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Abstract

In his theory of cell assemblies, Hebb (1949) envisaged that the neurons in any one low-level assembly may be literally shared by two or more higher-level assemblies. This paper shows that this aspect of the cell assembly theory—which has not been challenged by subsequent authors—has serious weaknesses in representing alternative orderings (or spatial configurations) of low-level assemblies. The paper also shows how this weakness of the cell assembly concept—and several others identified by Milner (1996)—can be overcome if sharing of structure is achieved by means of a neuron (or small group of neurons) within each higher-level assembly that serves as a proxy for or neural reference to the shared lower-level assembly—so that any one participating neuron belongs in one assembly and only one assembly. The paper also illustrates some of the power of these concepts in the representation of diverse kinds of knowledge and discusses the proposals in terms of some current issues in connectionist theorizing on the representation of knowledge.
1 Introduction
As a mechanism for learning, Hebb (1949) proposed that:
When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased. (p. 62). 

In this way, groups of inter-connected neurons (which Hebb called  cell assemblies) would be progressively built up, each one representing a concept such as ‘table’ or ‘house’. Any such concept may subsequently be recognised if a sufficiently-large subset of the neurons in its cell assembly is stimulated by sensory input, causing the whole assembly to reverberate. 
Although these ideas have been very influential, they have certain weaknesses that have not, to my knowledge, been remedied in any subsequent variants of the cell assembly concept that have been proposed. The purpose of this paper is to describe those weaknesses, identify the reasons for them and show how they may be overcome. The paper also discusses the proposals in terms of some current issues in connectionist theorizing on the representation of knowledge.
It must be emphasised that the primary focus of this article is on the organisation of cell assemblies and not their operation in recognition, learning, inference or other neural function. These latter aspects of the proposals are considered in Wolff (in preparation) which discusses how the elements of the SP theory of computing and cognition (Wolff, 2003)
 may be realised in terms of neurons.

2 Weaknesses in the Cell Assembly Concept

In order to account for associations between ideas and hierarchical organisation in our concepts, Hebb (1949) proposed that there could be corresponding associations and hierarchies amongst cell assemblies. He also envisaged that any one low-level assembly (representing a concept such as ‘line’ or ‘angle’) might be shared by two or more higher-level assemblies (representing concepts such as ‘triangle’, ‘rectangle’, ‘pentagon’ etc.) (see also Hebb, 1958, pp. 103-107). 
In this connection, Milner (1996) raises some pertinent questions:

How do associations between cell assemblies differ from internal associations that are responsible for the assemblies’ properties? It does not seem likely that both these processes can be the result of similar synaptic changes as is usually assumed. If they were, the interassembly associations would soon become intraassembly loops. A related puzzle is that parts are not submerged in the whole. Doors and windows are integral parts of my concept of a house, but they are also robust, stand-alone concepts.” (p. 71). 
Later on the same page he writes: “Perhaps the toughest problem of all concerns the fact that we have many associations with almost every engram....The brain must be a veritable rat’s nest of tangled associations, yet for the most part we navigate through it with ease.”
And writing about Hebb’s ‘reverberatory’ theory of short-term memory, Milner (1996, p. 71) points out that it is difficult to understand how this kind of mechanism could explain our ability to assimilate a previously-unseen telephone number. Each digit in the number may be stored in a reverberatory assembly but this does not explain how we remember the sequence of digits in the number. 

With regard to the way in which parts may be distinguished from wholes, Hebb (1958) provides a possible answer : 
If two assemblies A and B are repeatedly active at the same time they will tend to become ‘associated,’ so that A excites B and vice versa. If they are always active at the same time they will tend to merge in a single systems—that is, form a single assembly—but if they are also active at different times they will remain separate (but associated) systems. (This means that exciting part of A, for example, has a very high probability of exciting all of A, but a definitely lower probability of exciting a separate assembly, B; A may be able to excite B only when some other assembly, C, also facilitates activity in B). (p. 105). 

This may be part of the answer but it does not get to the bottom of the problem. There is a need to recognise that sharing of structures can be achieved in three distinct ways as illustrated in Fig. 1 and described here:
· Literal sharing. The neurons in the lower-level cell assembly (‘A’ in the figure) are also part of two or more higher-level cell assemblies (‘B’ and ‘C’ in the figure). When there is literal sharing of structures, any one participating neuron may belong in one or more cell assemblies.
· Sharing by reference. The lower-level cell assembly (‘A’) is outside the higher-level cell assemblies (‘B’ and ‘C’) but each of the latter contains one or more neurons (shown in the figure as a single neuron marked with a small ‘A’) that are connected to the lower-level assembly. Any such neuron or group of neurons serves as a proxy, agent or representative for the lower-level cell assembly or a reference to it—and we shall refer to any such neuron or group of neurons as a neural reference from one assembly to another. When sharing of structure is achieved in this way then each of the participating neurons belongs in one assembly and only one assembly.
· Sharing by copying. In each of two or more higher-level cell assemblies (‘B’ and ‘C’) there is a copy of the lower-level cell assembly (‘A’). As with sharing by reference, each participating neuron belongs in just one assembly. 
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Figure Caption
Figure 1. Three possible ways in which a low-level cell assembly (‘A’) may be shared by two higher-level cell assemblies (‘B’ and ‘C’). Cell assemblies are enclosed with broken-line envelopes and neurons are shown as unbroken circles.
It is reasonably clear that Hebb and all subsequent authors have not intended the third sense in which cell assemblies might share structure. Although it may have a role in some aspects of cognition, I shall say no more about it in this paper. 

With regard to the first two senses in which cell assemblies may share structure, they have not to my knowledge been clearly differentiated either in Hebb’s writings or in any subsequent writings about cell assemblies (see, for example, Lansner et al., 2003; Bi & Poo, 2001; John et al., 1997; Fujii et. al., 1996; Hetherington & Shapiro, 1993; Gindi et al., 1991; Földiák, 1990; Fodor & Pylyshyn, 1988; Braitenberg, 1978). And Hebb’s descriptions of the cell assembly concept make clear that he envisaged that any one neuron may be part of two or more cell assemblies—which means literal sharing of structures. This has not been challenged by people writing later and it has often been made explicit (see, for example, Palm, 1982, p. 216; Huyck, 2001, p. 385; Pulvermüller, 1999, pp. 257-258; Sakurai, 1998, p. 213). 

But as a means of representing conceptual structures and their inter-relations, literal sharing is problematic. For example, it is difficult to see why assemblies B and C in the top part of Fig. 1 should not simply merge into a single cell assembly. Perhaps more serious is the problem of keeping track of the ordering of shared components in two or more sequences, as described in the next few paragraphs.
Consider a pack of playing cards containing the Ace, King, Queen and Jack of Clubs, all together and in that order. This configuration may be represented within a cell assembly as shown in part (a) of Fig. 2. Here, each card is represented by a cell assembly and the order of the cards within the pack is shown by connections between those cell assemblies. 
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Figure Caption
Figure 2. Representing two orderings using literal sharing. (a) Part of a cell assembly representing four playing cards and their order within a deck of cards before it has been shuffled. (b) As in (a) but with the addition of connections showing a new order for the same four cards after the pack has been shuffled. Key: ‘A’ = Ace, ‘K’ = King, ‘Q’ = Queen, ‘J’ = Jack, ‘C’ = Clubs. Each playing card is itself represented by a cell assembly shown as a broken-line circle. Each connecting line in the figure may be interpreted as a single nerve fibre conducting impulses in one direction or as two (or more) fibres conducting impulses in two directions.
As it stands, the representation is unambiguous. But we run into difficulties if, using literal sharing of structures, we try to add a representation of the pack after it has been shuffled. Part (b) of Fig. 2 shows the result if the same four cards fall together in the pack but in the order Queen, Ace, Jack and King. The addition of connections to represent that order causes the whole structure to become ambiguous. If the connections are two-directional, the Ace, for example, may be followed immediately by any of the other three cards. And even if connections are unidirectional (conforming to the two orderings of the cards), the Ace may be followed immediately by the King or the Jack and the Queen may be followed by the Ace or the Jack.
This example has illustrated the difficulty of representing two or more different sequences of elements by literal sharing of those elements between the sequences. It should be clear that similar difficulties would be encountered in representing configurations of elements in two dimensions using literal sharing of structures. It should also be clear that the solution to the problem of representing sequences that is offered in the next section can, in principle, also be applied to configurations of elements in two dimensions.
3 Sharing by Reference Overcomes the Weaknesses of Literal Sharing
The problem of ambiguity that arises from literal sharing of structures, as just described, can be solved if we use sharing by reference instead. Part (a) of Fig. 3 shows how the first ordering of the playing cards may be represented by a sequence of neurons (or small groups of neurons), each one of which serves as a neural reference to a cell assembly for the corresponding card (shown in the middle of the figure). Part (b) of Fig. 3 shows how the second ordering of the playing cards may be represented by another sequence of neural references to the same four cell assemblies in the middle of the figure. The two sequences are independent and entirely unambiguous.
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Figure Caption
Figure 3. Representing two orderings using sharing by reference. (a) Part of a cell assembly representing a pack of playing cards before shuffling. Each of the small circles represents a neuron (or a small group of neurons) that serves as a neural reference to a cell assembly in the middle of the figure that represents one playing card. (b) Part of a cell assembly representing the same pack of cards after shuffling, with the same conventions as in (a). The abbreviations and other conventions are the same as in Fig. 2. 

Apart from eliminating this kind of ambiguity, neural references also provide neat solutions to the other problems identified by Milner (1996): 

· Associations between cell assemblies may be encoded by building a new cell assembly containing neural references to the cell assemblies that are to be associated. These associations are then internal to the new cell assembly and the original cell assemblies retain their identities. 

· In a similar way, there can be a stand-alone cell assembly for each component of a house while the assembly for the house itself comprises a collection of neural references to the components. Thus the concept of a house does not become muddled with concepts for doors, windows etc. 
· It is true that there must be a “rat’s nest” of associations in the brain but neural references allow these to be encoded in a way that does not disturb the integrity of each concept, in much the same way that the coherence of a web page is not affected by links to that page from other web pages or the number of such pointers or references there may be.
· The sequence of digits in a telephone number may be stored as a sequence of neural references, each one to a cell assembly representing one digit, in much the same manner as the representations shown in Fig. 3.
4 Neural References and the Representation of Knowledge
With the use of neural references, cell assemblies acquire much of the expressive power of grammars, hierarchies and other representational schemes that have been the bread and butter of AI for many years. The following two subsections provide some examples.
In order to distinguish the original cell assembly concept (with literal sharing of structures) from the sharing-by-reference version that has been described, we shall use the term pattern assembly for the latter concept.

In the figures that follow, arrows on connections between pattern assemblies show the direction of flow of sensory signals that is envisaged during the process of recognising concepts (to be considered in more detail in Wolff (in preparation)).

4.1 Class Hierarchies, Part-Whole Hierarchies and Their Integration
Fig. 4. shows a hierarchy of classes from the relatively abstract ‘animal’ (‘A’) near the bottom of the figure, via ‘vertebrate’ (‘V’), ‘mammal’ (‘M’), ‘cat’ (‘C’), to a specific cat ‘Tibs’ shown near the top of the figure. At the same time, the figure shows the part-whole relations between each class and the descriptive elements of the class. In a more elaborate example, these elements may themselves be broken down into a hierarchy of parts and subparts.
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Figure Caption
Figure 4. An example showing how pattern assemblies with neural references between them can represent class-inclusion relations and part-whole relations and their integration. Key: ‘C’ = cat, ‘D’ = dog, ‘M’ = mammal, ‘V’ = vertebrate, ‘A’ = animal, ‘...’ = further structure that would be shown in a more comprehensive example. Other conventions are described in the text. 
As in previous figures, each pattern assembly is enclosed in a broken-line envelope and unbroken circles or ellipses represent individual neurons or small groups of neurons. To simplify the figure, connections between neurons within each pattern assembly are not shown, and individual neurons are omitted from the lower-level pattern assemblies. 

It is envisaged that each pattern assembly will be like a ‘pattern’ in the SP theory (Wolff, 2003) and will, accordingly, contain a neuron or a small group of neurons that serves as a label or identifier for the pattern assembly. These identification neurons appear in the figure at the left-hand end of each pattern assembly and they are shown with larger circles or ellipses and larger typeface that is also oblique. Neural references are represented in the figure by the smaller circles in each pattern assembly (with smaller non-oblique type if they are labelled) and with afferent connections to those circles.
Like Hebb’s original cell assembly concept and later variants, it is envisaged that any given cell assembly will reverberate if a sufficiently large subset of its neurons are stimulated. In this respect, it is somewhat like a single neuron writ large: it remains largely quiescent until stimulation exceeds a certain threshold and then it will ‘fire’ or ‘ignite’.
In this example, the whole structure achieves the effect of ‘inheritance’ in an object-oriented system: the pattern assembly representing the individual cat called ‘Tibs’ inherits the feature ‘purrs’ from the ‘cat’ pattern assembly, the features ‘suckles young’ and ‘furry’ are inherited from the ‘mammal’ pattern assembly, ‘backbone’ is inherited from the ‘vertebrate’ assembly, and ‘eats’ and ‘breathes’ are inherited from the ‘animal’ pattern assembly.
In these proposals, it is envisaged that connections between pattern assemblies may be relatively long, often extending right across the cortex so that any given concept may incorporate neural references to structures in diverse areas of the cortex including those concerned with vision, touch, hearing, smell and so on. By contrast, it is envisaged that the neurons within any one pattern assembly will be close together within the cortex, perhaps confined to one column of the cortex, and that connections between those neurons will be relatively short and mainly between near neighbors. With this scheme, we can account for the way in which most of our concepts relate to several different senses without needing to suppose, as Hebb did, that any one cell assembly might span the whole cortex.
4.2 Syntax of Natural Language
The concepts of neural reference and sharing by reference suggest solutions to the challenges for any neural theory of language that have been identified by Pulvermüller (2003, pp. 144-146): 

(a) How can centre-embedded sequences such as ‘ABCC'B'A'’ be represented?

(b) How can discontinuous constituents and distributed words be realised (e.g., switch ... on)?

(c) How is it possible to specify the syntactic relatedness of distant elements in a string (e.g., ‘number’ agreement between the subject of a sentence and its main verb)? 
(d) How can repeated use of the same word or lexical category within a sentence be represented? A related question, not mentioned by Pulvermüller, is how recursive structures might be represented?

(e) How can lexical categories—such as ‘noun’, ‘verb’ and ‘adjective’—be realised in a neuronal network? 

The answers suggested here are somewhat different from those proposed by Pulvermüller in chapters 8 to 12 (ibid.) and outlined in Section 5.5, below. 

A comprehensive answer to question (c) is outside the scope of this short paper. In outline, a possible answer hinges on the ability of the SP system to represent and process long-distance dependencies using ‘patterns’ that express those dependencies (see Wolff, 2000, 2003). It is envisaged that, within a system of pattern assemblies representing grammatical rules, there may be pattern assemblies that express long distance dependencies in a similar way, using neural references to exert their influence. 
With regard to questions (a), (b), (d) and (e), the concept of neural reference allows them to be answered in a way that is a close analogue of the organisation of a context-free phrase-structure grammar, as illustrated in Figs. 9, 10, 11 and 12, and discussed in the following paragraphs.
Fig. 5 shows how, using neural references, ‘B ... B'’ may be embedded within ‘A ... A'’ and how ‘C ... C'’ may be embedded within ‘B ... B'’. 

[image: image5.png]TR R L
-

-

-~
~
Il T





Figure Caption
Figure 5. How centre-embedding in natural language syntax may be modelled with pattern assemblies and neural references. In this and the remaining figures, the conventions are the same as in Fig. 4. 

In a similar way, the ‘embedding’ of a noun-phrase pattern assembly within an assembly representing the phrase switch ... on may be achieved by means of a neural reference to the noun phrase placed between neural references to switch and on, as shown in Fig. 6.
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Figure Caption
Figure 6. How discontinuous structures in natural language syntax may be modelled with pattern assemblies and neural references.

This figure also shows how grammatical categories such as ‘determiner’ (‘D’) and ‘noun’ (‘N’) may be represented. The pattern assembly representing the structure of a noun phrase (‘NP’) contains neural references to each of these categories and each neural reference is connected to pattern assemblies representing the members of the category. 

Fig. 7 shows how a noun phrase (‘NP’) may be repeated within a sentence by the provision of two neural references to a pattern assembly representing the structure of a noun phrase. The repetition is expressed by the neural references, not by the structure itself. 
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Figure Caption
Figure 7. How repeated structures in natural language syntax may be modelled with pattern assemblies and neural references.

Readers may wonder whether there is not a risk of confusion between the two instances of the ‘NP’ structure in the ‘S’ pattern assembly. This is really an issue of how these structures would be used in the analysis and production of sentences—matters to be considered in Wolff (in preparation). Meanwhile, a brief answer is that when we process a sentence in listening or reading, we apply our attention to different parts of the sentence at different times. Hence, the NP structure can be used in the early stages to analyse the first noun phrase and used again, at a later time, to analyse the second noun phrase.
Fig. 8 shows how the recursion in phrases like the very very ... fast car may be represented with neural references. The first of the two pattern assemblies identified as ‘X’ contains a neural reference to itself and this expresses the recursive nature of ‘very ...’. Notice that, for the production of language but perhaps not for the analysis of language, it is also necessary to provide a ‘null’ member of the ‘X’ category—so that it is possible to escape from the recursive loop. These pattern assemblies are close analogues of the rules in a phrase-structure grammar that would be needed to describe this kind of language structure. 
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Figure Caption
Figure 8. How recursion in natural language syntax may be modelled using pattern assemblies and neural references.
5 Issues in Connectionist Theorizing on the Representation of Knowledge
This section considers the present proposals in relation to issues that have arisen in other connectionist theorizing on the representation of knowledge. The main focus is on the representation of structure with relatively little about how knowledge structures may participate in recognition, reasoning and learning—functional issues which are largely deferred to Wolff (in preparation). For the sake of brevity in the rest of this paper, the sharing-by-reference scheme described and illustrated in Section 4 will be referred to as ‘SBR’.
The main focus in this section is on ways in which the SBR scheme can resolve issues that have been debated in the literature. Section 5.6 summarises the apparent strengths of SBR and raises an issue that may or may not prove to be a weakness in the proposals.
5.1 Distributed and Localist Representations

An issue that pervades much of the literature on connectionist representations of knowledge is whether representations should be ‘distributed’ or ‘localist’ (sometimes called ‘direct’). Definitions vary a little but the following are representative:
· In a distributed representation “... each neuron responds to a variety of different input stimuli, and ... many neurons are active for each input stimulus.” (O’Reilly & Munakata, 2000, p. 82) or “... many neurons participate in the representation of each memory and different representations share neurons.” (Amit 1995, p. 621) or “Each active cell is active also in other events, and identification of an event requires interaction with more than one cell.” (Gardner-Medwin & Barlow, 2002, p. 479).
· In a localist representation, by contrast, “... only one unit represent[s] each input pattern ...” (O’Reilly & Munakata, 2000, p. 82) or “... activity in individual units can be interpreted directly . . .” (Thorpe, 1995, p. 550, cited in Page, 2000) or “A direct representation of an event contains at least one active cell that is active in no other event. The cells that directly represent an event in this way have a one-to-one relation between their activity and occurrences of the event.” (Gardner-Medwin & Barlow, 2001, p. 479).

In terms of these definitions, how should we classify the SBR scheme? As we shall see, quite a lot hinges on the precise meaning of terms like ‘input stimulus’, ‘memory’, ‘representation’, ‘event’ and ‘input pattern’. Pending further discussion, we shall use the term ‘stimulus’ for all these terms.

Let us start with the two main elements of the concept of a distributed representation:

· Many neurons respond to a given stimulus. This is clearly true of a hierarchy of pattern assemblies like the one shown in Fig. 4 since the appearance of the cat called Tibs will cause many of the neurons in the hierarchy to respond. In a similar way, stimulation by an appropriate sentence will excite many of the cells in the structure shown in Fig. 7. Even with features at low levels—such as lines at particular angles—many neurons are involved in their recognition (Hubel, 2000; Nicholls et al., 2001; Barlow, 1982).
· Each neuron responds to many stimuli. Identification neurons like ‘Tibs’ in Fig. 4 and ‘S’ in Fig. 7 and the cell assemblies in which they appear allow generalization in two distinct ways:
· As in Hebb’s original cell assembly concept, a cell assembly will reverberate or ‘fire’ if any reasonably large subset of its neurons is stimulated. This means that ‘Tibs’ may be recognised even if he is partially hidden behind a bush—and within fairly wide limits it does not much matter which parts of him are obscured. In a similar way, a sentence (‘S’) conforming to a structure like the one shown in Fig. 7 can be recognised even if one or two words are obscured by noise—and these may vary from one occasion to another.
· A pattern assembly like the ‘S’ assembly shown in Fig. 7, together with pattern assemblies that feed into it, is structured like a grammar that generates a variety of sentences such as this boy loves that girl, that girl hates this boy, and so on. This means that the ‘S’ identification neuron will respond to any of these sentences.
On the strength of these considerations, it is clear that SBR may be regarded as a distributed form of representation: many neurons are involved in the recognition of a given stimulus and any given neuron responds to a range of different inputs. But, depending on the precise meaning of ‘input pattern’, ‘directly’ and ‘event’, this style of representation may also be regarded as a localist or direct kind of representation because there is a one-to-one correspondence between identification neurons and their corresponding concepts.

If terms like ‘input pattern’ and ‘event’ are interpreted in the strictest possible way as patterns that are totally fixed and cannot vary by even as much as one pixel, then only the most rigid and psychologically-implausible kind of template-matching system will fit the definitions of a localist representation. But if localist representations are “grandmother cell representations, because their use must imply that somewhere in the brain is a neuron that (uniquely) represents one’s grandmother.” (O’Reilly & Munakata, 2000, p. 82) then the term allows for variability in the input stimulus since one’s grandmother, like anyone else, may appear in a variety of clothes or moods or engaged in a variety of activities, and so on. What one normally regards as a specific entity (such as one’s grandmother) may also be regarded as a class of inter-related percepts with the same essential character as more general classes or concepts such as ‘person’, ‘table’ and so forth. If this is accepted, then any system, like the SBR scheme, where each concept has at least one neuron that represents that concept and no other, may be regarded as a localist system.

However one may classify the SBR scheme, it has certain strengths, including several that have been attributed to distributional representations (Hinton et al., 1986) and, in keeping with arguments put forward by Page (2000), it is largely free of the supposed weaknesses of localist forms of representation:
· Counting. It is easy to see how the system might achieve the kind of counting that is needed for statistical forms of learning: “If there is at least one cell in a representation of the external world that fires in a one-to-one relation to the occurrence of an event ..., then there is no difficulty in seeing how physiological mechanisms within such a cell could generate an accurate measure of the event frequency.” (Gardner-Medwin & Barlow, 2001, p. 478). If ‘event’ means the appearance of one instance of a given concept, then these remarks clearly apply to identification neurons in SBR.

· Efficiency. “Fewer total units are required to represent a given number of input stimuli if the representation is shared across units, because individual stimuli can be represented as different combinations of unit activities, of which there are a very large number for even modest numbers of units. In contrast, one unit per pattern is required for localist representations.” (O’Reilly & Munakata, 2000, p. 83).
There is something of a fallacy here because any system that can generate a large number of combinations (or permutations) of simpler elements—such as a grammar or, indeed, the number system itself—does not in itself encode any one of those combinations. From Peano’s Axioms and 10 digits, we can generate an infinite range of decimal numbers—but the specification of any one number still requires us to say what digits it contains and the order in which they occur.
With regard to efficiency, the main attraction of the SBR scheme is that, as indicated in the Appendix, it allows us to represent knowledge with lossless compression.
, 
  It is true that that there is at least one identification neuron for every concept, but sharing by reference allows sub-structures to be shared between concepts and this can mean substantial savings in the space required to represent a range of concepts. 
· Similarity. Because SBR provides for sharing of structures, it allows concepts to be grouped in terms of the amount of structure that they have in common. For example, ‘Cat’ and ‘Dog’ in Fig. 4 are both classified as mammals because they both have a backbone, they both suckle their young on milk, they are both furry, and so on.
· Generalization. Distributed representations supposedly allow generalisations of concepts while localist representations are thought not to have this capability. However, with regard to the SBR scheme, any concept may generalize across a variety of specific stimuli via either or both of the two mechanisms that were described earlier in this subsection.
· Discrimination. The flip side of generalization is discrimination: “Any theory of engram formation must take into account the relationship between category and instance—the ability we have to distinguish our own hat, house, and dog from hats, houses, and dogs in general.” (Milner, 1996, p. 70). A neat feature of the SBR scheme is that it solves this problem: ‘Tibs’ in Fig. 4 may be recognised as an individual and, at the same time, he may be recognised as a cat, a mammal, a vertebrate, and an animal.

· Content-addressable memory (Hinton et al., 1986, p. 78). As in the original cell assembly concept, stimulation of any subset of a cell assembly (or distributed representation) may retrieve the whole concept. The same appears to be true of the SBR scheme.
· Graceful degradation. It is true that, if ‘grandmother’ is represented by a single cell, we will not be able to access our knowledge of her if that cell dies. But as Barlow points out (1972, pp. 389-390), a small amount of replication will give considerable protection against this kind of catastrophe. Each identification neuron or neural reference in the SBR scheme may be a small cluster of neurons rather than a single neuron, or the entire structure of our knowledge may be replicated two or three times. Arguments and calculations presented in the Appendix suggest that, with the SBR scheme for representing knowledge, there are enough neurons in the cortex to make these kinds of replication feasible.
Even without this kind of protection, high-level pattern assemblies may continue to fire in response to appropriate stimuli even if some of their lower-level pattern assemblies are lost, because any pattern assembly may fire when only a subset of its neurons are stimulated (Page, 2000, p. 461). 
· Accuracy. “... in the binary case, a distributed representation over n units can encode as many as 2n different values, whereas localist units can only represent n different values (at an accuracy of 1 / n).” (O’Reilly & Munakata, 2000, p. 83).
Much the same can be said here as was said about efficiency (above): the ability to generate a range of alternative values is not the same as actually encoding those values. As before, SBR has the attraction that it provides for the lossless compression of information. This means that for any given level of accuracy of a description, storage demands can be substantially less than if no compression is applied. Conversely, for any given size of a description, the level of accuracy of the description can be higher when there is lossless compression of the information in the description compared with when there is none. 
· Learning. “Distributed representations allow for the bootstrapping of small changes that is critical for learning ....” (O’Reilly & Munakata, 2000, p. 84). The theory of learning that is envisaged for SBR derives from the SP theory (Wolff, 2003) and is quite different from Hebbian learning or related kinds of learning. These ideas will be described in Wolff (in preparation).

· “No one has ever found a grandmother cell”. This objection to localist representations is well discussed by Page (2000, pp. 461-463). The gist of his argument is that the assertion is not true. He reviews and discusses a range of studies that provide direct or indirect evidence in support of localist encoding of knowledge.
5.1.1 Distributed Representations and the Sharing of Structure. In any ‘pure’ form of distributed representation, structures are shared in a literal manner, just as they are in Hebb’s original concept of a cell assembly. Hence, any such representation suffers from the same problems as were described for the cell assemblies with literal sharing of structures. Possible examples to which these remarks apply include the Leabra framework (O’Reilly, 1998; O’Reilly & Munakata, 2000), the form of representation which is the main focus of discussion in Gardner-Medwin & Barlow (2001), and multi-layer perceptrons (Rosenblatt, 1958; Rumelhart et al., 1986).
5.2 Cardinal Cells

Identification neurons, described above, are somewhat like the ‘cardinal cells’ described by Barlow (1972) in that each one represents a single concept and integrates the signals from simpler structures below, and those lower-level structures can appear in two or more higher-level structures.

In the light of the arguments presented earlier, we can see that, if cardinal cells share structure in a literal manner as is normally assumed, then the concept suffers from a weakness that is comparable with the weakness of the cell assembly concept in the representation of alternative orderings of elements.

In  Fig. 9, the cardinal cell ‘S1’ represents the sequence Ace, King, Queen and Jack of Clubs, in that order. The order may be seen to be encoded in the order of the lower-level structures representing the four playing cards and it is also encoded in the order of the connections as they leave (or enter) the cardinal cell. If we wish to establish another cardinal cell (‘S2’) representing another sequence of the playing cards, such as Queen, Ace, Jack and King, the intrinsic order of the lower-level elements is clearly wrong. Our only option is to encode the second ordering of the playing cards using the order of the connections as they leave (or enter) that cardinal cell, as shown in the figure.
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Figure 9. An illustration of the problem of representing two alternative orderings of playing cards using cardinal cells and literal sharing of structures, as described in the text. Key: ‘S1’ = a cardinal cell representing the sequence Ace, King, Queen and Jack of Clubs; ‘S2’ = a cardinal cell to represent the sequence Queen, Ace, Jack and King, with the ordering encoded in the order in which the links leave (or enter) the cell.

Thus it is possible to encode alternative orderings using literal sharing of structures amongst cardinal cells but the solution is not elegant and appears to be radically at odds with what we know about the complex and seemingly haphazard nature of the way nerve fibres arrive at and connect to any given neuron.

By contrast, the use of neural references, as shown in Fig. 3, allows us to encode alternative sequences in a robust and unambiguous manner without recourse to doubtful features of neural anatomy. And, as we have seen, neural references provide a bridge between connectionism and the kinds of expressive representational structures that have become established in AI.

5.3 Representing Sequences and Other Configurations with Relational Operators
So far, we have assumed that sequential relations amongst concepts (or, more generally, configurations of concepts in one or two dimensions) should be represented in a relatively ‘direct’ manner by corresponding configurations of neural structures. To avoid confusion with the use of the word ‘direct’ to mean a localist representation, we shall here use the expression ‘picture-like’ to describe representations that have the same configuration in one or two dimensions as the things they represent.

The notion that at least some of our knowledge may be represented by picture-like neural structures sits comfortably with the way in which an image on the retina projects fairly directly to layers of the lateral geniculate body and to each area of the visual cortex, and the way in which the configuration of receptors in the skin is mirrored in the way they connect to the somatic sensory cortex.

However, there has been a long tradition in AI that configurations of concepts may be described using relational notations such as left_of(a, b) or above(p, q), and ideas of this sort have been adopted in some connectionist proposals (see, for example, Hummel & Bierdeman, 1992). In the light of our earlier discussion, it is pertinent to ask whether the use of relational notations might enable us to salvage literal sharing of structures and avoid the need for sharing by reference.
Returning to our playing-card example, the first sequence may be represented with  relational notation in some such manner as above(AC, above(KC, above(QC, JC))) and the second sequence may be represented in a similar manner. A little reflection should satisfy us that the neural structures that describe the four cards cannot be literally shared between the two representations and that in any connectionist version of the relational notation, each of the symbols ‘AC’, ‘KC’, ‘QC’ and ‘JC’ must represent a neural reference to the neural structure that describes the corresponding card.
The distinction between ‘picture-like’ and ‘relational’ representations is not as sharp as it may superficially appear. If, for example, we consider pattern assembly (a) or pattern assembly (b) in Fig. 3, the connection between each neighboring pair of neural references may be regarded as the relational operator ‘above’, using an infix relational notation.
In general, the problems associated with literal sharing of structures and the need for sharing by reference are independent of notational style.
5.4 Dynamic Binding and Temporal Correlations

An alternative to what has been described in this paper is to suppose that neural representations of concepts may form hierarchies and other kinds of structure by means of temporal correlations amongst their neurons: “A set of units can be bound into a block by synchronising their fast activity fluctuations. Several such blocks can coexist if their activity is desynchronised relative to each other ...” (von der Malsburg, 1987, p. 15) and “To represent that Attribute A is bound to Attribute B and Attribute C to Attribute D, the cells for A and B fire in synchrony, the cells for C and D fire in synchrony, and the AB set fires out of synchrony with the CD set.” (Hummel & Biederman, 1992, p. 485) (see also Bienenstock & Geman (1995) for a review of work up to that date).
Let us consider an example from Hummel & Holyoak (in press): how to represent a  proposition like loves(Bill, Mary), including the fact that Bill fills the role of ‘lover’ and Mary fills the role of ‘beloved’ object of Bill’s loving. Our representation needs to make these ‘role-filler bindings’ and, at the same time, it needs to maintain the independence of the concepts ‘Bill’, ‘Mary’, ‘lover’ and ‘beloved’ so that they may enter into other relationships (such as the role-filler bindings in loves(Mary, Sam)).
The solution proposed by Hummel & Holyoak is “that when a filler is bound to a role, the corresponding units fire in synchrony with one another, and out of synchrony with the units representing other role-filler bindings ...” (p. 8). Other researchers such as Shastri (1999) and Shastri et al. (in press) have proposed schemes that incorporate this basic idea.

Fig. 10 shows an alternative solution using pattern assemblies and neural references. Near the bottom of the figure is a pattern assembly representing the concept ‘Person’ and its attributes including ‘head’, ‘body’ and ‘legs’. Above that pattern assembly are pattern assemblies for ‘Bill’, ‘Mary’ and ‘Sam’, each one with a neural reference to the pattern assembly for ‘Person’. Further up again are pattern assemblies for ‘Lover’ and ‘Beloved’ showing that a typical lover is ‘passionate’ and that the beloved object of such attention would normally be ‘flattered’.
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Figure 10. Pattern assemblies and neural references representing the concepts and bindings in the propositions loves(Bill, Mary) and loves(Mary, Sam). The conventions are the same as in Fig. 4 and succeeding figures.
The pattern assemblies described so far provide the building blocks for the representation of loves(Bill, Mary) and loves(Mary, Sam) and for their associated role-filler bindings. These latter are represented by the four pattern assemblies ‘B1’, ‘B2’, ‘B3’ and ‘B4’: B1 assigns Bill to the role of lover, B2 shows that Mary has the role of beloved, B3 shows that Mary also has the role of lover, and B4 shows that Sam has the role of beloved. At the top of the figure are two pattern assemblies corresponding to the two propositions: ‘Love1’ shows that Bill as lover is associated with Mary as beloved, while ‘Love2’ shows the connection between Mary as lover and Sam as beloved.
An apparent advantage of the SBR solution to the binding problem is that it is not restricted by “the number of role-filler bindings (phases) it is possible to have simultaneously active but mutually out of synchrony”, a number that is “necessarily limited” (Hummel & Holyoak, in press, p. 10). The only limitation on the capacity of the SBR scheme is the number of neurons in the brain or, at least, in the cortex.
On the other hand, a possible disadvantage of SBR is that it implies the creation and destruction of pattern assemblies (and neural references) on relatively short time scales (see Section 5.6).
5.5 Other Proposals

This subsection briefly describes a selection of other connectionist proposals for representing sequences and other relations.
5.5.1  Focal Clusters and Nodes. Perhaps the closest relative of the proposals in this paper is a form of representation used in the SHRUTI model (Shastri, 1999; Shastri et al., in press). Here, concepts are represented by cell-assembly-like structures called focal cell-clusters or focal clusters. Each focal cluster contains small ensembles of cells (‘nodes’) and any one node may be connected to another node in another focal cluster or within the same focal cluster. Some of the nodes and their connections are similar to neural references described here, while others, such as ‘enabler’ nodes and ‘collector’ nodes (both ‘+’ type and ‘-‘ type), have no counterpart in the SBR scheme. They are part of a mechanism for dynamic binding of roles to fillers that depends on synchronous firing amongst groups of neurons and is quite different from anything that is envisaged in SBR (see Section 5.4).

5.5.2  Time sharing. Hinton (1990) discusses the problem of mapping part-whole hierarchies into connectionist networks. One scheme which he rejects is somewhat like the hierarchical cardinal cell framework described in Section 5.1.1. Instead he favours a system of time sharing the neural hardware across different parts of a conceptual hierarchy when ‘rational’ kinds of inference are required, together with parallel processing for ‘intuitive’ kinds of inference. 
5.5.3  Synfire Chains and Sequence Sets. Another set of proposals has been made by Pulvermüller (2003) relating to the structure and functioning of natural language. At the level of word structure, Pulvermüller suggests that sequences of phonemes may be represented by synfire chains: bands of neurons, three or four neurons deep, in which signals flow from the beginning of the band to the end, with signals also passing laterally from neuron to neuron within the chain to help maintain the functional integrity of the system. Individual phonemes are represented as staging posts along the chain. Although there may be literal sharing of phonemes amongst different synfire chains, Pulvermüller describes how ambiguities may be resolved and the integrity of any given sequence of signals may be maintained by the arrangement of neurons at the point where one synfire chain shares a phoneme with another synfire chain.

At the level of syntax, Pulvermüller proposes sequence sets as the basic mechanism for coding sequential information. These are cell-assembly-like sets of neurons, each one of which responds to the activation of two lower-level structures in a specific order. Pulvermüller describes how combinations of sequence sets may serve to represent and process syntactic structures.
5.5.4  Other Proposals for Representing the Structure of Language. Elman (1990, 1991) describes how the structure of language (and other kinds of behaviour that have a temporal dimension) may be modelled by means of a simple recurrent network, a neural network in which there may be one or more feedback loops from the output layer or one of the hidden layers to an earlier hidden layer or the input layer. Christiansen & Chater (1999) have developed these ideas further in a model of recursive structures in language.
5.5.5  Recursive Auto-Associative Memory. Pollack and his associates address the problem of representing, in a connectionist framework, recursive structures such as trees (see, for example, Pollack, 1990; Melnik et. al., 2000; Levy & Pollack, 2001). The proposed system of recursive auto-associative memory has an architecture comprising an ‘encoding network’ and a ‘decoder network’ which is very different from SBR as described in this article.
5.5.6  Chorus of Fragments. In the domain of vision, Edelman & Intrator (2003) propose a scheme that does not attempt to model the structure of visual entities in the conventional way. Instead, they suggest that any visual pattern may be encoded in terms of the strengths of the responses to that pattern in a collection of ‘what + where’ units, each one of which stands for a pre-defined and statistically-representative shape at a particular location in the visual field (see also proposals for a ‘chorus of prototypes’: Edelman, 1999, p. 105 ff.).
5.6 Evaluation

It is, perhaps, a little premature to attempt to evaluate the SBR scheme since the functional aspects of the scheme (recognition, learning, inference etc) are yet to be presented (in Wolff, in preparation). And with respect to the connectionist systems that were outlined in Section 5.5, it is probably too soon to make any strong judgements of their merits or demerits relative to SBR. They appear to be free of the problems associated with literal sharing of structures and so the main thrust of this article does not apply to them. 

With those qualifications in mind, this subsection  summarises of what I see as the main strengths of the scheme and one possible query about its validity. The main strengths of SBR appear to be:
· It provides a robust solution to the several problems associated with literal sharing of structures in cell assemblies (Section 3). These remarks also apply to any ‘pure’ distributed form of representation in which there is literal sharing of structures (Section 5.1.1). And similar principles apply to connectionist schemes that use relational operators (Section 5.3) or where there is literal sharing of structures in representational schemes that use cardinal cells or the like (Section 5.2).
· Pattern assemblies with neural references are powerful mechanisms for representing knowledge with the ability to model the structure of grammars, networks, trees, and other representational schemes that are familiar in AI.  SBR allows one to represent knowledge structures such as class hierarchies, part-whole hierarchies and syntactic structures in a simple and direct manner that accords with our intuitions about the organisation of knowledge (Section 4). Of course, intuition is a fickle mistress and we cannot rule out the possibility that our knowledge is stored in some other manner such as ‘chorus of fragments’ that by-passes conventional notions about the representation of knowledge.
· SBR provides solutions to at least four of the five problems in the connectionist representation of syntax that have been identified by Pulvermüller (2003): centre-embedding, discontinuous constituents and distributed words, repetition of structures (and recursion), and the representation of lexical categories (Section 4.2). It seems likely that the fifth problem, the representation of ‘long distance’ dependencies such as number dependencies and gender dependencies, can be solved by the provision of pattern assemblies that express those dependencies, following the principles described in Wolff (2003, 2000).
· SBR has the advantages attributed to distributed forms of representation without the supposed disadvantages of localist schemes (Section 5.1):
· Counting. Given the localist aspect of SBR, it is easy to see how the kind of counting that is needed for statistical forms of learning might be expressed in physiological terms.
· Efficiency and accuracy. SBR provides a powerful mechanism for compressing information—which allows it to represent knowledge efficiently and with relative accuracy for any given volume of stored knowledge.
· Similarity, generalization and discrimination. Concepts may be grouped by similarity and the system provides for generalization, both in the way the system responds to sensory inputs and in the way knowledge is structured. A major strength of the system is that it allows entities to be recognised at multiple levels of abstraction, which means that specific entities do not become confused with the categories in which they belong.
· Content-addressable memory. Like the original cell assembly concept and variants of it, SBR can function like content-addressable memory.

· Graceful degradation. Although SBR has a localist aspect, a small amount of replication in the system should allow it to degrade gracefully, without catastrophic failure, in the face of damage to the system.
· Learning. The process of learning envisaged for SBR is quite different from Hebbian learning and with advantages compared with that form of learning (Wolff, in preparation).
· Grandmother cells in the brain? There do appear to be cells in the brain that respond in the way that is envisaged for identification neurons in SBR.

· For the representation of role-filler bindings and similar relations amongst concepts, SBR is an alternative to systems that represent those kinds of structures using temporal correlations amongst neurons (Section 5.4). It has an apparent advantage compared with such systems in that its capacity is not restricted by the number of role-filler bindings it is possible to have simultaneously active but mutually out of synchrony. But it may not have the kind of speed that is needed for working memory (discussed below).
· An attraction of pattern assemblies with neural references is their versatility in the representation of diverse kinds of knowledge. This should facilitate the seamless integration of different kinds of knowledge, including the integration of natural language syntax with its associated semantic structures.
A possible shortcoming of SBR is that it implies that the brain has an ability to create (and destroy) pattern assemblies and neural references on very short timescales. If, for example, SBR is used for some such task as remembering a telephone number (Sections 2 and 3), then the brain needs to put the necessary structures in place in the time that it takes someone to assimilate such a number. If we listen to a story about Bill, Mary and Sam and the vicissitudes of their love lives, we need to be able make and break role-filler bindings in short order.
At first sight, the creation of pattern assemblies and neural references needs time for the relevant neurons and connecting fibres to grow. An alternative possibility that avoids the need for large-scale growth of neurons and connections during learning is to suppose that most of the necessary structure is present at birth and that learning processes merely make adjustments to it. Much of the cortex may be pre-wired in the form of pattern assemblies, with two-way connections between contiguous neurons or near neighbors. In a similar way, we may suppose, as Hebb suggested, that there are pre-established long connections between different parts of the cortex ready to be brought into use according to need.
Given that the main structures required for pattern assemblies and neural references are pre-wired at birth, then learning may be achieved by the making and breaking of short connections. It may not even be necessary to postulate the growth of new fibres and synapses. It is possible that pre-existing synapses could be switched on or off somehow according to need.
These matters relate to the learning processes that are envisaged for SBR, to be described in Wolff (in preparation).
6 Conclusion
The present proposals suggest the kinds of neural structures that we may expect to find representing knowledge in brains and nervous systems. The proposals represent predictions that are, in principle, falsifiable but, given ethical constraints and the limitations of current techniques and technologies, the empirical testing of these predictions is likely to be a considerable challenge. In summary: 

· Like Hebb and many subsequent authors, it is envisaged that each of our concepts is represented by a set of inter-connected neurons (a pattern assembly).

· By contrast with Hebb’s concept of a cell assembly and all subsequent variants, it is proposed that the sharing of structures between pattern assemblies is always achieved by means of neural references. Each of these is a small group of one or more neurons within a pattern assembly which serves as a proxy for or reference to another pattern assembly (or the pattern assembly that contains the given neural reference). 
· In this sharing-by-reference scheme, any one participating neuron must belong in one pattern assembly and only one assembly.

· It is envisaged also that, while there may be long connections between pattern assemblies, the neurons within any one assembly lie close together within the cortex, perhaps confined to one column of the cortex, with short connections between them, mainly between immediate neighbors. These are not a necessary part of the proposals but they seem likely.

· It seems necessary to suppose that all the structures that are needed for pattern assemblies and neural references are pre-wired at birth and that learning on short time scales is achieved by activating or deactivating synapses according to need.

Finding direct neurophysiological evidence that may confirm of confute these predictions is not likely to be easy but the proposals in this paper may suggest new avenues for investigation and new ways of interpreting existing observations.
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Appendix
Are There Enough Neurons in the Brain?

The idea that the brain stores knowledge in pattern assemblies with sharing by reference raises the question “Are there enough neurons in the brain to support this style of representation?” This is a difficult question to answer because of various uncertainties. Here are some very rough estimates, made with rather conservative assumptions:

· Estimates of the number of neurons in the human brain range from 1010 (Sholl, 1956)

to 1011 (Williams & Herrup, 2001).

· If a neuron in the sensory cortex responds to some small feature of the world—a line at a certain angle or a note of a given pitch—and if there are, at a conservative estimate, about 30 different basic features across all sensory modalities, then each neuron represents (log230( = 5 bits of information. It seems reasonable to assume that other neurons in the brain have a similar capacity. Erring on the side of caution, we shall make the very conservative assumption here that each neuron represents only 1 bit of information. On that basis, the ‘raw’ storage capacity of the brain is between approximately 109 to 1010 bytes or between 1000 Mb and 10,000 Mb.

· The concepts of reference and sharing by reference are powerful aids to information compression that lie at the heart of many compression methods including the popular Lempel-Ziv algorithm for lossless compression that is used in ‘ZIP’ programs like PkZip and WinZip. The basic idea is simple: instead of storing multiple copies of any relatively large piece of information, we can reduce multiple copies to one and replace each of the other copies by a relatively short reference to the master copy.
· Thus knowledge that is stored using sharing by reference can be substantially compressed and this means that the effective storage capacity of the brain will be larger than our initial estimate. With an ordinary compression algorithm it is possible to compress English text to one third of its original size (without any loss of non-redundant information). But this is probably a rather conservative estimate of the amount of compression that may be obtained across diverse kinds of knowledge:

· Lempel-Ziv algorithms are designed for speed on a conventional serial computer rather than optimal compression. More compression can be achieved when more processing power is available (as in the human brain).

· Visual information typically contains more redundancy than English text. For example, a good quality compressed JPEG version of a typical photograph is about 5 times smaller than an uncompressed bitmap version of the same image. It is true that JPEG is a lossy compression technique but if the quality is good, the amount of non-redundant information that is lost is relatively small.

· ‘Cinematic’ information normally contains very high levels of redundancy because, in each sequence of frames from one cut to the next, each frame is normally very similar to its predecessor. This redundancy allows high levels of compression to be achieved.

If we adopt the conservative assumption that compression by a factor of 3 may be achieved across all kinds of knowledge, our estimates of the effective storage capacity of the brain will range from about 3000 Mb up to about 30,000 Mb.

· Is this enough to accommodate what the average person knows? Any estimate here can only be very approximate. Let us assume that the average person knows only a relatively small proportion of what is contained in the Encyclopaedia Britannica. Clearly, each person knows lots of things that are not contained in that encyclopaedia—how to walk or ride a bicycle, information about friends, relatives and acquaintances, how the local football team is doing, and so on. If we assume that the ‘personal’ things that we do know are very roughly equal to the things in the encyclopaedia that we do not know, then the size of the encyclopaedia provides an estimate of the volume of information that the average person knows.

· The Encyclopaedia Britannica can be stored on two CDs in compressed form. Assuming that most of the space is filled, this equates to 1300 Mb of compressed information or approximately 4000 Mb of information in uncompressed form. This estimate of what the average person knows is the same order of magnitude as our range of estimates of what the human brain can store.

Even if the brain replicates its knowledge two or three times to guard against the risk of losing it, as suggested in Section 5.1, our estimate of what needs to be stored (12,000 Mb, say) still lies within the range of our estimates of what the brain can store. Bearing in mind the very conservative assumptions that have been made, it seems that the proposals in this article about how the brain stores information are not wildly inconsistent with what is required.
Footnotes


� See also Wolff (2004, 2001).


� Centre embedding seems to be a genuine phenomenon in language even though most people can only cope with one or two levels of embedding. 


� With respect to direct representations, they also say that “All other representations are distributed representations.” (p. 479) which means that the two forms of representation are always mutually exclusive. In this article, we shall relax this requirement and focus on the characteristic features of the two forms of representation as they are generally conceived.


� The distinction between ‘distributed’ and ‘localist’ kinds of representation seems to be one of those ‘oppositions’ in psychology condemned by Newell (1973):


As I examine the the fate of our oppositions, looking at those in existence as a guide to how they fare and shape the course of science, it seems to me that clarity is never achieved. Matters simply become muddier and muddier as we go down through time. Thus, far from providing the rungs of a ladder by which psychology gradually climbs to clarity, this form of conceptual structure leads rather to an ever increasing pile of issues, which we weary of or become diverted from, but never really settle. (pp. 288-289).


Although oppositions of this kind are often treated as mutually exclusive, the truth may be ‘both’ and ‘neither’ (see also Wolff, 2004). 


� Although counting is straightforward when there is at least one neuron that is uniquely associated with each concept, some counting is still possible when that condition does not apply (Gardner-Medwin & Barlow, 2001).


� For readers unfamiliar with the distinction between lossless and lossy compression, the former means that, for a given body of information which we may call I, redundant information is discarded and only redundant information, whereas the latter means that redundant information in I is discarded together with some of the non-redundant information. In the first case it is possible in principle, and usually in practice, to reconstruct I with complete fidelity. In the second case, the loss of non-redundant information means that it is never possible to reconstruct I in its original form.


� I don’t wish to imply that people always use lossless compression in their memories. The key point in the present context is that SBR allows lossless compression of information whenever that is necessary. But it is likely that, on many other occasions, compression of information in human memory is lossy. 


� The fact that the cortex is topologically equivalent to a flat two-dimensional sheet, suggests to me that:


It is natural to represent sequences of elements or two-dimensional configurations of elements by means of corresponding sequences or two-dimensional arrangements of neural structures in the cortex.


It would be less natural to use this kind of representation for configurations of elements in three or more dimensions. Instead:


Three-dimensional structures may be represented by means of two-dimensional structures in the manner of architects’ plans and elevations.


And with structures in four or more dimensions, it is probably difficult to improve on the techniques developed by mathematicians.





