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Abstract

This paper describes the functional aspects of a sharing-by-reference scheme for the connectionist representation of knowledge, to complement the structural aspects that were presented in Wolff (submitted). 
An understanding of these functional aspects—pattern recognition, pattern categorization, information retrieval, probabilistic and exact forms of reasoning, unsupervised learning and others—requires an understanding of the SP theory of computing and cognition (Wolff, 2003a) from which the proposals have been derived. Accordingly, the paper first presents an outline of the theory focussing in particular on the concept of multiple alignment in the theory and the way in which the building of multiple alignments provides the key to a range of perceptual and cognitive functions.

The main part of the paper describes how the process of building multiple alignments in the SP theory may be realised by equivalent processes in the sharing-by-reference connectionist scheme. 
1 Introduction 

In another paper (Wolff, submitted), I have argued that Hebb’s (1949) concept of a cell assembly (and later variants of it) suffers from ambiguities and other problems in the representation of conceptual structures and that these problems arise from the fact that any given low-level cell assembly may be literally shared between two or more higher-level cell assemblies (which means that any given neuron may belong in two or more cell assemblies). In that paper (referred to hereinafter as ‘Wsbr’), I have also argued that these problems can be overcome if we replace literal sharing of structures by sharing by reference. This means that any given low-level cell assembly may be shared by two or more higher-level cell assemblies by the provision of a neuron (or small group of neurons) in each higher-level cell assembly that serves as a proxy for or reference to the lower-level cell assembly—and this means that any given participating neuron belongs in one cell assembly and only one cell assembly. This device gives cell assemblies much of the expressive power of grammars, networks, trees and other representational schemes that are familiar in AI.
The main focus of Wsbr is on the organisation of neural structures, with relatively little about the ways in which the proposed neural structures might function in such processes as recognition, reasoning or learning. The main purpose of this paper is to plug that gap. Another purpose is to show how these connectionist proposals derive from the SP theory of computing and cognition (see Wolff, 2003a, and earlier papers cited there).
 These two objectives are intimately related since the functional aspects of these connectionist proposals cannot be understood without an understanding of their origins in the SP theory. The entire set of proposals will be referred to as ‘SP-neural’.
The next section describes the SP theory in outline with just sufficient detail for present purposes. Section 3 describes in outline how the SP theory supports perceptual and cognitive functions such as recognition, information retrieval, unsupervised learning and so on. Section 4 considers how the elements of the SP theory may be realised with neural mechanisms and Section 5 discusses two related issues.
2 Outline of the SP Theory 

In this section, the main elements of the SP theory are described with many details omitted. The focus is on those aspects of the theory that are relevant to the proposals that follow. 

The SP theory is founded on two quasi-independent areas of thinking: 

· A long tradition in psychology that many aspects of perception and cognition may be understood in terms of information compression (see, for example, Attneave, 1954; Oldfield, 1954; Barlow, 1959, 1969, 1972; Wolff, 1988; Chater, 1996, 1999). 

· Principles of minimum length encoding,
 pioneered by Solomonoff (1964); Wallace and Boulton (1968); Rissanen (1978) and others, that focus on the intimate connection that exists between information compression and the inductive prediction of the future from the past (see also Li & Vitányi, 1997; Solomonoff, 1997). 

At its most abstract level, the SP theory is conceived as a model of any kind of system for processing information, either natural or artificial. The theory is Turing-equivalent in the sense that it can model the operation of a Universal Turing Machine (Wolff, 1999b) but, unlike earlier theories of computing, the SP theory provides an account of a range of phenomena in perception and cognition, including the analysis and production of natural language (Wolff, 2000), ‘fuzzy’ recognition of patterns and objects, with probabilistic kinds of reasoning and the solving problems by reasoning and by analogy (Wolff, 1999a), and unsupervised learning (Wolff, 2003b). The theory also provides a new perspective on a range of concepts in computing, logic and mathematics (Wolff, 1999b, 2002a). 

In broad terms, the SP system works like this. It receives ‘New’ data from its environment and adds these data to a body of stored knowledge called ‘Old’. At the same time, it tries to compress the information as much as possible by searching for full matches between patterns, or partial matches, and merging or ‘unifying’ patterns or parts of patterns that are the same. In the course of trying to compress information, the system builds multiple alignments, as described below. The building of multiple alignments (a concept that has been borrowed, with adaptations, from bioinformatics) is the mechanism by which the system achieves such things as pattern recognition and categorization, information retrieval, parsing and production of sentences, a variety of probabilistic and exact forms of reasoning, unsupervised learning, planning, and problem solving (Section 3, below).

Generally speaking, New information may be equated with sensory information but information within the system may sometimes play the same role, as described in Section 3.3, below. 

2.1 Computer Models

Two computer models of the SP system have been developed: 

· SP62, which is relatively robust and mature, is a partial realisation of the theory that builds multiple alignments and calculates probabilities associated with multiple alignments (as described in Section 2.6.1) but does not transfer any information from New to Old. All its Old information must be supplied by the user. A slightly earlier version of the current model is described quite fully in Wolff (2000). 

· SP70 realises all the main elements of the theory, including the transfer of New information to Old. This model, and its application to unsupervised learning, is described in Wolff (2003b, 2002b). More work is required to realise the full potential of this model.
In bioinformatics, it is generally understood that finding or constructing ‘good’ multiple alignments is computationally intensive. In any realistic case, the number of possible alternative alignments is far too large to be searched exhaustively and it is necessary to use heuristic methods that prune away large parts of the search space, trading accuracy for speed. The same is true of multiple alignments as they have been developed in the SP framework. To achieve useful results on realistic timescales, the SP62 and SP70 models both use forms of ‘hill climbing’, with measures of compression (described in Section 2.6) to guide the search. 

2.2 A ‘Universal’ Format for Knowledge 

In the SP framework, all information is expressed as arrays or patterns of symbols, where a symbol is simply a ‘mark’ that can be compared with any other symbol to decide whether it is the ‘same’ or ‘different’. In work done to date, the main focus has been on one-dimensional strings or sequences of symbols but it is envisaged that, at some stage, the ideas will be generalised to patterns in two dimensions. 

This very simple ‘universal’ format for knowledge has been adopted with the expectation that it would facilitate the representation of diverse kinds of knowledge and their seamless integration. Notwithstanding the simplicity of the format, the way in which patterns are used in the building of multiple alignments mean that it is possible to model such things as context-free grammars, context-sensitive grammars, if-then rules, discrimination networks and trees, class-inclusion hierarchies (with inheritance of attributes), and part-whole hierarchies. Examples will be seen below and others may be found in the sources cited above. 

Another motive for adopting this format for knowledge is the observation that much of our knowledge derives ultimately from sensory inputs, especially vision, and most sensory inputs map naturally on to sequences or two-dimensional arrays. This idea sits comfortably with the observation that the cortex is, topologically, a two-dimensional structure and that there is a relatively direct projection from the retina to each of the areas of the visual cortex, from the skin to the somatosensory cortex, and likewise for other senses. As was suggested in Wsbr, it seems reasonable to suppose that there is a relatively direct or ‘picture-like’ relationship between our sensory inputs and the way in which knowledge that has been derived from sensory inputs is stored in the cortex.

2.2.1 Frequencies of Patterns. Associated with each Old pattern is an integer value representing the absolute or relative frequency with which that pattern has been recognised within the New data that has been received by the system. These frequency values are used in the evaluation of multiple alignments (Section 2.6) and in the evaluation of Old patterns as ‘good’ or ‘bad’ in terms of the principles of minimum length encoding (a central part of the learning processes described in Section 3.4).
2.3 Building Multiple Alignments 

The main elements of the multiple alignment concept as it has been developed in this research are illustrated in the example presented here. For the sake of clarity and to save space, this example, and others shown below, are relatively simple. However, this should not be taken to represent the limits of what the system can do. More complex examples may be found in Wolff (2000) and the other sources cited above. 

Given a New pattern representing the sentence ‘t h e c a t s l e e p s’ and a set of Old patterns representing grammatical rules, the SP system builds multiple alignments like the one shown in Fig. 1. The aim is to create multiple alignments that allow the New pattern to be encoded economically in terms of the Old patterns as described in Section 2.6, below. Out of the several alignments that SP62 has built in this case, the one shown in Fig. 1 is the best in terms of the criteria described in that section. 

     0                          t h e                 c a t                     s l e e p   s     0

                                | | |                 | | |                     | | | | |   |

     1                          | | |          < Nr 3 c a t >                   | | | | |   |     1

                                | | |          | |          |                   | | | | |   |

     2                          | | |   < N Ns < Nr         > >                 | | | | |   |     2

                                | | |   | | |                 |                 | | | | |   |

     3                    < D 0 t h e > | | |                 |                 | | | | |   |     3

                          | |         | | | |                 |                 | | | | |   |

     4               < NP < D         > < N |                 > >               | | | | |   |     4

                     | |                    |                   |               | | | | |   |

     5               | |                    |                   |        < Vr 2 s l e e p > |     5

                     | |                    |                   |        | |              | |

     6               | |                    |                   | < V Vs < Vr             > s >   6

                     | |                    |                   | | | |                       |

     7 < S Num     ; < NP                   |                   > < V |                       > > 7

            |      |                        |                         |
     8     Num SNG ;                        Ns                        Vs                          8

Figure Caption

Figure 1. The best alignment found by SP62 with ‘t h e c a t s l e e p s’ in New and patterns representing grammatical rules in Old. 

By convention, the New pattern is always shown in row 0 of any alignment, as can be seen in Fig. 1. The Old patterns are shown in the rows below the top row, one pattern per row. The order of the Old patterns across the rows is entirely arbitrary and without any special significance. As we shall see in Section 3.1, alignments can sometimes fit better on the page if they are rotated by 90o. In this case, the New pattern is shown in column 0 and the Old patterns are in the succeeding columns.
A pattern like ‘< NP < D > < N > >’ in row 4 of the alignment expresses the idea that a noun phrase (‘NP’) is composed of a determiner (‘D’) followed by a noun (‘N’). This is equivalent to a rule like ‘NP → D N’ in a context-free phrase-structure grammar. 

If we ignore row 8, the whole alignment may be seen to achieve the effect of a context-free parsing, dividing the sentence into its constituent words, identifying ‘t h e c a t’ as a noun phrase, marking each word with its grammatical class, and, within the verb ‘s l e e p s’, marking the distinction between the root and the suffix. Ignoring row 8, the alignment in Fig. 1 is equivalent to the tree-structured parsing shown in Fig. 2.
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Figure Caption

Figure 2. A tree-structured parsing equivalent to the alignment shown in Fig. 1, excluding row 8. 
2.4 Context-Sensitive Power
Although several of the patterns in the alignment in Fig. 1 are similar to rules in a context-free phrase-structure grammar, the whole system has the expressive power of a context-sensitive system. This is illustrated in row 8 of the alignment where the pattern ‘Num SNG ; Ns Vs’ marks the ‘number’ dependency between the singular noun in the subject of the sentence (‘c a t’ with the category ‘Ns’) and the singular verb (‘s l e e p s’ with the category ‘Vs’). A basic context-free phrase-structure grammar, without augmentation, cannot handle this kind of dependency. 

2.5 ‘Identification’ Symbols, ‘Contents’ Symbols and Boundary Markers
Within each pattern in Old, there is a distinction between identification (ID) symbols and contents (C) symbols. The former serve to identify the pattern or otherwise define its relationship with other patterns, while the latter represent the contents or substance of the pattern. 

In general, ID-symbols are the first few symbols (normally one or two) following the initial left bracket (‘<’) if there is one. All other symbols, apart from the final right bracket, are C-symbols. For example, in the pattern ‘< NP < D > < N > >’ in row 4 of Fig. 1, the ID-symbol is the symbol ‘NP’ and the C-symbols are ‘< D > < N >’. In the pattern ‘< Nr 3 c a t >’, the ID-symbols are the symbols ‘Nr’ and ‘3’, while the C-symbols in that pattern are ‘c’, ‘a’ and ‘t’. In the pattern ‘Num SNG ; Ns Vs’, the first three symbols are ID-symbols and the last two are C-symbols. 

In SP62—which does not attempt any learning—the Old patterns are supplied to the system by the user and each symbol within each Old pattern is marked by the user to show whether it is an ID-symbol or a C-symbol. In SP70—which creates patterns and adds them to Old in the course of learning—the distinction between ID-symbols and C-symbols within any one pattern is marked by the system when the pattern is created.
2.5.1 Boundary Markers. In the SP system, brackets like ‘<’ and ‘>’ at the beginnings and ends of patterns are, for obvious reasons, termed boundary markers. They are often needed to ensure that multiple alignments can be built without ambiguity about the ordering of symbols. However, they are not always needed as can be seen in the pattern shown in row 8 of Fig. 1.
2.5.2 ‘Identification’ and ‘Reference’ in the Representation and Processing of Knowledge. The SP system expresses a pair of ideas that are fundamental in the representation and processing of knowledge and are one of the corner-stones of the proposals in this paper and Wsbr: 

· Identification. Any entity or concept may be given a relatively short ‘name’, ‘label’, ‘code’, ‘tag’ or identifier by which it may be identified. Examples in everyday life include the name of a person, town, country, book, theorem, poem, pet, period of history, and many more. The concept of identification is not restricted to unique identification of specific things. It also applies to the identification of classes of things like ‘furniture’, ‘people’, ‘animals’ and so on.

· Reference. Whenever we wish to refer to any such entity or class, we can do so by means of a copy of the relevant name, label or identifier. Every copy is a reference to the given entity or class and in each case there may be many such references. Examples in everyday life include referring to someone by their name, or referring to a town, country, book etc by its name. In a paper like this one, ‘Hebb (1949)’ is a reference to the bibliographic details at the end of the paper and those details are themselves a reference to the book itself. 

Being able to refer to any concept by a relatively brief name is a great aid to succinct communication. Imagine how cumbersome and difficult things would be if we had to give a full description of everything and anything whenever we wanted to talk about it—like the slow language of the Ents in Tolkien’s The Lord of the Rings. Identification and reference are a powerful aid to the compression of information and it should not surprise us to find that the same pair of ideas lies at the heart of computer-based ‘ZIP’ programs for compressing information. 

As we have seen, any given pattern in the SP system has an identifier in the form of one or more ID-symbols. One or more copies of those symbols in other patterns or in the same pattern serve as references to that pattern. For example, ‘NP’ in the pattern ‘S Num ; < NP > < V >’ in row 7 of Fig. 1 may be seen as a reference to the pattern ‘< NP < D > < N > >’ in row 4. 

2.6 Evaluation of Alignments 

A sequence of ID-symbols, derived from an alignment like the one shown in Fig. 1, can provide an abbreviated code for the entire sentence pattern (or other New pattern) in row 0 of the alignment. A ‘good’ alignment is one where this code is relatively small in terms of the number of bits of information that it contains.

The procedure for deriving an encoding from an alignment is quite simple: scan the alignment from left to right looking for columns containing a single instance of an ID-symbol, not matched to any other symbol. The encoding is simply the sequence of symbols that have been found by this procedure, in the same order as they appear in the alignment. The encoding derived in this way from the alignment in Fig. 1 is ‘S SNG 0 3 2’. This is smaller than the New pattern in terms of the number of symbols it contains and it is even smaller when the size of the New pattern and the size of the code are measured in terms of the numbers of bits they contain, as described in Wolff (2000). 

The ‘compression score’ or ‘compression difference’ for an alignment is:
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where No is the size (in bits) of the New pattern in its original form and Ne is its size in bits after it has been encoded.
2.6.1 Probabilities of Multiple Alignments. The flip side of information compression is probability. The absolute probability of any alignment may be calculated as:
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and for any given set of alignments, a1 ... an, that encode the same symbols from New, the relative probability of any one alignment (the jth alignment) is:
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2.7 Multiple Alignment and ‘Structural Alignment’

The concept of ‘multiple alignment’ as it has been developed in the SP theory is clearly related to the concept of ‘structural alignment’ or ‘structure mapping’ which has been developed in research into the psychological phenomenon of analogy and related topics such as metaphor, similarity, inference, and conceptual blending (see, for example, Gentner et al., 2001). The main differences between multiple alignment and structure mapping are these:

· Flat patterns and Hierarchical Structures. In structure mapping, the things being mapped to each other can have an hierarchical structure (e.g., ‘greater(temperature(coffee), temperature(ice))’) whereas the SP theory deals only in flat patterns. Superficially, this might suggest that the SP system is relatively restricted but, as we have seen in Section 2.3, the way in which flat patterns are used within multiple alignments means that hierarchical structures and the matching of hierarchical structures can be modelled within the system.

· Matched and Unmatched Symbols. By contrast with structure mapping, the distinction between matched symbols in an alignment and unmatched symbols has a two-fold significance in the SP theory: the matching and unification of symbols is the key to the compression of information that is so central in the SP theory; and it is the contrast between matched symbols and unmatched symbols that drives the process of unsupervised learning in the SP theory (Section 3.4).

· Alignment of Three or More Patterns. In structure mapping, there are only two things to be aligned: the ‘source’ and the ‘target’ whereas multiple alignments often contain three or more patterns.

· Two or More Appearances of a Pattern within a Multiple Alignment. Within one multiple alignment, a given Old pattern can appear two or more times within the multiple alignment, not as a copy but as a specific instance, with consequent constraints on matching as described in Wolff (2003a). This has implications for the representation of knowledge, especially the representation of recursive structures.

· Minimum Length Encoding. Compression and principles of minimum length encoding have a key role in the evaluation of multiple alignments in the SP theory whereas other criteria| such as ‘systematicity’ and ‘structural consistency’ are used for the evaluation of structure mappings.

3 Multiple Alignments, Perception and Cognition
As was noted above, the creation of multiple alignments in the SP system is the key to how the system can model a range of perceptual and cognitive functions. In order to give readers an intuitive grasp of these ideas, this section reviews the main possibilities, with a selection of thumbnail examples. More elaborate examples and more detail may be found in Wolff (2003a) and earlier publications cited there.
3.1 Categorization and Recognition of Patterns, and Information Retrieval
Fig. 3 is an alignment that illustrates the essentials of how the SP system can model the categorization and recognition of patterns, and information retrieval.
 This is the best alignment built by SP62 with a New pattern (shown in column 0) representing some of the features of some unknown entity and a set of Old patterns, each one of which represents a category to which the entity may be assigned.
     0                 1                 2              3                  4       

                       <                                                           

                       our-tree                                                    

                       < --------------- <                                         

                       oak ------------- oak                                       

                                         < ------------------------------- <       

                                         tree ---------------------------- tree    

                                                        < ---------------- <       

                                                        plant ------------ plant   

     chlorophyll -------------------------------------- chlorophyll                

                                                        photosynthesises           

                                                        > ---------------- >       

     large --------------------------------------------------------------- large   

     bark                                                                  trunk   

                                                                           branches

                                         > ------------------------------- >       

     acorns ---------------------------- acorns                                    

                                         lobed-leaves                              

                       > --------------- >                                         

                       home-for-owl                                                

     bill-loves-mary - bill-loves-mary                                             

                       >                                                           

     0                 1                 2              3                  4       

Figure Caption
Figure 3. The best alignment found by SP62 with a pattern in New (column 0) representing the features of some unknown entity and patterns in Old (in columns 1 to 4), each one of which represents a category, class or concept.
In this example, the unknown entity is categorized as a plant (column 3) and, at the same time, it is categorized as a tree (column 4) and, more specifically, as an oak tree (column 2). In addition, the unknown entity is recognised as a specific tree (‘our-tree’) which has a carving on the side recording the exciting piece of gossip that “Bill loves Mary”; and this particular tree has a hole which provides a home for an owl. In general, the building of multiple alignments can model the recognition of a specific entity and its categorization at several different levels of abstraction. As in human recognition and categorization, the process is not disturbed by errors of commission (e.g., ‘bark’ in column 0) or errors of omission (e.g., ‘photosynthesises’, ‘branches’ and ‘lobed-leaves’ in other columns), provided such errors are not too great.
This same example illustrates in a simple way how the system can model information retrieval. The partial information in column 0 has served to retrieve the more comprehensive information in the other columns.
3.2 Probabilistic and Exact Forms of Reasoning

From the alignment shown in Fig. 3, we can infer a variety of things about the unknown entity that were not amongst the original list of features shown in column 0. As a plant (column 3) it is likely that the entity performs photosynthesis, as an oak tree (column 2), it probably has lobed leaves, and so on—much like ‘inheritance’ in an object-oriented software system. In general, any symbol in an alignment that is not matched with a New symbol represents an inference that can be drawn from the alignment.
All such inferences have an associated probability, derived from the probability associated with each alignment which is calculated by the SP models (Section 2.6.1). The SP framework supports a variety of styles of probabilistic reasoning, including probabilistic ‘deduction’, abduction, nonmonotonic reasoning and probabilistic chains of reasoning (Wolff, 1999a). If certain kinds of constraint are assumed, the system also provides a model for classical ‘exact’ forms of reasoning (Wolff, 1999b, 2002a). 
3.3 Parsing and Production of Sentences 

We have seen already (in Section 2.3) how the building of a multiple alignment can achieve the effect of parsing a sentence. An attractive feature of the SP system is that, without any modification, it can support the production of language (or the equivalent in other domains) as well as its analysis. If SP62 is run again, with the sentence in New replaced by the encoded form of the sentence (‘S SNG 0 3 2’) as described in Section 2.6, the best alignment found by the system is shown in Fig. 4.

     0   S     SNG            0                     3                         2                   0

         |      |             |                     |                         |                  

     1 < S Num  |  ; < NP     |                     |           > < V         |               > > 1

            |   |  | | |      |                     |           | | |         |               |  

     2      |   |  | | |      |                     |           | < V Vs < Vr |           > s >   2

            |   |  | | |      |                     |           |     |  | |  |           |      

     3      |   |  | | |      |                     |           |     |  < Vr 2 s l e e p >       3

            |   |  | | |      |                     |           |     |                          

     4      |   |  | | |      |                < Nr 3 c a t >   |     |                           4

            |   |  | | |      |                | |          |   |     |                          

     5      |   |  | | |      |         < N Ns < Nr         > > |     |                           5

            |   |  | | |      |         | | |                 | |     |                          

     6      |   |  | | |  < D 0 t h e > | | |                 | |     |                           6

            |   |  | | |  | |         | | | |                 | |     |                          

     7      |   |  | < NP < D         > < N |                 > >     |                           7

            |   |  |                        |                         |                          

     8     Num SNG ;                        Ns                        Vs                          8

Figure Caption
Figure 4. The best alignment found by SP62 with the same patterns in Old as were used for the alignment in Fig. 1 but with a New pattern (row 0) which is a copy of the encoding described in Section 2.6 (‘S SNG 0 3 2’).
This alignment contains the same words as the alignment shown in Fig. 1, and they are in the same order. If we collapse the alignment to form a single sequence and exclude all the symbols representing brackets or grammatical categories, we have our original sentence, ‘t h e c a t s l e e p s’. 

It is envisaged that the production of sentences from meanings may be modelled in a similar way. Instead of using a code pattern like ‘S SNG 0 3 2’ to drive the production process, some kind of semantic structure may be used instead. Preliminary work has shown that this is indeed feasible.

3.4 Unsupervised Learning 

The SP system as a whole is a system that learns by assimilating ‘raw’ information from its environment and distilling the essence of that information by a process of information compression. The main elements of the theory are now realised in the SP70 computer model. This model is able to abstract simple grammars from appropriate data without any kind of external ‘teacher’ or the provision of ‘negative’ samples or the grading of samples from simple to complex (cf. Gold, 1967). In short, it is an unsupervised model of learning.

Although some reorganisation is needed to overcome certain weaknesses in SP70 as it stands now, the overall structure appears to be sound. In the model, learning occurs in two phases: 

· Creation of Old Patterns. As the system receives New patterns, a variety of Old patterns are derived from them as explained below. Some of these patterns are ‘good’ in terms of principles of minimum length encoding but many of them are ‘bad’. 

· Selection of ‘Good’ Patterns. By a process of sifting and sorting through the Old patterns, the system evaluates each one as ‘good’ or ‘bad’. The good ones are retained and the bad ones may be discarded. As was mentioned in Section 2.2.1, the frequency value associated with each pattern has a key role in the process of evaluation using principles of minimum length encoding.
It is envisaged that, in future versions of the model, these two processes—creation of Old patterns and selection amongst them—will be repeated many times while New patterns are being received so that the system can gradually bootstrap a set of Old patterns that are relatively useful for the economical encoding of New data.

To get the flavour of the way in which Old patterns are created, consider a simple example. If the current pattern in New is ‘t h e b o y r u n s’ and the repository of Old patterns is empty, the system discovers that there is no way to encode the New pattern economically in terms of Old information so it augments the New pattern with system-generated ID-symbols and boundary markers (which converts it into ‘< %1 t h e b o y r u n s >’) and adds the augmented pattern to Old.

When the Old repository has accumulated a range of patterns like this, it can begin to create multiple alignments. If, at that stage, the current pattern in New is ‘t h e g i r l r u n s’, the best of the multiple alignments created by the system is: 

          0      t h e g i r l r u n s   0 

                 | | |         | | | | 

          1 < %1 t h e b o y   r u n s > 1.
From this alignment, the system can derive some additional Old patterns by extracting coherent sequences of matched symbols and unmatched symbols, adding system-generated ID-symbols and boundary markers, and creating another pattern that ties everything together. 

In this case, the result is five patterns like this: 

                   < %2 t h e > 

                   < %3 r u n s > 

                   < %4 0 b o y > 

                   < %4 1 g i r l > 

                   < %5 < %2 > < %4 > < %3 > >.
The first four of these patterns represent words while the last one is an ‘abstract’ pattern that describes the overall structure of two original sentences in terms of ID-symbols in the lower-level patterns. 

Notice how ‘b o y’ and ‘g i r l’ have been assigned to the same class (identified by the symbol ‘%4’), very much in the tradition of distributional linguistics (see, for example, Harris, 1951; Fries, 1952). 

Notice also how the system picks out entities that we naturally regard as ‘discrete’ (see also Wolff, 1977, 1980, 1988; Brent, 1999). Similar principles may explain how we learn to see the visual world in terms of discrete objects. The flexible pattern matching that is built into the process of finding multiple alignments means that SP70 can find correlations that bridge arbitrary amounts of intervening structure.

As the collection of Old patterns grows, an increasing proportion of the New patterns will be parsed successfully by multiple alignment as described in Section 2.3. In each of these cases, the system may ‘learn’ the New pattern by creating an encoding of it, as described in Section 2.6. Any such encoding is a pattern like any other and may be added to the repository of Old patterns.

3.5 Solving Problems by Reasoning and by Analogy
Given appropriate patterns, the system can do such things as finding a route between two places or solving problems by analogy. Further information may be found in Wolff (2003a, 1999a).
4 Neural Realisation of the SP Concepts 

This section describes how the SP concepts may be realised in terms of neural structures and processes. Much of the discussion in this section relates to particular domains—mainly vision and language—but it should be emphasised that the proposals are intended to apply to sensory data and knowledge of all kinds—visual, auditory, tactile etc—both individually and in concert. 

In this section and the rest of the paper, the focus will be on the analysis of sensory data rather than the production of sentences or other patterns of knowledge. In every figure, arrows on neural connections will show the putative direction of flow of sensory signals. A full discussion of the way the system may model the creation or production of motor patterns is outside the scope of this paper. In brief, it is envisaged that codes or ‘meanings’ may take on the role of New information as described in Section 3.3 and they may serve to create neural analogues of multiple alignments by precisely the same processes that are described in Section 4.4, below. 

4.1 Neural Realisation of New Patterns and Symbols 

New information in the SP system normally corresponds to sensory data. The exception is the kind of internally-generated ‘code’ patterns, just mentioned, that may serve in the production of sentences or other patterns as described in Section 3.3. Here, we shall focus mainly on visual sensory data, but similar principles seem to apply to other sensory modalities. 

In mammalian vision, patterns of light entering the eye are received by the retina and transmitted via the lateral geniculate body to layers 3 and 6 of the visual cortex and beyond. Although sensory information is received initially in analogue form, it is widely accepted that the information is converted at an early stage into something like David Marr’s (1982) concept of a ‘primal sketch’. In the early stages, sensory data is converted into the digital language of on-centre cells, off-centre cells and the like, and in later stages it is interpreted in terms of digital features such as lines at particular angles, motion in a particular direction, and so on (see, for example, Nicholls et al., 2001; Hubel, 2000). 

Each neuron in the cortex that responds to a particular low-level feature of the sensory data may be regarded as the neural equivalent of an SP symbol and we shall call it a neural symbol. An array of neural symbols that registers a sensory pattern in any sensory cortex we shall call a receptor array. Whatever it’s three dimensional configuration, we shall assume that it is topologically equivalent to a one-dimensional sequence or a two-dimensional array. A receptor array equates with that part of the SP system that receives New patterns from the system’s environment and passes it on for processing within the system. 

Notice that, if a receptor array is to respond to a wide variety of patterns—which is clearly true of the visual cortex and other sensory cortices—then the complete ‘alphabet’ of neural symbols must be available at every location within the array and thus repeated many times across the receptor array as shown schematically in Fig. 5. In accordance with this expectation, it has been found that—with the type of neuron that responds selectively to a short line segment at a particular angle—the complete range of orientations is repeated across the cortex within each of a large number of fairly small ‘orientation columns’ (Barlow, 1982; Hubel, 2000). It seems likely that a similar organisation may exist in the somatosensory cortex, mirroring the way in which receptors that respond selectively to heat, cold, touch, pressure and so on are repeated across areas of the skin (Nicholls et al., 2001, Chapter 18).
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Figure Caption
Figure 5. Schematic representation of the repeating alphabet of neural symbols in a receptor array (shown as repetitions of ‘a b c ...’). Also shown is the path taken by sensory data through low-level sensory processing to the receptor array and onwards to low-level pattern assemblies (see Section 4.3). 

So far, we have assumed that a New pattern arrives all at once like an image projected on to the retina. But it is clear that streams of sensory information are being received in all sensory modalities throughout our lives and that we are very sensitive to patterns in the temporal dimension within those streams of information, especially in hearing. It is assumed here that temporal sequences in hearing, vision and other modalities is captured spatially in arrays of neurons, probably in the cortex. 

4.2 Neural Realisation of Old Patterns and Symbols 

An Old pattern in the SP system may be realised by a network of interconnected cells in the cortex, similar to Donald Hebb’s (1949) concept of a cell assembly (see also Hebb, 1958, pp. 103-107). Because there are significant differences between the present proposals and Hebb’s original concept, the neural realisation of an Old pattern will be referred to as a pattern assembly. Those differences were described in Wsbr. 

An SP symbol in an Old pattern may be realised within a pattern assembly by a single neuron or, perhaps, a small network of interconnected neurons. To simplify discussion in the rest of this paper, we shall assume that every symbol is realised by a single neuron. As before, we may refer to any such neuron as a neural symbol. A neuron within a pattern assembly that corresponds to a C-symbol within an SP pattern will be called a ‘C neural symbol’ or, more simply, a C-neuron. Likewise, a neuron that represents an ID-symbol will be called an ‘ID neural symbol’ or an ID-neuron.
As with receptor arrays, it is assumed that, regardless of the three-dimensional configuration of the neurons in pattern assemblies, each such assembly is topologically equivalent to a sequence of neurons or a two-dimensional array of neurons. 

Unlike the Hebbian concept of a cell assembly, it is envisaged that the neurons in any one pattern assembly lie close together within the cortex. It is envisaged that the connections between neurons will be two-way excitatory connections mainly between immediate neighbours but there may also be excitatory connections between neural symbols that are a little more distant. In general, all the interconnections within a pattern assembly will be relatively short. By contrast, some at least of the connections between pattern assemblies may be very much longer. 

The configuration of pattern assemblies just described is consistent with Braitenberg’s (1978) suggestions (pp. 181-182) that there is strong correlation of neural activity within each 1 mm column in the human cortex (see also Amit (1995)) and that each column may be connected to any other column. As was suggested in Wsbr, we may suppose that each pattern assembly is confined within one column of the cortex but connections between pattern assemblies may span the whole cortex. 

As with SP patterns, pattern assemblies may be roughly graded from ‘low level’ to ‘high level’. Low level pattern assemblies are those representing small perceptual details such as formant transitions and allophone in the case of speech or small perceptual ‘motifs’ such as corners of objects, textures, or color combinations in the case of vision. High level pattern assemblies would represent abstractions like the ‘sentence’ pattern in row 3 of Fig. 1 or high-level classes like ‘food’, ‘people’ or ‘the animal kingdom’. As with SP patterns, the gradation is not a strict hierarchy because any given pattern assembly may have a direct connection to any other pattern assembly, not necessarily ones that are immediately ‘above’ or ‘below’. 

4.2.1 Frequency Measures. Last but not least amongst the posited features of pattern assemblies is something equivalent to the frequency measure associated with each SP pattern (Section 2.2.1). In a pattern assembly, this measure could be some kind of physiological variable, perhaps located in the ID-neurons of each pattern assembly. Another possibility is that the frequency measure is embodied in the readiness with which a given pattern assembly will fire in response to incoming stimulation: pattern assemblies that have been recognised frequently may have a lower threshold than those that have been recognised rarely, as suggested by the ‘word frequency effect’ and other evidence that things that are frequent in our experience are, by a variety of measures, more easily perceived or recalled than things that are rare.

4.3 Connections 

It is envisaged that each active neural symbol within a receptor array sends signals to one or more C-neurons in one or more pattern assemblies. Most of these would be pattern assemblies that may be classified as ‘low level’ but in principle any pattern assembly may receive signals from a receptor array. Connections leaving the neural symbols of a receptor array are shown at the top of Fig. 5. 

Each C-neuron within each pattern assembly may receive signals from one or more receptor arrays or from one or more pattern assemblies or from both kinds of structure. Normally, these signals would come from lower level structures but in principle any one pattern assembly may receive signals from any of the entire set of pattern assemblies, including itself.

In a similar way, each ID-neuron within each pattern assembly may send signals to one or more C-neurons. Normally, these signals would go to higher level structures but in principle any one pattern assembly may send signals to any of the entire set of pattern assemblies, including itself. These kinds of interconnections amongst pattern assemblies are shown schematically in Fig. 6, following the conventions shown in the legend to the figure. 
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Figure Caption
Figure 6. Schematic representation of inter-connections amongst pattern assemblies. Envelopes with broken lines are pattern assemblies and envelopes with unbroken lines are neurons. Arrows show the direction of flow of sensory signals. ID-neurons are represented by envelopes that are larger than those for C-neurons and contain oblique characters. Not shown in the figure are lateral connections within each pattern assembly (described in Section 4.2) and inhibitory connections (described in Sections 4.4 and 4.5, below). The roles of connecting fibres shown with unbroken and broken lines is discussed in Section 4.4.
4.3.1 Integration of Sensory Modalities in High-Level Pattern Assemblies. An aspect of the proposals that is not illustrated in the figure is that there will be low level pattern assemblies representing structures in every sensory modality—vision, hearing, touch etc—and high-level pattern assemblies may receive inputs from any of these lower level pattern assemblies. In this way, any high-level concept like ‘person’ may be described in terms of all the relevant sensory modalities. As previously indicated, the connections that are needed to bring diverse sensory modalities together in this way will, in many cases, be relatively long.

4.3.2 The Role of Each Neuron is Defined by Its Connections. An important feature of the connections between a receptor array and a pattern assembly and the connections between pattern assemblies is that the symbols at each end of every connection are always a match for each other. In effect, the role of each C-neuron is defined by its inputs. For example, the neural symbol ‘a’ in the pattern assembly ‘< Nr 3 c a t >’ in Fig. 6 may be seen to represent ‘a’ because it receives inputs from other neural symbols that represent ‘a’. Because the role of each C-neuron within each pattern assembly is defined in this way, it is not necessary to provide a repeated alphabet of symbols at each location within each pattern assembly like the repeated alphabet of symbols that is necessary at each location of a receptor array (Section 4.1). In a similar way, the role of each ID-neuron is defined by the pattern assemblies to which it connects. 

The fact that connections between two pattern assemblies are always between symbols that match each other means that the proposed system of inter-connections amongst pattern assemblies provides a neural realisation of the relationship between identification and reference, as described in Section 2.5.2. For example, the symbol ‘D’ in the pattern assembly ‘< NP < D > < N > >’ in Fig. 6 is connected to the matching symbol in the pattern assembly ‘< D 0 t h e >’ and it is envisaged that there would be similar connections to other pattern assemblies representing words in the grammatical class of ‘determiners’. Thus ‘D’, as a reference to that grammatical class, has neural connections to pattern assemblies that represent the class. As in Wsbr, the term neural reference will be used for one or more neurons that are the neural equivalent of a reference.
4.3.3 The Role of Boundary Markers. Readers who are familiar with Wsbr will notice a difference between the example shown in Fig. 6 and the examples in Wsbr: the structure shown in Fig. 6 contains neural symbols representing brackets whereas all brackets are omitted from the examples shown in Wsbr.
Brackets have been included in Fig. 6 so that the correspondence between pattern assemblies and SP patterns can be clearly seen. However, it is not at present clear whether brackets or anything like them are needed in the SP-neural proposals. Given this uncertainty, they were omitted from the examples in Wsbr so that the key ideas would not be obscured by details.
4.4 Creating Neural Analogues of Multiple Alignments 

Given a structure of receptor arrays, pattern assemblies and their interconnections as described so far, how can it function to identify the neural equivalent of ‘good’ multiple alignments like the one shown in Fig. 1? 

It is envisaged that each pattern assembly will respond to incoming stimulation in a manner that is similar to the responses of an individual neuron. Below a certain threshold, there will be relatively little response amongst neurons in the pattern assembly. But when inputs exceed the threshold, the pattern assembly will ‘fire’ and all the neurons in the assembly will become active together (this is ‘ignition’ described by Pulvermüller, 2003). 

It is envisaged that the neural equivalent of a multiple alignment will be created when each of the corresponding pattern assemblies and the connections between them are relatively active as suggested by the connections shown with unbroken lines in Fig. 6. Other pattern assemblies and other connections will be relatively quiet, as suggested by the connections shown with broken lines in the same figure. 

It seems possible that there may also be a system of inhibitory connections amongst pattern assemblies—perhaps mediated by structures below the cortex—that would dampen down excessive neural activity (Milner, 1957) and would have the effect of forcing a decision amongst competing alternatives so that the ‘winner takes all’. A mechanism of that sort operates in the innervation of the Basilar membrane, where position along the length of the membrane encodes the frequency of sound and lateral inhibition has the effect of strengthening the response where the signal is strongest whilst suppressing the response in neighboring regions (von Békésy, 1967). 

Another mechanism that may help to prevent excessive excitation of pattern assemblies are inhibitory connections amongst the input fibres to pattern assemblies, as described in Section 4.5, next. 

4.5 Keeping Track of Order in Perception 

As the system has been described so far, a stimulus like ‘b o y’ would produce the same level of response in a pattern assembly like ‘< N 2 y o b >’ as it would in a pattern assembly like ‘< N 3 b o y >’. In other words, there is nothing in what has been proposed to keep track of the ordering or arrangement of elements in a pattern. 

Our ability to recognise patterns despite some jumbling of their elements (e.g., solving anagrams) is consistent with the scheme that has been described. But the fact that we can see the difference between an anagram and its solution shows that something else is needed. Some kind of mechanism is required to distinguish between two kinds of situation: 

· Fibres leave a pattern assembly or one portion of a receptor array and arrive together, in the same relative positions, at one portion of another pattern assembly. Fibres that conform to this rule will be described as coherent. 

· Fibres arrive at one portion of a pattern assembly from a variety of different sources or, if they come from one source, their relative positions are not preserved. This kind of arrangement will be described as incoherent. 

When signals arrive at a pattern assembly, they should produce a stronger response in the first case than in the second. A possible mechanism to ensure that this happens would be lateral connections amongst the fibres of a coherent bundle that would have the effect of increasing the rate of firing in the bundle if the majority of them are firing together. When any one fibre in the bundle is firing, then signals will be carried to neighboring fibres via the lateral connections and these signals should lower the threshold for firing and thus increase the rate of firing in any of the neighboring fibres that are already firing. An alternative scheme that should achieve a similar effect is inhibitory connections amongst fibres that are incoherent. 

If signals arrive in a temporal sequence, then other possible mechanisms include ‘synfire chains’ and temporal ‘sequence detectors’, as described by Pulvermüller (2002, 2003). However, these appear to be less suitable for keeping track of order in spatially-distributed visual patterns, seen in a single glance. 

4.6 Unsupervised Learning of Connectionist Structures
It is envisaged that learning in SP-neural may occur in a manner that is similar to SP70 (Section 3.4): pattern assemblies may be added to a repository of ‘Old’ pattern assemblies in much the same way that patterns are added to the collection of Old patterns in SP70; and there may be periodic sifting and sorting of those pattern assemblies to retain those that are ‘good’ and to discard those that are ‘bad’. As with SP patterns, each pattern assembly is evaluated in terms of principles of minimum length encoding, and the frequency measure associated with each assembly (Section 4.2.1) has a key role in this evaluation.
As was indicated in Wsbr, the creation of a new pattern assembly is unlikely to mean growing new neurons from scratch. Although there is evidence that new nerve cells can grow in mature brains (Shors et al., 2001), it remains true that the bulk of neurons in the brain are present at birth. Much of the cortex may be pre-wired in the form of pattern assemblies, with lateral connections between neighboring and nearby neurons already in place. In that case, a new assembly may be brought into existence by the relatively simple process of breaking connections at the boundaries. Something like this is suggested by evidence for the progressive weakening of connections between cells that do not normally fire at the same time (Pulvermüller, 1999, pp. 254-255) except that, in the present proposal, connections at the boundaries would be broken completely when a pattern assembly is first created rather than merely weakened (more about this below). 

Each new pattern assembly would also need appropriate connections with receptor arrays and other pattern assemblies. At first sight, this suggests the growing of new fibres, many of which would be quite long. It is much more plausible to suppose, as Hebb suggested, that there are pre-established long connections between different parts of the cortex and that new connections across the cortex may be established via the creation of short connecting links to those longer fibres, much as a new telephone may normally be installed by connecting it to the cable that already runs down the street.
Any pattern assembly that is no longer needed may be taken out of service by the relatively simple process of reversing what was done to create the assembly in the first place.
So far, our discussion has implied that the creation of new connections means the growth of new fibres and synapses and that the destruction of these connections means the destruction of those same fibres and synapses. Although there is evidence for the growth and destruction of short ‘spines’ and synapses on the dendrites of neurons in mature brains (see, for example, Trachtenberg et al., 2002), it is also possible that pre-established synapses are switched on or off somehow according to need. Something like this would enable us to account for the speed with which we can establish memories for names, faces, events and so on, as was discussed in Wsbr.

4.6.1 Short-Term and Long-Term Memories. In this article, a single mechanism—the creation of pattern assemblies—has been proposed for the laying down of new memories regardless of whether such memories are for things like telephone numbers that we are liable to forget quickly or for experiences that stay with us for life. Superficially, this seems to conflict with the long-established distinction between short-term and long-term memories.

The tentative suggestion here is that the creation of pattern assemblies is a basic mechanism for recording memories but that its neural substrate and style of operation may vary in different parts of the brain. Given the widely-held view that the hippocampus has a central role in the storage of new memories (see, for example, Squire & Zola-Morgan, 1991), we may suppose that neurons in that part of the brain are optimised for speed in the laying down of memories but not the long-term stability of those memories, somewhat like random access memory in a computer. And we may suppose that some of the memories that have been laid down quickly in the hippocampus may be transferred at a more leisurely rate to parts of the cortex where they are more stable, rather like secondary storage in a computer. In the light of our earlier discussion, a possible difference between short and long term memory is that the former may be mediated by the activation and de-activation of pre-existing synapses whereas the latter may be mediated by the growth and destruction of synapses and dendritic spines.
In general, the supposition that there may be one mechanism for creating memories is compatible with the idea that there may be variations in the way that mechanism is realised, and in the way it operates, in different parts of the brain.

5 Discussion 

This section considers two issues relating to the functional aspects of the SP-neural proposals. This discussion complements that in Section 5 of Wsbr, which considers the sharing-by-reference scheme in relation to some other issues in the connectionist representation of knowledge.
5.1 Perceptual Constancies 

A possible objection to the SP-neural proposals is that they are inconsistent with the ‘constancy’ phenomena in perception. These include: 

· Size constancy. We can recognise an object despite wide variations in the size of its image on the retina—and we judge its size to be constant despite these variations. 

· Brightness constancy. We can recognise something despite wide variations in the absolute brightness of the image on our retina (and, likewise, we judge its intrinsic brightness to be constant). 
· Color constancy. In recognising the intrinsic color of an object, we can make allowances for wide variations in the color of the light which falls on the object and the consequent effect on the color of the light that leaves the object and enters our eyes. 

If the pattern recorded in a receptor array was merely a copy of sensory input there would indeed be wide variations in the size of the visual pattern projected by a given object and similar variations in brightness and colors. This would create great difficulties in finding congruencies between sensory patterns received by the receptor array and stored patterns represented by pattern assemblies.

The suggestion here is that much of the variability of sensory input from a given external source has been eliminated at a stage before the information reaches the receptor arrays. Lateral inhibition in the retina emphasises boundaries between relatively uniform areas. The redundant information within each uniform area between the boundaries is largely eliminated, which means that the image of any given object is, in effect, shrunk to the minimum size needed to record the attributes of that object. Since this minimum will be the same regardless of the size of the original image, the overall effect should be to reduce or eliminate variations in the sizes of images from a given object. 

In a similar way, the ‘primal sketch’ created by lateral inhibition should be largely independent of the absolute brightness of the original image—because it is a distillation of changes in brightness within an image, independent of absolute values. And adaptation in the early stages of visual processing should to a large extent prevent variations in brightness having an effect on patterns reaching the receptor array. 

With regard to color, Edwin Land’s ‘retinex’ theory suggests that constancy effects are achieved by processing in the retina and in the visual cortex (see Nicholls et al., 2001, pp. 437-439). This is consistent with the idea that this source of variability has been removed at a stage before sensory input is compared with stored patterns.
5.2 Learning
Given the central importance of pattern assemblies in SP-neural, and the origin of that concept in Hebb’s (1949) concept of a cell assembly, one might expect that learning processes in the present proposals would be similar to Hebb’s suggestion that there is a progressive strengthening of the synapses linking two nearby neurons if one of them repeatedly activates the other.
However, notwithstanding the popularity of this idea, and its adoption in many varieties of artificial neural network, the learning processes proposed in SP-neural are quite different. As we saw in Section 4.6, it is envisaged that, in accordance with the SP theory, varieties of Old pattern assemblies would be derived from the neural equivalent of partial alignments and that there would be periodic sifting and sorting of the pattern assemblies to retain those that are ‘good’ in terms of minimum length encoding and discard those that are ‘bad’. The following paragraphs consider the merits of this concept of learning relative to Hebb’s proposals.
One possible reason for the popularity of Hebb’s theory of learning is its elegant simplicity. Another possible reason is that it accords with the everyday observation that repetition does indeed normally strengthen our memories for entities, events and associations amongst them.
 And the Hebbian view of learning is broadly in accordance with the slow build up of knowledge throughout childhood and beyond and the fact that it takes us several years to learn something like a language.
And yet this view of learning is in direct conflict with everyday observations of what we can and do learn from a single occurrence or experience. If we are involved in some kind of accident which does not cause us to lose consciousness, we can remember the sequence of events and recount them with little difficulty. A possible objection here is that, where strong emotions are involved, we may rehearse our memories many times and thus strengthen the links amongst the corresponding cell assemblies. But the same objection carries much less force in more humdrum situations: on any given evening, we normally have no difficulty in recalling the events of the day and this without any apparent rehearsal. And memories for some events that we have seen only once may stay with us for a life time.
Because the slow growth of cell assemblies does not account for our ability to remember things immediately after a single exposure, Hebb adopted a ‘reverberatory’ theory for this kind of memory. But, as was noted in Wsbr, it is difficult to understand how this kind of mechanism could explain our ability to assimilate a previously-unseen telephone number. Each digit in the number may be stored in a reverberatory assembly but this does not explain how we remember the sequence of digits in the number (Milner, 1996, p. 71). 

In the learning scheme for SP-neural that is outlined in Section 4.6, new pattern assemblies can be created in response to a single sensory input. This is consistent with our ability to remember unique events and to retain those memories for long periods. As a model for short-term memory, the SP-neural proposals do not suffer from the weakness in the reverberatory model that Milner identified: we may remember the sequence of digits in a telephone number by creating a new pattern assembly that represents the sequence.
While it is true that we do remember unique events and unique sequences of events, it is also true that that we forget many things in the sense that we cannot readily retrieve them when we need them and may feel subjectively that they have gone for good.
 Whether we remember things or forget them depends partly on their emotional significance but also on the frequency with which they have occurred in our experience. The latter point accords with the Hebbian concept of learning but it is also consistent with SP-neural because frequency of occurrence has a central role in determining which patterns should be retained and which should be discarded in the sifting and sorting phase of learning (Sections 2.2.1, 3.4 and 4.6).
An ability to lay down new pattern assemblies relatively quickly explains how we can learn things after a single exposure but it does not, in itself, explain why it takes so long to learn something like a language. The principles on which SP70 is based suggest an answer to that question. The abstract ‘space’ of alternative grammars for any natural language is astronomically large and, even using heuristic techniques like those in the SP models, it takes a significant amount of time to search amongst the many possibilities. Finding a tolerably good grammar for any natural language is a very complex problem and it cannot be solved in an instant. These remarks apply a fortiori when the term ‘grammar’ means an integrated structure of syntax and semantics, as in the learning of a meaningful natural language.
A final difference that we may note between Hebbian concepts of learning and those in SP-neural is that the latter makes liberal use of neural references while the former makes no use of them. The use of neural references seems to be the key to learning the kinds of ‘symbolic’ structures long recognised in AI and the absence of neural references in the Hebbian framework may be the reason why symbolic learning has proved so elusive there.
The foregoing points are summarised in Table 1. 
Table 1

Similarities and Differences between Hebb’s (1949) Synaptic-Strengthening Theory of Learning (with His Reverberatory Theory of Short-Term Memory) and the Learning Processes Proposed in SP-Neural

	Hebb’s Theories
	Learning Processes in SP-Neural

	Relatively simple.
	Somewhat more complex.

	Two distinct mechanisms for

short-term and long-term memories.
	One kind of mechanism for short-term and long-term memories, with probable variations in neural substrate and mode of operation.

	Does not account for our ability to learn 

sequences of instances or events from

one exposure.
	Does account for our ability to learn 

sequences of instances or events from

one exposure.

	Consistent with the observation that our

memories are strengthened by repetition.
	Consistent with the observation that our

memories are strengthened by repetition.

	Broadly consistent with the slow build up

of knowledge throughout life and the time

it takes to take to learn a language.
	Provides an alternative explanation for the slow build up of knowledge throughout life and the time it takes to take to learn a language.

	Makes no use of neural references. This

may be why the learning of symbolic

structures has proved to be so elusive.
	Uses neural references. This seems

to provide the key to the learning of symbolic structures.


6 Conclusion
In this paper and its companion, I have tried to show how the main elements of the SP theory may be realised in terms of neural structures and processes. If residual problems can be solved, we may hope to achieve a connectionist theory of perception and cognition that inherits the considerable explanatory force of the parent theory and the unified view that it provides for a range of topics, including the representation of knowledge, pattern recognition and categorization, retrieval of information, the parsing and production of sentences, probabilistic and exact forms of reasoning, unsupervised learning, planning and problem solving.
The area of greatest uncertainty in these proposals is how to ensure that matching of patterns is done in such a way that the ordering of features is significant (Section 4.5). Another area of uncertainty is the possible roles of inhibitory connections in dampening down excessive excitation and in creating a ‘winner takes all’ response to sensory stimulation (Section 4.4). It would also be useful to know whether and how inhibitory connections might help to resolve the problem of ordering.
Some of these uncertainties may be reduced by theoretical analysis and the building of computer models but they are ultimately empirical questions that require appropriate neurophysiological evidence. In general, the proposals in this paper and its earlier companion, raise a number of questions and make a variety of predictions that invite empirical investigation. To the list of empirical predictions that were identified in Wsbr, we may now add:
· Each pattern assembly responds to sensory inputs in the same manner as an individual neuron: below a certain threshold, the assembly is relatively quiet and above that threshold, the assembly ‘fires’.
· After early processing that identifies low-level features, sensory input is related to stored knowledge by a process which is the neural analogue of the building of multiple alignments in the SP theory.
· As was suggested in Wsbr, it seems necessary to suppose that, on short timescales, learning is mediated by the activation and de-activation of pre-existing synapses. At the same time, it is possible that learning and forgetting of long-term memories is mediated by the creation and destruction of synapses and dendritic spines.
As before, these predictions are, in principle, falsifiable, but obtaining relevant evidence is likely to be a technical challenge.
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� See also Wolff (in press, 2001).


� An umbrella term for ‘minimum message length encoding’ and ‘minimum description length encoding’.


� As previously indicated, this alignment has been rotated by 90o compared with Fig. � HYPERLINK  \l "figure1" ��1� because that allows it to fit better on the page. In this arrangement, the New pattern is in column 0 and the Old patterns are in the other columns, one pattern per column.


� See note 6.


� Petersen et al. (1998) describe evidence that synapses can be switched on fully in a ‘digital’ manner after one exposure but no one, to my knowledge, has found evidence that synapses might be switched off in a similar way. Interestingly, Petersen and his colleagues suggest that the commonly-held view that synapses are switched on gradually by repeated stimulation might be a statistical artifact arising from the examination of multiple synapses with variable thresholds for activation. They also suggest that synapses with digital characteristics would have an adaptive advantage in reducing errors in neural processing, in much the same way that digital techniques reduce errors in electronic systems.


� The familiar observation that our ability to remember things correlates with their frequency in our experience has been confirmed in formal studies (see, for example, Ellegård,1960; Roby, 1969; Underwood, 1969a and b). It is not without interest in this connection that frequency also has a substantial impact on perception as, for example, in the ‘word frequency effect’, a phenomenon much studied in the 1950s (see Rubenstein & Aborn, 1960, for a review).


� Of course, we can never be sure that something that has apparently been lost from memory might not later be retrieved. For the purposes of the present discussion, it matters only that some things are more readily retrieved from memory than others and that many things are, for all practical purposes, lost.





_1161526697.unknown

_1162713600.unknown

_1160298045.unknown

