in this paper is some kind of dynamic system for the
making and breaking of connections between the receptor array
and pattern assemblies. It seems likely that permanent or semi-
permanent connections would be very much more efficient and
the balance of probabilities seems to favor such a scheme.

In connection with positional invariance, it is relevant to
note that “... lack of localization is quite common in higher-
level neurons: receptive fields become larger as the features
they represent become increasingly complex. Thus, for instance,
neurons that respond to faces typically have receptive fields that
cover most of the visual space. For these cells, large receptive
fields have a distinct advantage: the preferred stimulus can be
identified no matter where it is located on the retina.” (Squire
et al., 2013, p. 579). A tentative and partial explanation of this
observation is that repetition of neurons that are sensitive to each
of several categories of low-level feature—in the receptor array
and as ID-neural-symbols for “low-level” pattern assemblies—is
what allows positional invariance to develop at higher levels.

6. NON-SYNTACTIC KNOWLEDGE IN
SP-NEURAL

As was emphasized in Section 3, the SP system (SP-abstract)
has strengths and potential in the representation and processing
of several different kinds of knowledge, not just the syntax of
natural language. That versatility has been achieved using the
mechanisms in SP-abstract that were outlined in that section. If
those mechanisms can be modeled in SP-neural, it seems likely
that the several kinds of knowledge that may be represented and
processed in SP-abstract may also be represented and processed
in SP-neural.

As an illustration, Figure 6 shows a simple example of how,
via multiple alignment, the SP computer model may recognize
an unknown creature at several different levels of abstraction,
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and Figure 7 suggests how part of the multiple alignment,
with associated patterns, may be realized in terms of pattern
assemblies and their inter-connections.

Figure 6 shows the best multiple alignment found by the SP
computer model with four symbols representing attributes of
an unknown creature (shown in column 0) and a collection
of Old patterns representing different creatures and classes of
creature, some of which are shown in columns 1–4, one pattern
per column. In a more detailed and realistic example, symbols
like “eats,” “retractile-claws,” and “breathes,” would
be represented as patterns, each with its own structure.

From this multiple alignment, we can see that the unknown
creature has been identified as an animal (column 4), as a
mammal (column 3), as a cat (column 2) and as a specific cat,
“Tibs” (column 1). It is just an accident of how the SP computer
model has worked in this case that the order of the patterns
across columns 1–4 of the multiple alignment corresponds with
the level of abstraction of the classifications. In general, the order
of patterns in columns above 0 is entirely arbitrary, with no
significance.

Figure 7 shows how part of the multiple alignment from
Figure 6 may be realized in SP-neural. The figure contains
pattern assemblies for “animal” and “mammal,” corresponding to

patterns from columns 4 and 3 of the multiple alignment. Notice
that the left-right order of the pattern assemblies is different from
the order of the patterns in the multiple alignment, in accordance
with the remarks, above, about the workings of the SP computer
model, and also because there is no reason to believe that pattern
assemblies are represented in any particular order.

Neural connections amongst the things that have been
mentioned so far are very much the same as alignments between
neural symbols in Figure 6: “eats” on the left connects with
“eats” in the “animal” pattern assembly; “furry” connects with
“furry” in the “mammal” pattern assembly, and the “A” and “#A”
connections for those two pattern assemblies correspondwith the
alignments of symbols in the multiple alignment. As in Figure 3,
some neural connections are shown with broken lines to suggest
that they would be relatively inactive during the neural processing
which identifies one or more “good” NAMAs. And as before, it is
envisaged that there would be one or more neural connections
between each neural symbol and its immediate neighbors within
each pattern assembly, but these are not marked in the figure.

The inclusion of a pattern assembly for “reptile” in Figure 7,
with some of its neural connections, is intended to suggest some
of the processing involved in identifying one or more winning
NAMAs. In the same way that the pattern for “mammal” is

43210

T

T1

Tibs

C --------- C

C1

cat

M ---------------- M

M1

mammal

A ------------ A

A1

animal

eats ---------------------------------------------------- eats

breathes

has-senses

#A ----------- #A

furry ------------------------------------ furry

warm-blooded

#M --------------- #M

carnassial-teeth

retractile-claws

purrs ----------------- purrs

#C -------- #C

white-bib - white-bib

tabby

#T

43210

FIGURE 6 | The best multiple alignment found by the SP computer model with four one-symbol New patterns representing attributes of an unknown

creature and a collection of Old patterns representing different creatures and classes of creature. Adapted from Figure 6.7 in Wolff (2006), with permission.
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A

A1

animal

eats

breathes

has-senses

#A

M

M1

A

#A

furry

warm-blooded

#M

mammal

R

R1

reptile

A

#A

cold-blooded

scaly-skin

#R

eats

furry

FIGURE 7 | How part of the multiple alignment shown in Figure 6 may be realized in SP-neural—showing two of the attributes from column 0 in the

multiple alignment and with “animal” and “mammal” pattern assemblies corresponding to patterns from columns 4 and 3—with an associated

pattern assembly for “reptile.” The conventions are the same as in Figure 3.

receiving excitatory signals from the pattern for “animal,” one
would expect excitatory signals to flow to pattern assemblies for
the other main groups of animals, including reptiles. Ultimately,
“reptile” would fail to feature in any winning NAMA because of
evidence from the neural symbols “furry,” “purrs,” and “white-
bib.”

7. REPETITION AND RECURSION

Like any good database or dictionary, the repository of Old
patterns in SP-abstract should only contain one copy of any given
SP pattern. But in something like Jack Sprat could eat no fat, His
wife could eat no lean, the words could, eat, and no each occur
twice. With an example like this, it seems reasonable to suppose
that there is only one stored pattern for each of the repeated
words, and likewise for the many other examples of entities that
are repeated within something larger, witness the many legs of a
centipede.

In SP-abstract, this apparent difficulty has been overcome
by saying that each SP pattern in a multiple alignment is an
appearance of the pattern, not the pattern itself—which allows us
to have multiple instances of a pattern in a multiple alignment
without breaking the rule that the repository of Old patterns
should contain only one copy of each pattern. But in SP-
neural, it is not obvious how to create an “appearance” of a
pattern assembly that is not also a physical structure of neurons
and their interconnections—but the speed with which we can
understand natural language seems to rule out what appears

to be the relatively slow growth of new neurons and their
interconnections.

How we can create new mental structures quickly arises again
in other connections, as discussed in Section 11. If we duck these
questions for the time being and return to parsing, it may be
argued that with something like Jack Sprat could eat no fat, His
wife could eat no lean, the first instance of could is represented
only for the duration of the word by the stored pattern for could,
so that the same pattern can be used again to represent the second
instance of could—and likewise for eat and no. But it appears that
this line of reasoning does not work with a recursive structure like
the very very very fast car.

Native speakers of English know that with a phrase like
the very very very fast car, the word very may in principle be
repeated any number of times. This observation, coupled with the
observation that recursive structures are widespread in English
and other natural languages, suggests strongly that the most
appropriate parsing of the phrase is something like the multiple
alignment shown in Figure 8. Here, the repetition of very is
represented via three appearances of the pattern “ri ri1 ri

#ri i #i #ri,” a pattern which is self-referential because the
inner pair of symbols “ri #ri” can be matched with the same
two symbols, one at the beginning of the pattern and one at the
end. Because the recursion depends on at least two instances of
“ri ri1 ri #ri i #i #ri” being “live” at the same time,
it seems necessary for SP-neural to be able to model multiple
appearances of any pattern.

That conclusion, coupled with the above-mentioned
arguments from the speed at which we can speak, and the speed
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car -- car

#n -- #n

#np
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FIGURE 8 | A multiple alignment produced by the SP computer model showing how recursion may be modeled in the SP system. Adapted from Figure 3

in Wolff (2016), with permission.

with which we can imagine new things, argues strongly that
SP-neural—and any other neural theory of cognition—must
have a means of creating new mental structures quickly. It seems
unlikely that these things could be done via the growth of new
neurons and their interconnections.

The tentative answer suggested here is that, in processes
like parsing or pattern recognition, including examples with
recursion like that shown in Figure 8, virtual copies of pattern
assemblies may be created and destroyed very quickly via
the switching on and switching off of synapses (Section
11). Clearly, more detail is needed for a fully satisfactory
answer.

Pending that better answer, Figure 9 shows tentatively how
recursion may be modeled in SP-neural, with neural symbols
and pattern assemblies corresponding to selected symbols and

patterns in Figure 8. On the left of that figure, we can see how
the neural symbol “very” connects with a matching neural
symbol in the pattern assembly “i i1 very #i.” Further
right, we can see how the first and last neural symbols in “i i1

very #i” connect with matching neural symbols in the pattern
assembly “ri ri1 ri #ri i #i #ri.”

In the figure, the self-referential nature of the pattern assembly
“ri ri1 ri #ri i #i #ri” can be seen in the neural
connection between “ri” at the beginning of that pattern
assembly and the matching neural symbol in the body of the
same pattern assembly, and likewise for “#ri” at the end of the
pattern assembly. Although it is unclear how this recursion may
achieve the effect of repeated appearances of the pattern assembly
at the speed with which we understand or produce speech,
the analysis appears to be more reliable than what is described
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very
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 #i
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ri1

#ri

 i

 #i

#ri

ri

FIGURE 9 | A schematic example showing how recursive structures

may be modeled in SP-neural.

in Wolff (2006, Section 11.4.2), especially Figure 11.10 in that
section.

8. SP-NEURAL: AN OUTPUT PERSPECTIVE

An inspection of Figure 3—showing how, in SP-neural, a
small portion of natural language may be analyzed by pattern
assemblies and their interconnections—may suggest that if we
wish to reverse the process—to create language instead of
analysing it—then the innervation would need to be reversed:
we may guess that two-way neural connections would be needed
to support the production of speech or writing as well as their
interpretation.

But a neat feature of SP-abstract is that one set of Old
patterns, together with the processes for building multiple
alignments, will support both the analysis and the production
of language. So it is reasonable to suppose that if SP-neural
works at all, a similar duality will apply to pattern assemblies
and their interconnections, without the need for two-way
connections amongst pattern assemblies and neural symbols (but
see Section 8.3).

Of course, speaking or writing would need peripheral motor
processes that are different from the peripheral sensory processes
required for listening or reading, but, more centrally, the
processes for analysing language or producing it may use the
same mechanisms17.

The reason that SP-abstract, as expressed in the SP computer
model, can work in “reverse” so to speak, is that, from a
multiple alignment like the one shown in Figure 2, a code
pattern like “S 0 2 4 3 7 6 1 8 5 #S” may be derived,
as outlined in Section 3.6. Then, if that code pattern is presented
to the SP system as a New pattern, the system can recreate
the original sentence, “f o r t u n e f a v o u r s

t h e b r a v e,” as shown in Figure 10.

17Of course, things are a little more complicated with output processes because

sensory feedback is normally an important part of speaking or writing.

8.1. An Answer to the Apparent Paradox of
“Decompression by Compression”
That the SP system should be able to reconstruct a sentence
that was originally compressed by means of the same system
(Section 8) may seem paradoxical. How is it that a system that is
dedicated to information compression should be able, so to speak,
to drive compression in reverse?

A resolution of this apparent paradox is described in Wolff
(2006, Section 3.8). In brief, the key to the conjuring trick is
to ensure that, after the sentence has been compressed, there is
enough residual redundancy in the code pattern to allow further
compression, and to ensure that this further compression will
achieve the effect of reconstructing the sentence.

8.2. Meanings in the Analysis and
Production of Language
Of course, parsing a sentence (as shown in Section 3.5) or
constructing a sentence from a code pattern (as shown in
Section 8) are very artificial applications with natural language.
Normally, when we read some text or listen to someone speaking,
we aim to derive meaning from the writing or the speech. And
when we write or speak, it seems, intuitively, that the patterns
of words that we are creating are derived from some kind of
underlying meaning that we are trying to express.

It is envisaged that, in future development of SP-abstract
and the SP computer model, the ID-symbols in code patterns
will provide some kind of bridge between syntactic forms and
representations of meanings, thus facilitating the processes of
understanding the meanings of written or spoken sentences and
of creating sentences to express particular meanings.

As noted at the end of Section 3.8.2, there are preliminary
examples of how, with the SP computer model, a sentence may be
analyzed for its meaning (Wolff, 2006, Section 5.7, Figure 5.18),
and how the same sentence may be derived from a representation
of its meaning (Wolff, 2006, Figure 5.19).

8.3. But There Are Projections from the
Sensory Cortex to Subcortical Nuclei
Although as we have seen earlier in Section 8, SP-neural, via
principles established in SP-abstract, provides for the creation
of language, and other kinds of knowledge, without the need
for efferent connections from the cortex back along the path of
afferent nerves, there is evidence that such connections do exist:

“Neurons of the cerebral cortex send axons to subcortical

regions .... Subcortical projections are to those nuclei in

the thalamus and brainstem that provide ascending sensory

information. By far the most prominent of these is to the

thalamus: the neurons of a primary sensory cortex project back to

the same thalamic nucleus that provides input to the cortex. This

system of descending connections is truly impressive because the

number of descending corticothalamic axons greatly exceeds the

number of ascending thalamocortical axons. These connections

permit a particular sensory cortex to control the activity of the

very neurons that relay information to it.” (Squire et al., 2013,

p. 509).
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FIGURE 10 | The best multiple alignment produced by the SP computer model with the same Old patterns as for the multiple alignment shown in

Figure 2 but with the New pattern comprising an appropriate sequence of ID-symbols, “S 0 2 4 3 7 6 1 8 5 #S,” as described in the text.

But the descending nerves described in this quotation may
have a function that is quite different from the creation of
sentences or other patterns of activity. One possible role for such
nerves may be “the focussing of activity so that relay neurons
most activated by a sensory stimulus are more strongly driven
and those in surrounding less well activated regions are further
suppressed.” (Squire et al., 2013, p. 509).

9. THE POSSIBLE ROLES FOR INHIBITION
IN SP-NEURAL

A familiar observation is that, if something like a fan is switched
on near us, we notice the noise for a while and then come to
ignore it. And if, later, the fan is switched off, we notice the
relative quiet for a while and then cease to be aware of it. In
general, it seems that we are relatively sensitive to changes in
our environment and relatively insensitive to things that remain
constant.

It has been accepted for some time that the way we adapt
to constant stimuli is due to inhibitory neural structures and
processes in our brains and nervous systems, that inhibitory
structures and processes are widespread in the animal kingdom,
and that they have a role in reducing the amount of information
that we need to process (von Békésy, 1967).

Regarding the last point, it is clearly inefficient for anyone
to be constantly registering, second-by-second, the noise of a
nearby fan: “noise, noise, noise, noise, noise,

...” and likewise for the state of relative quietness when the
fan is switched off. In terms of information theory, there is
redundancy in the second-by-second recurrence of the noise (or
quietness), and we can eliminate most or all of the redundancy—
and thus compress the information—by simply recording that
the noise is “on” and that it is continuing (and likewise,
mutatis mutandis, for quiet). This is the “run-length encoding”
technique for compression of information,18 it is essentially what

18See “Run-length encoding,”Wikipedia, bit.ly/21JlB1T, retrieved 2016-03-04.

adaptation does, and, in neural tissue, it appears to be mediated
largely by “lateral” inhibition.

With lateral inhibition in sensory neurons, there are inhibitory
connections between neighboring neurons so that, when they are
both stimulated, they tend to inhibit each other, and thus reduce
their rates of firing where there is strong uniform stimulation.
But inhibition is reduced where strong stimulation gives way to
weaker stimulation, leading to a local swing in the rate of firing
(Ratliff et al., 1963; see also Wolff, 2006, Section 2.3.1; there is
more about lateral inhibition in Squire et al., 2013, p. 505). There
are similar effects in the time dimension. Again, Barlow (1982)
says, in connection with neurons in the mammalian cortex that
receive inputs from both eyes, “... it is now clear that input from
one eye can, and frequently does, inhibit the effects of input from
the other eye, ...” (p. 147).

Taking these observations together, we may abstract a general
rule: When, in neural processing, two or more signals are the
same, they tend to inhibit each other, and when they are different,
they don’t. The overall effect should be to detect redundancy in
information and to reduce it, whilst retaining non-redundant
information, in accordance with the central principle in the SP
theory—that much of computing and cognition may, to a large
extent, be understood as information compression.

In a similar vein: “Lateral inhibition represents the classic
example of a general principle: most neurons in sensory
systems are best adapted for detecting changes in the external
environment. ... As a rule, it is change which has the most
significance for an animal ... This principle can also be explained
in terms of information processing. Given a world that is filled
with constants—with uniform objects, with objects that move
only rarely—it is most efficient to respond only to changes.”
(Squire et al., 2013, p. 578).

In view of the widespread occurrence of inhibitory
mechanisms in the brain19, and in view of their apparent

19“These [aspiny or sparsely spiny nonpyramida] interneurons constitute

approximately 15–30% of the total population of cortical neurons, and they appear

to be mostly GABAergic, representing the main components of inhibitory cortical

circuits ....” (Squire et al., 2013, p. 45); “Synaptic inhibition in themammalian brain
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importance for the compression of information, and thus for
selective advantage (Wolff, 2014d, Section 4), it is pertinent to
ask what role or roles they may play in SP-neural. Here are some
possibilities:

• Low-level sensory features. At relatively “low” levels in sensory
processing, it appears that, as noted above, lateral inhibition
has a role in identifying such things as boundaries between
uniform areas, meaning lines. It may also have a role
in identifying other kinds of low-level sensory features
mentioned in Section 4.1.

• Information compression via the matching and unification of
patterns (ICMUP). As noted in Section 3.2, SP-abstract, and
the SP computer model, is founded on the principle that
information compression may be achieved by the matching
and unification of patterns (ICMUP). Here, there appear to be
these possible roles for inhibition:

• As we have seen, lateral inhibition can have the effect of
inhibiting signals from neighboring sensory neurons when
they are receiving stimulation which is the same of nearly
so. This may be seen as an example of ICMUP.

• In accordance with the abstract general rule suggested
above, inhibitory processes may serve as a means of
detecting redundancy between a New pattern assembly like
“t a b l e” and an Old pattern assembly like “N 9 t

a b l e #N”:

• We may suppose that there are inhibitory links between
neighboring neural symbols in the Old pattern assembly
so that, if all of the neural symbols in the body of that Old
pattern assembly (i.e., “t a b l e”) are stimulated,
or most of them, then mutual inhibition amongst those
neural symbols will suppress their response. And, as with
lateral inhibition in sensory neural tissue, inhibition in
one area can mean enhanced responses at the boundaries
with neighboring areas, which, in this case, would be
the ID-symbols “N” and “9” on the left, and “#N” on
the right. Then, excitatory signals from “N” and “#N”
may go on to higher-level patterns that contain nouns, as
suggested by the broken-line links from those two neural
symbols in Figure 3. Since there is no link to export
excitatory signals from “9,” no such signals would be sent.

• Alternatively, we may suppose that a stored pattern
assembly like “N 9 t a b l e #N” has a
background rate of firing and that, when matching
stimulation is received for the neural symbols “t a b

l e,” the background rate of firing in the corresponding
neural symbols in “N 9 t a b l e #N” is reduced,
with an associated upswing in the rates of firing of the
neural symbols “N” and “9” and “#N,” as before.

• Sharpening choices amongst alternatives. As mentioned in
Section 4.5, the process of forming neural analogs of multiple

is mediated principally by GABA receptors.” (Squire et al., 2013, p. 169); “One

of the great mysteries of synaptic integration is why there are so many different

types of inhibitory interneurons. ... more than 20 different types of inhibitory

interneuron have been described in the CA1 region of the hippocampus alone.”

(Squire et al., 2013, p. 249).

alignments (NAMAs) means identifying one or two of the
most excited pattern assemblies, with structures below them
that feed excitation to them. Here, inhibition may play a part
by enhancing the status of the most excited pattern assemblies
and suppressing the rest. How inhibition may achieve that
kind of effect is discussed quite fully by von Békésy (1967,
Chapters II and V), and also in Shamma (1985).

More information and discussion about the possible roles of
inhibition in the cerebral cortex may be found in Isaacson and
Scanziani (2011).

10. UNSUPERVISED LEARNING IN
SP-NEURAL

This section considers how the learning processes in SP-abstract,
which are outlined in Sections 3.4, 3.7, may be realized in SP-
neural.

It seems likely that neural structures for the detection
of “low level” features like lines and corners in vision, or
formant ratios and transitions in hearing, are largely inborn20,
although “It is a curious paradox that, while [Hubel and Wiesel]
have consistently argued for a high degree of ontogenetic
determination of structure and function in the visual system,
they are also the authors of the best example of plasticity in
response to changed visual experience.” (Barlow, 1982, p. 150),
and “It has ... been shown convincingly that the orientation
preference of cells can be modified, ...” (Barlow, 1982). Also,
“In the somatosensory system, if input from a restricted area
of the body surface is removed by severing a nerve or by
amputation of a digit, the portion of the cortex that was
previously responsive to that region of the body surface becomes
responsive to neighboring regions ....” (Squire et al., 2013,
p. 508).

But it is clear that most of what we learn in life is at a “higher”
level which, in SP-neural, will be acquired via the the creation and
destruction of pattern assemblies, as discussed in the following
subsections.

10.1. Creating Old Pattern Assemblies
Let us suppose that a young child hears the speech equivalent
of “t h e b i g h o u s e” in accordance with the
example in Section 3.4. As we have seen, when the repository
of Old patterns is empty or nearly so, New patterns are stored
directly as Old patterns, somewhat like a recording machine, but
with the addition of ID-symbols at their beginnings and ends.

It seems unlikely that a young child would grow new neurons
to store a newly-created Old pattern assembly like “A 1 t

h e b i g h o u s e #A,” as discussed in Section 3.4.
It seems much more likely that a pattern assembly like that
would be created by some kind of modification of pre-existing
neural tissue comprising sequences or areas of unassigned neural
symbols with lateral connections between them as suggested
in Section 4.2. Pattern assemblies would be created by the
switching on and off of synapses at appropriate points, in

20“For all systems except the olfactory, the receptor neurons you were born with

are the ones you will live with.” (Squire et al., 2013, p. 503).
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a manner that is more like a tailor cutting up pre-woven
cloth than someone knitting or crocheting each item from
scratch.

In accordance with the labeled line principle (Section 5.3),
the meaning of each symbol in a newly-created pattern assembly
would be determined by what it is connected to, as described in
Section 10.2.

Similar principles would apply when Old patterns are
created from partial matches between patterns, as described in
Section 3.4.

10.2. Creating Connections between
Pattern Assemblies
As with the laying down of newly-created Old patterns
(Section 10.1), it seems unlikely that connections between pattern
assemblies, like those shown in Figure 3, would be created by
growing new axons or dendrites. It seems much more likely
that such connections would be established by switching on
synapses between each of the two neurons to be connected and
pre-existing axons or dendrites, somewhat like the making of
connections in a telephone exchange (see Section 11).

This idea, together with the suggestions in Section 10.1 about
how Old pattern assemblies may be created, is somewhat like the
way in which an “uncommitted logic array” (ULA)21 may, via
small modifications, be made to function like any one of a wide
variety of “application-specific integrated circuits” (ASICs)22,
or how a “field-programmable gate array” (FPGA)23 may be
programmed to function like any one of a wide variety of
integrated circuits.

10.3. Destruction of Pattern Assemblies
and Their Interconnections
In the SP theory, patterns and pattern assemblies are never
modified—they are either created or destroyed. The latter process
occurs mainly in the process of searching for “good” grammars
to describe a given set of New patterns, as outlined in Section
3.7. At each stage, when a few “good” grammars are retained in
the system, the rest are discarded. This means that any pattern
assembly in one or more of the “bad” grammars that is not also
in one or more of the “good” grammars may be destroyed.

It seems likely that, in a process that may be seen as a reversal
of the way in which pattern assemblies and their interconnections
are created, the destruction of a pattern assembly does not mean
the physical destruction of its neurons. It seems more likely that
all neural connections from the pattern assembly are broken by
switching off relevant synapses (Sections 10.3, 11) and that its
constituent neurons are retained for later use in other pattern
assemblies.

10.4. Searching for Good Grammars
It must be admitted that, apart from the remarks in forgoing
subsections about the creation and destruction of pattern

21See “Gate array,”Wikipedia, bit.ly/1UdB46j, retrieved 2016-03-20.
22See “Application-specific integrated circuit,”Wikipedia, bit.ly/1pUs2y8, retrieved

2016-03-20.
23See “Field-programmable gate array,”Wikipedia, bit.ly/1Hgi9iH, retrieved 2016-

03-20.

assemblies and their inter-connections, it is unclear how, in SP-
neural, one may achieve anything equivalent to the process of
searching the abstract space of possible grammars that has been
implemented in the SP computer model.

One possibility is to simplify things as follows. Instead of
evaluating whole grammars, as in the SP computer model, it
may be possible to achieve roughly the same effect by evaluating
pattern assemblies in terms of their effectiveness or otherwise for
the economical encoding of New information and, periodically,
to discard those pattern assemblies that do badly.

10.5. What about Hebbian Learning?
Readers familiar with issues in AI or neuroscience may wonder
what place, if any, there may be in SP-neural for the concept of
“Hebbian” learning. This idea, proposed by Hebb (1949), is that:

“When an axon of cell A is near enough to excite a cell B

and repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased.” (p. 62).

Variants of this idea are widely used in versions of “deep learning”
in artificial neural networks (Schmidhuber, 2015) and have
contributed to success with such systems24.

But in Wolff (2016, Section V-D) I have argued that:

• The gradual strengthening of neural connections which is a
central feature of Hebbian learning (and deep learning) does
not account for the way that people can, very effectively,
learn from a single occurrence or experience (sometimes called
“one-trial” learning)25.

• Hebb was aware that his theory of learning with cell assemblies
would not account for one-trial learning and he proposed a
“reverberatory” theory for that kind of learning (Hebb, 1949,
p. 62). But, as noted in Wolff (2016, Section V-D), Milner has
pointed out (Milner, 1996) that it is difficult to understand how
this kind of mechanism could explain our ability to assimilate
a previously-unseen telephone number: for each digit in the
number, its pre-established cell assembly may reverberate; but
this does not explain memory for the sequence of digits in
the number. And it is unclear how the proposed mechanism
would encode a phone number in which one or more of the
digits is repeated.

• One-trial learning is consistent with the SP theory because the
direct intake and storage of sensory information is bedrock in
how the system learns (Section 3.4).

• The SP theory can also account for the relatively slow learning
of complex skills such as how to talk or how to play tennis at a

24See, for example, “Don’t despair if Google’s AI beats the world’s best Go player,”

MIT Technology Review, bit.ly/1p7Wzb7, 2016-03-08; and “Google unveils neural

network with “superhuman” ability to determine the location of almost any image”,

MIT Technology Review, bit.ly/1p5qmSe, 2016-02-24.
25It may be argued that Hebbian learning may apply in such cases because a single

experience may be mentally rehearsed. But that begs the question of how the one

experience is remembered between when it first occurred and the first rehearsal—

and likewise later on. And, while rehearsal may be helpful in some cases, it seems

that there are many things we do remember after a single experience, without

rehearsal.
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high standard—because of the complexity of the abstract space
of possible solutions that needs to be searched.

Does this mean that Hebbian learning is dead? Probably not:

• In some forms, the phenomena of “long-term potentiation”
(LPT) in neural functioning seem to be linked to Hebbian
types of learning (Squire et al., 2013, pp. 1022–1023).

• Gradual strengthening of neural connections may have a role
to play in SP-neural because some such mechanism is needed
to record, at least approximately, the frequency of occurrence
of neural symbols and pattern assemblies (Sections 3.4, 4.5).

11. THE PROBLEMS OF SPEED AND
EXPRESSIVENESS IN THE CREATION AND
DESTRUCTION OF NEURAL STRUCTURES

A general issue for any neural theory of the representation and
processing of knowledge, is how to account for the speed with
which we can create neural structures, and, probably, destroy
them, bearing in mind that such structures must be sufficiently
versatile to accommodate the representation and processing of
a wide range of different kinds of knowledge. This issue arises
mainly in the following connections:

• One-trial learning. In keeping with the remarks above about
one-trial learning (Section 10.5), it is a familiar feature of
everyday life that we can see and hear something happening—
a football match, a play, a conversation, and so on—and then,
immediately or some time later, give a description of the event.
This implies that we can lay down relevant memories at speed.

• The learning of complex knowledge and skills. If we accept the
view of unsupervised learning which is outlined in Sections
3.4, 3.7, and 10, then it seems necessary to suppose that pattern
assemblies are created and destroyed during the search for
one or two grammars that provide a “good” description of the
knowledge or skills that is being learned—and it seems likely
that the creation and destruction of pattern assemblies would
be fast.

• The interpretation of sensory data. In processes like the parsing
of natural language or, more generally, understanding natural
language, and in processes like pattern recognition, reasoning,
and more, it seems necessary to create intermediate structures
like those shown in Figure 2, and for those structures to be
created at speed.

• Speech and action. In a similar way, it seems necessary for us
to create mental structures fast in any kind of activity that
requires thought, such as speaking in a way that is meaningful
and comprehensible, most kinds of sport, most kinds of games,
and so on.

• Imagination. Most people have little difficulty in imagining
things they are unlikely ever to have seen—such as a cat with a
coat made of grass instead of fur, or a cow with two tails. We
can create such ideas fast and, if we like them well enough, we
may remember them for years.

One possible solution, which is radically different from SP-neural,
is to suppose that our knowledge is stored in some chemical form

such as DNA, and that the kinds of mental processes mentioned
above might be mediated via the creation and modification of
such chemicals. Another possibility is that learning is mediated
by epigenetic mechanisms, as outlined in Baars and Gage (2010,
Section 7.4). Without wishing to prejudge what the primary
mechanism of learning may be, or whether perhaps there are
several such mechanisms, this paper focusses on SP-neural and
how it may combine speed with expressiveness, as seems to be
required for the kinds of functions outlined above.

At first sight, the problem of speed in the creation of neural
structures is solved via the long-established idea that we can
remember things for a few seconds via a “short-term memory26”
that is distinct from “long-term memory27,” and “working
memory28.” But there is some uncertainty about the extent to
which these three kinds of memory may be distinguished, one
from another, and there is considerable uncertainty about how
they might work, and how information may be transferred from
one kind of memory to another.

As a proffered contribution to discussions in this area, the
suggestion here is that, in any or all of short-term memory,
working memory, and long-term memory, SP-neural may
achieve the necessary speed in the creation of new structures,
combined with versatility in the representation and processing
of diverse kinds of knowledge, by the switching on and off of
synapses in pre-established neural structures and their inter-
connections, as outlined in Sections 10.1, 10.2.

With regard to possible mechanisms for the switching on and
off of synapses:

• It appears that, in the entorhinal cortex between the
hippocampus and the neocortex, there are neurons that can
be switched “on” and “off” in an all-or-nothing manner
(Tahvildari et al., 2007), and we may suppose that synapses
have a role to play in this behavior.

• “The efficacy of a synapse can be potentiated through at least
six mechanisms” (Squire et al., 2013, Caption to Figure 47.10)
and it is possible that at least one them has the necessary
speed, especially since “[Long-term potentiation] is defined as
a persistent increase in synaptic strength ... that can be induced
rapidly by a brief burst of spike activity in the presynaptic
afferents.” (emphasis added) (Squire et al., 2013, p. 1016).

• “[Long-term depression] is believed by many to be ... a process
whereby [Long-term potentiation] could be reversed in the
hippocampus and neocortex ....” (Squire et al., 2013, p. 1023).

• “... it is now evident that [Long-term potentiation], at least
in the dentate gyrus, can either be ... stable, lasting months
or longer.” (Abraham, 2003, Abstract), although there appears
to be little or no evidence with a bearing on whether or not
there might be an upper limit to the duration of long-term
potentiation.

• There is evidence that the protein kinase Mζ (PKMζ ) may
provide a means of turning synapses on and off, and thus
perhaps storing long-termmemories (Ogasawara and Kawato,
2010).

26“Short-term memory,”Wikipedia, bit.ly/1RzAVHN, retrieved 2016-04-04.
27“Long-term memory,”Wikipedia, bit.ly/1M9uPhh, retrieved 2016-04-04.
28“Working memory,”Wikipedia, bit.ly/1PQq0UA, retrieved 2016-04-04.
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With all these possible mechanisms, key questions are: do they act
fast enough to account for the speed of the phenomena described
above; and can they provide the basis for memories that can last
for 50 years or more.

12. ERRORS OF OMISSION, COMMISSION,
AND SUBSTITUTION

Aprominent feature of human perception is that we have a robust
ability to recognize things despite disturbances of various kinds.
We can, for example, recognize a car when it is partially obscured
by the leaves and branches of a tree, or by falling snow or rain.

One of the strengths of SP-abstract and its realization in the
SP computer model is that, in a similar way, recognition of a New
pattern or patterns is not unduly disturbed by errors of omission,
commission, and substitution in those data (Wolff, 2006, Chapter
6, Wolff, 2013, Section 4.2.2). This is because of the way the SP
computer model searches for a global optimum in the building of
multiple alignments, so that it does not depend on the presence
or absence of any particular feature or combination of features in
the New information that is being analyzed.

In its overall structure, SP-neural seems to lend itself to that
kind of robustness in recognition in the face of errors in data. But
the devil is in the detail. In further development of the theory, and
in the development of a computer model of SP-neural, it will be
necessary to clarify the details of how that kind of robustness may
be achieved. In shaping this aspect of SP-neural, the principles
that have been developed in SP-abstract are likely to prove useful
and, with empirical evidence from brains and nervous systems,
they may serve as a touchstone of success.

13. CONCLUSION

As was mentioned in the Introduction, SP-neural is a tentative
and partial theory. That said, the close relationship between
SP-neural and SP-abstract, the incorporation into SP-abstract
of many insights from research on human perception and
cognition, strengths of SP-abstract in terms of simplicity and
power (Section 3.8.1), and advantages of SP-abstract compared
with other AI-related systems (Section 3.8.3)—lend support to
SP-neural as it is now as a conceptual model of the representation
and processing of knowledge in the brain, and a promising basis
for further research.

Naturally, we may have more confidence in some parts of
the theory than others. Arguably, the parts that inspire most
confidence are these:

• Neural symbols and pattern assemblies. All knowledge is
represented in the cerebral cortex with pattern assemblies, the
neural equivalent of patterns in SP-abstract. Each such pattern
assembly is an array of neural symbols, each of which is a single
neuron or a small cluster of neurons—the neural equivalent of
a symbol in SP-abstract. Topologically, each array has one or
two dimensions, perhaps parallel to the surface of the cortex.

• Information compression via the matching and unification
of patterns. As in SP-abstract, SP-neural is governed by
the overarching principle that many aspects of perception

and cognition may be understood in terms of information
compression via the matching and unification of patterns.

• Information compression via multiple alignment. More
specifically, SP-neural is governed by the overarching
principle that many aspects of perception and cognition may
be understood via a neural equivalent of the powerful concept
ofmultiple alignment.

• Unsupervised learning. As in SP-abstract, unsupervised
learning in SP-neural is the foundation for other kinds
of learning—supervised learning, reinforcement learning,
learning by imitation, learning by being told, and so on. And as
in SP-abstract, unsupervised learning in SP-neural is achieved
via a search through alternative grammars to find one or
two that score best in terms of the compression of sensory
information. As noted in Section 10.5, this is quite different
from the kinds of “Hebbian” learning that are popular in
artificial neural networks.

• Problems of speed and expressiveness in the creation of pattern
assemblies and their interconnections. To account for the speed
with which we can assimilate new information, and the speed
of other mental processes (Section 11), it seems necessary to
suppose that pattern assemblies and their interconnections
may be created from pre-existing neural structures by the
making and breaking of synaptic connections, somewhat
like the making and breaking of connections in a telephone
exchange, or the creation of a bespoke electronic system
from an “uncommitted logic array” (ULA) or a “field-
programmable gate array” (FPGA).

As with SP-abstract, areas of uncertainty in SP-neural may be
clarified by casting the theory in the form of a computer model
and testing it to see whether or not it works as anticipated. It
is envisaged that this would be part of a proposed facility for
the development of the SP machine (Wolff and Palade, 2016), a
means for researchers everywhere to explore what can be done
with the SP machine and to create new versions of it.

At all stages in its development, the theory may suggest
possible investigations of the workings of brains and nervous
systems. And any neurophysiological evidence may have a
bearing on the perceived validity of the theory and whether or
how it may need to be modified.
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APPENDIX

Cell Assemblies and Pattern Assemblies
The main differences between Hebb’s (1949) concept of a “cell
assembly” and the SP-neural concept of a “pattern assembly” are:

• The concept of a pattern assembly has had the benefit of
computer modeling of SP-abstract—reducing vagueness in
the theory and testing whether or not proposed mechanisms
actually work as anticipated. These things would have been
difficult or impossible for Hebb to do in 1949.

• Cell assemblies were seen largely as a vehicle for recognition,
whereas, as neural realizations of SP “patterns,” pattern
assemblies should be able to mediate several aspects of
intelligence, including recognition.

• Anatomically, pattern assemblies are seen as largely flat
groupings of neurons in the cerebral cortex (Section 4.2),
whereas cell assemblies are seen as structures in three
dimensions.

• As described below, a fourth difference between cell assemblies
and pattern assemblies is in how structures may be shared.

With regard to the last point, possible models for sharing of
structures are illustrated in Figure A1.

In literal sharing, structures B and C in the figure both contain
structure A. In sharing by copying, structures B and C each
contains a copy of structure A. While in sharing by reference,
structures B and C each contains a reference to structure A, in
much the same way that a paper like this one contains references
to other publications.

From Hebb’s (1949) descriptions of the cell assembly concept,
it is difficult to tell which of these three possibilities are intended.

By contrast with the concept of a pattern assembly in SP-
neural, sharing is almost always achieved by means of neural
“references” between structures. For example, a noun like “table”
is likely to have neural connections to the many grammatical
contexts in which it may occur, as suggested by the two broken-
line connections from each of “N” and “#N” in the pattern
assembly for “table” shown in Figure 3. Notice that, in this
example, the putative direction of travel of nerve impulses is not
relevant—it is the neural connection that counts.

Sharing by reference

B C

A

A A

Literal sharing A

B C

Sharing by copying

B

A1

C

A2

FIGURE A1 | Three possible ways in which cell assemblies may be

shared, as described in the text. Adapted with permission from Wolff

(2006, Figure 11.3).

In the SP system, it is intended that literal sharing should be
impossible and that sharing by copying may only occur on the
relatively rare occasions when the system has failed to detect the
corresponding redundancy, and not always then.
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