A scaleable technique for best-match retrieval of sequential information using metrics-guided search

J. Gerard Wolff

School of Electronic Engineering and Computer Systems, University of Wales, Bangor, Gwynedd, Wales, UK

Received 24 May 1993

Revised 15 September 1993

Abstract. A new technique is described for retrieving infor​mation by finding the best match or matches between a textual ‘query’ and a textual database. The technique uses principles of beam search with a measure of probability to guide the search and prune the search tree. Unlike many methods for comparing strings, the method gives a set of alternative matches, graded by the ‘quality’ of the matching achieved.

For any one sequence of hits between a query and a data​base, the probability measure is an estimate of the probability that the observed configuration, or better, could have occurred by chance. This probability is an inverse measure of the redundancy between the query and the database.

The new technique is embodied in a software simulation called SP2I which runs on a conventional computer. Examples are presented showing best-match retrieval of information from a textual database.

Analytic and empirical evidence is presented showing that, in a serial processing environment, the search technique has time complexity of 0(Q D) where Q is the size of the query in characters and D is the size of the database in char​acters.

The technique lends itself well to parallel processing. In that kind of environment, the time complexity of the process should approach O(Q), depending on how well the paral​lelism is applied. The space complexity of the process is O(D).

Planned developments of these ideas in the future are described and discussed.

Correspondence to: Dr J.G. Wolff, School of Electronic Engineering and Computer Systems, University of Wales, Dean Street, Bangor, Gwynedd, LL57 IUT, UK. Telephone: +44 248 382691 Fax: +44 248 361429. E-mail: gerry@sees.ban​gor.ac.uk. 

1.
Introduction
A popular way of retrieving information from data​bases containing sequential information such as text is to search for a match between a textual ‘query’ and text stored in the database. Normally, this kind of tech​nique is designed so that it can find partial matches between the query and items in the database as well as exact matches. Items which are retrieved are displayed in descending order of how well they match the query. This ordering of items — which normally reflects the user’s interests — gives this approach an attractive flexibility compared with alternative ‘Boolean’ approaches to retrieval [3].

However, finding good partial matches between strings of characters is not a trivial problem. As described below, there is, in most cases, an astronom​ically large number of ways in which strings of char​acters may be compared. To cope with this problem using ordinary computers, one or more constraints are normally applied:

•
the smallest unit for a yes/no match is often a word, or the ‘stem’ of a word, rather than a single character. To give some flexibility, systems normally allow some relaxation of the restriction so that, for example, special ‘wild’ symbols may be included within the words of a query like the ‘fixed length
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don’t care’ (FLDC) symbol which will match any single character, or the ‘variable length don’t care’ (VLDC) symbol which will match variable length sequences of characters, but any relaxation of this kind is normally quite limited in its scope;

•
normally, text in the database is pre-processed to create an ‘inverted file’ or index of significant words, with pointers to their positions in the stored text. The use of indexes of this sort speeds up the process of finding words in the text when a query is being answered but it consumes a lot of storage space (often as much or more than the original data) and takes a significant amount of computer processing to prepare in the first place. Indexing can be a problem in itself in languages like Japanese where word boundaries in text are often not marked;

•
sometimes the key words for each document or sig​nificant words in the title of each document are hash coded into a fixed-length bit string or ‘text signature’ which can be used for best match searching.

In recent years, there has been growing interest in the use of parallel processing techniques for informa​tion retrieval [2, 8, 11, 13, 20, 25, 29]. This is a welcome development which can ease some of the constraints and achieve more flexibility in the retrieval process. But, as discussed below, parallel processing in itself cannot provide a comprehensive solution to the problem.

This article describes a new technique which is based on a theoretical analysis of the matching prob​lem and which appears to provide a sound general framework for best match searching. More specifically:

•
the process provides a general solution to the prob​lem of finding partial matches when the ordering of items in the query and in the database are both significant. In effect, the process provides ‘content addressable memory’ for textual databases:

—
partial matching is achieved without the need for FLDCs or VLDCs;

—
there is no arbitrary restriction on the size of the query;

•
the process can be applied in a conventional serial processing environment but it is well suited to parallel processing. As with other techniques, it is likely to give better results when more computa​tional power is applied;

•
in a serial processing environment, the time com​plexity of the process is O(Q.D), where Q is the number of characters in the query and D is the number of characters in the database. In a parallel processing environment, the time complexity of the process should be O(Q), depending on how well the parallelism is applied. The space demands of the process are O(D). The computational complexity of the process is discussed in section 6;

•
the technique does not require the preparation of inverted files (although space is required to support the search process);

•
the thoroughness of the search (and, correspond​ingly, the computational demands of the process) can be under the user’s control. The time complexity and space complexity of the process are independent of the thoroughness of the search;

•
unlike many methods for partial matching of strings, the method gives a set of alternative matchings, graded by the ‘quality’ of the matching achieved.

In the rest of the article, some of the background to this research will be briefly described first, followed by a review of some of the literature on pattern matching, an analysis of the matching problem and an outline of its solution. The new technique and the software model in which it is embodied are described with examples. An analysis of the computational properties of the model is presented with empirical results. Planned future developments are described in outline.

2. Background

The ideas to be described have grown out of a pro​gramme of research which is exploring the hypothesis that many aspects of computing (and human cognition) may be understood as information compression [34, 35].

The key to information compression is the reduction or elimination of redundancy in information. Re​dundancy in its technical sense (defined in Shannon’s information theory [28]) means repetition of informa​tion. Repetition of information may be detected by comparing or matching patterns. When repeating patterns are found, redundancy may be reduced by the merging or unification1 of the repeated patterns to make a single copy. As will be explained, there is also a need to search through the many possible unifica​tions to find the ones giving the best result, or, more realistically, the best result for a given computational effort.

Information compression may be seen as a process which increases the simplicity of data (by reduction of redundancy) whilst preserving as much as possible

1. In this article, the term unification has a meaning which is related to but simpler than the meaning which it has in logic.
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of the non-redundant descriptive power. Hence, the mnemonic ‘SP’ applied to ideas in this area.

As discussed elsewhere [34], these ideas seem to offer the possibility of integrating and simplifying several aspects of computing, including information retrieval, pattern recognition, machine learning in various forms, deductive and probabilistic inference, the execution of mathematical or computing functions, the parsing of a text by a grammar, and automatic planning.

Interestingly enough, the idea of minimising redun​dancy has been identified as a unifying theme in a related area of research: the development of methods to discover recurrent patterns of ‘motifs’ in amino acid sequences and DNA sequences and to find alignments of amino acids or DNA bases across two or more sequences [10]. There is much in common between the problems of information retrieval by best-match search and the analysis of bio-molecular sequences. A review of research in this area suggests that the technique to be described has something to offer for this kind of analysis (some references are given later).

2.1.
Previous studies

2.1.1.
Two strings; ‘string matching’, ‘string distance’, ‘longest common sub-sequence’, ‘heaviest common sub-sequence’ and ‘approximate string matching’

The simplest and,  from the present viewpoint, least interesting problem is that of finding one or all instances of one pattern within another when an instance of the one pattern is counted only if the con​stituent symbols of that pattern are contiguous in the other pattern and if all its symbols are matched. A recent review of the several algorithms in this area is provided in [26] and there is a comparison of time and space complexities of available algorithms in [16].

Finding the ‘distance’ between two patterns or strings means finding the fewest possible changes (additions, deletions or substitutions)  that must be made to convert one string into another. This problem is closely related to the problem of finding the longest of the sub-sequences which appear in both strings — where a ‘sub-sequence’ is a sequence of symbols within a string whose constituent symbols are not necessarily contiguous within the string. A review of methods in this area may be found in [1].

A variant of the lcs problem is the ‘heaviest common sub-sequence’ (hcs) problem which means finding the sub-sequence which appears in both strings and which has the greatest ‘weight’ — where ‘weight’ is some mea​sure which combines the length of a sub-sequence with the positions of its constituent symbols.

Last is the ‘approximate string matching’ problem which means finding instances of one string in another string where errors are permitted up to a defined limit [15].

Bellman and Dreyfus [6] described a ‘dynamic programming’ method which has been used by other investigators as a basis for solving the string distance problem. When the method is applied to this problem, a ‘prefix’ of each string is identified (initially, it is the empty prefix) and the distance between the two prefixes is determined. The process is then applied iteratively to prefixes of increasing length until the final result is obtained. Several variants of the method have been developed, some of the earlier ones reviewed by Sankoff and Kruskall [27]. The dynamic programming method can be generalised to reveal the longest common sub-sequence between the two strings [31]. The method can also be generalised for the hcs problems [19] and for the approximate string matching problem [7].

The time and space complexities of the basic dynamic programming method is O(mn) (m and n are the lengths of the two strings being compared) but improved properties have been obtained in particular cases or with specific constraints [17, 18, 24].

2.1.2.
Two or more strings: the ‘N-lcs’ problem, ‘multiple alignment’ and the discovery of ‘motifs’

The lcs problem for two strings becomes the ‘N-lcs problem’ for two or more strings: find the longest sub-sequence which appears in every member of a set of N strings. The ‘multiple alignment’ of strings is a slightly more general problem which means finding correspondences across a set of strings which are in some sense ‘optimal’ for that set of strings. This problem is closely related to the problem of finding recurrent patterns or ‘motifs’ which appear in a set of strings or a significant sub-set of a set of strings, where a ‘motif is a sequence of symbols whose constituent symbols are not necessarily contiguous as they appear (in the same order) in a given string but would normally be close together.

In the multiple alignment problem and in the discovery of motifs, correspondences across strings normally mean exact matches of individual symbols, but they can sometimes also mean correspondences between classes of symbols, where the symbols in a class are regarded as equivalent in some sense.
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When it is applied to the N-lcs problem with all the strings of the same length, the dynamic programming technique has a time complexity of O(nN), where n is the length of each string and N is the number of strings in the set. In general, the N-lcs problem is NP-complete and therefore not tractable for all but the simplest cases [22].

The discovery of multiple alignments and motifs has been, and continues to be, of considerable interest for the study of bio-molecular sequences (sequences of amino acids in proteins, and sequences of base pairs in DNA). In conjunction with other information, this kind of analysis can provide valuable clues to the structure and function of biological molecules and their compo​nents. The needs of this area of application have led to a large variety of analytic techniques and tools, some of which are reviewed in [5, 10, 14, 30].

In this area, it is widely recognised that the number of possible alignments or motifs is normally very large and that ‘exact’ methods of finding correspondences between strings are not practical except when the volumes of data are small. For the same reason, the majority of methods which have been proposed are ‘heuristic’ methods which are not guaranteed to find the best possible answer but which can provide reasonably good solutions without undue demands on computational resources.

3. The matching problem

Problems of retrieving sequential information using a sequential query (and problems of matching bio​molecular sequences) may be formalised in the follow​ing terms.

Consider a sequence, x, comprising m atomic symbols. The number of possible sub-sequences within x is: s = 2m – 1,

excluding the empty sub-sequence but including single symbols, ‘coherent’ sequences of two or more contiguous symbols and ‘discontinuous’ or ‘frag​mented’ sub-sequences in which at least one pair of symbols which are neighbours in a given sub-sequence are not contiguous in x.

If one sequence, x, of length m and containing sx sub-sequences is to be compared with another sequence, y, of length n and containing sy sub​sequences, the number of possible yes/no comparisons between sub-sequences is: c = sx · sy.

We can think of x as the ‘query’ and y as the ‘database’. It is clear from these figures that exhaustive search is normally quite impractical. Even if there were a massively parallel or otherwise extremely fast computing system which could reduce each yes/no comparison of two sub-sequences to as little as one nanosecond. an exhaustive search for partial matches between a modest ten-character query and one stan​dard 80-character line would take 3.923 ( 1010 years!

3.1.
Metrics-guided search

The standard way of dealing with this kind of ‘combi​natorial explosion’ (which appears in many problems, particularly those associated with artificial intelli​gence) is to apply some kind of ‘hill climbing’. ‘descent’, ‘beam search’ or ‘best first’ technique [33], described generically as ‘metrics-guided search’. The general idea with this kind of technique is to search the space of possibilities in stages and, at each stage, to pursue only the most promising path or paths using some kind of measure (‘metric’)  to determine what ‘promising’ means. Dynamic programming is a simple but effective application of this idea.

With this kind of technique, very large parts of the search space need not be examined at all. This can save a great deal of effort but, in many cases, the penalty is that any solution which is found cannot be guaranteed to be the best possible solution.

With many problems of this kind, the search process may reach a ‘local peak’ where all paths lead ‘down​wards’. A local peak represents an answer which is rel​atively good but the possibility remains that a better answer (a higher peak) may exist somewhere else. ‘Backtracking’ is one way out: go back down the hill to see if there is a better path upwards. Alternatively, the search process may pursue two or more paths in par​allel so that there is a better chance of finding the path or paths which by-pass the local peaks. None of these techniques can guarantee that the best answer will always be found.

4.
The SP  technique

These principles are well established and widely used but it is not always a straightforward matter to apply them to a specific problem like the one in hand. Hard thinking has been required and experimentation with several different ideas to achieve a technique which combines simplicity with scaleability to large data sets, and potential for parallel processing.

This section describes a search technique which is
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Fig. 1. Concepts in pattern matching and search. A ‘query’ string and a ‘database’ string are shown at the top with the ordinal positions of characters marked. Sequences of hits between the query and the database are shown in the middle with corresponding values of pn (described in the text). Each node in the match structure shows the ordinal position of a query character and the ordinal position of a matching database character. Each path from the root node to a leaf node represents a hit sequence.

embodied in a software simulation called SP21 which runs on a conventional computer. Fig. 1 illustrates the main concepts introduced in the description which follows.

In this description, the query and the database are both sequences of atomic symbols, assumed to be characters in the discussion. The database may be divided into sections such as sentences or paragraphs.

(1)
The query is processed left to right, one character at a time.

(2)
Each character in the query is, in effect, broadcast to every character in the database to make a yes/no match in each case.

(3)
Every positive match (hit) between a character from the query and a character in the database is recorded in a data structure which will be referred to as the match structure.

(a)
The match structure stores sequences of hits. In each such hit sequence, the order of the matched query characters is the same as the order of the matched database characters. But there may be unmatched query characters anywhere within the sequence of matched query characters and there may be un​matched database characters anywhere within the sequence of matched database characters.

(b)
Conceptually, the match structure is a tree:

•
each path from the root of the tree to any other node records a left-to-right hit sequence, one hit on each node;

•
the root of the tree is a dummy node which does not record any hit.

(c)
Although a given query character may match two or more characters in the database, only one of these hits is recorded in any one hit sequence. Likewise for database characters.

(d)
For each hit recorded in a node in the tree, there is a record of the position of the charac​ter in the query, the position of the matching character in the database, and a measure of probability of the sequence of hits up to and including the given hit (as described below).

(e)
If the database is divided into sections, then it can be convenient to apply a rule that all the hits recorded in one path must all come from one section. If this rule is in force (and this may be a decision made by the user) then the system will not attempt to find match sequences which cross from one section to another.

(4)
The match structure is updated every time a hit is found. One or more new nodes for this hit (which will be referred to as the current hit) is added to the match structure in the following way:

•
the tree is examined to identify each hit which immediately precedes the current hit. In this con​text, the meaning of ‘precede’ is that the database character for the given hit precedes the database character for the current hit and likewise for the query characters. The meaning of ‘immediately’
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is that, if the node for the given hit has children, then the hits in the child nodes do not precede the current hit. There may, of course, be unmatched query characters or unmatched data​base characters between the two hits;

•
for each of the ‘immediately preceding’ hits identified in this way, a probability is calculated for the sequence of hits comprising the path up to and including the current hit;

•
for each hit sequence or path which has been identified in this way (if any), a new node for the current hit is added to the match structure as the leaf node for that path. In each case, the probability value for the path is recorded in the new node;

•
if there are no paths identified in this way then a new path is started with a node for the current hit as a child of the root and an initial probabil​ity value as described below.

(5)
If the memory space allocated to the match structure is exhausted at any time then it is ‘purged’: the leaf nodes of the tree are sorted in reverse order of their probability values; each leaf node in the bottom half of the set is extracted from the match structure, together with all nodes on its path which are not shared with any other path. The recording of hits may then con​tinue using the space which has been released.

(6)
After the last query character has been processed, the paths from the root to the leaf nodes are dis​played in order of their probability in a convenient form for inspection by the user.

4.1.
Probabilities

The search process, just described, uses a measure of probability, pn, as its metric. This metric provides a means of guiding the search which is effective in prac​tice and appears to have a sound theoretical basis. To define pn and to justify it theoretically, it is necessary first to define the terms and variables on which it is based:

•
for each hit sequence h1 ... hn, there is a corre​sponding series of gaps, g1 ... gn. For any one hit, the corresponding gap is:

g = gq + gd, where gq is the number of unmatched characters in the query between the query character for the given hit in the series and the query character for the immediately preceding hit; and gd is the equivalent gap in the database, g1 is taken to be 0;

•
A is the size of the alphabet of character types used in the query and the text;

•
p1 is the probability of a match between any one character in the query and any one character in the database on the null hypothesis that all characters are equally probable at all locations. Its value is calculated as: p1 = 1 / A.
Using these definitions, the probability of any hit sequence of length n is calculated as:
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It should be clear from this formula that it is easy to calculate the probability of the hit sequence up to and including any hit by using the stored value of the hit sequence up to and including the immediately preced​ing hit.

4.1.1.
Justification

The thinking behind the formula is straightforward. In accordance with established practice in statistics, the method aims to calculate the probability that the observed distribution of hits, or better, could have occurred by chance on the ‘null hypothesis’ that all the characters in the alphabet are equi-probable at every location in the query and the database, i.e. that the distribution of characters is random. In this con​text, a distribution of hits which is ‘better’ than an observed distribution is one which has more hits within the same range, or the hits fall into clumps, or both these things.

A hit sequence with a low probability is more ‘significant’ than one with a high probability and may be taken as evidence that the null hypothesis should be rejected. A hit sequence with a low probability is normally more interesting to the user than a high probability hit sequence which could be merely the result of chance.

It is important to stress that this approach to the analysis does not in any way prejudge the statistical properties of the query or the database. It is, of course, very well known that the distribution of characters in any natural language (e.g. English) is not random and that such texts contain large amounts of redundancy in the sense of Shannon’s information theory [28]. The null hypothesis provides a reference point or baseline for measuring how far an observed distribution of hits departs from randomness.

The probability measure which has been described is an inverse measure of redundancy. In the case under discussion, where two strings are being compared, pn
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measures the redundancy between the two strings. It says nothing about redundancy which may exist within one string or the other.

Under the null hypothesis, the probability of an observed hit sequence or better depends on three main factors:

•
there is a better chance of finding a hit sequence which is at least as good as the observed sequence if the query or the database or both of them are large;

•
if the n hits of a hit sequence are scattered across a relatively long part of the query, or a relatively long part of the database, or both, then the associated probability is higher than for a ‘closely packed’ hit sequence which is confined to portions of the query and the database which are as short as n or only a little longer;

•
other things being equal, the probability of an observed hit sequence or better decreases as n increases.

For the purposes of information retrieval, the size of the query and the size of the database should not be factors in deciding whether a given hit sequence is significant. What is of interest is the probability of an observed hit sequence after the effects of query size and database size have been abstracted. For this purpose, hit sequences which are closely packed and relatively long are the most significant, independent of the sizes of the query and the database, and indepen​dent of where the hit sequences occur within the query and the database.

On this basis, the probability of the first or only hit in a sequence (p1 = 1 / A) is the same as the probability that any given side of an A-sided unbiased die will appear on any one throw of the die. This formula for the first or only hit in a sequence can be derived from the main formula if n is 1 and g1 is 0. In the main for​mula, (1 - p1) is the probability of a non-match between any one character in the query and any one character in the database. If there are g non-matches between one hit and the next, then the probability of finding one or more hits over a distance of (g + 1) is (1 - (l - p1)g + 1). This probability is then multiplied by the probability for the hit sequence up to and including the preceding hit, to give pn.

As an illustration, consider the fourth hit sequence shown in Fig. 1. The size of the alphabet, A, is 6, so p1 is 1 / 6 which is 0.1666666, and (1 - p1) is 0.8333333. As with any other hit sequence, the first hit in the sequence has g1 = 0 so that its probability is (l—(I—p1)0 + 1) which is the same as p1. For the second hit, gq is 1 and gd is 0 so that g is 1. The corresponding value of (1 - (l - p1)1 + 1) is 0.3055556. This is multiplied by the probability of the hit sequence up to and in​cluding the previous hit giving an overall value for pn of 0.0509259.

The analysis which has been presented assumes an alphabet of fixed size. This is plausible if the atomic symbols for yes/no matches are characters but may seem less plausible with larger units such as words or phrases because of their variety in natural languages. However, in any one combination of query and data​base there is a finite (if large) number of different words or phrases. This means that the analysis can be applied even with these larger units.

4.2.
Discussion of the search technique

The technique which has been described incorporates the principles of metrics-guided search like this:

•
the match structure plots a set of alternative paths through the search space;

•
the probability metric is used (during purging) to prune leaves and branches from the tree of paths;

•
the method may be classified as beam search because the search proceeds along several paths at once. This reduces the risk of getting stuck on a local peak. Increasing the size of the match structure increases the number of paths and thus increases the chance of finding ‘good’ hit sequences.

If the database is divided into sections, and if a rule is applied that hits in a sequence must all come from the same section, this has the effect of blocking some paths through the search space, thus reducing the number of possibilities which need to be considered and saving some processing time.

There is a trade-off between the maximum size of the match structure and the ability of the system to find partial matches. When the maximum size of the match structure is small, processing times are short but the system may get stuck on local peaks and miss partial matches that people can see. When the maximum size of the match structure is large, the system finds partial matches more effectively but processing times are longer. It seems reasonable that, in a fully-developed version of the system, this trade-off between search time and level of performance should be under the control of the user.

The idea of broadcasting symbols is not in itself especially new and has been described elsewhere [9, 21]. The novelty of the technique which has been described is in the way the broadcasting of symbols is combined with a technique for keeping track of partial matches between the query and the database and in how the system calculates probabilities and uses this
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information to select amongst the many possible paths through the search space.

In a serial processing environment, the broadcasting of symbols must be done serially, but this kind of operation lends itself very well to the application of parallel processing (see below).

The advantages of this technique compared with the basic dynamic programming method are:

•
as already mentioned, the space complexity of the process is O(D), better than O(Q . D) for the basic dynamic programming method;

•
the method appears to be better suited to parallel pro​cessing although, for the approximate string match​ing problem, an adaptation of dynamic programming for parallel processing has been described [7];

•
the technique for pruning the search tree may be applied, however large the search space may be. It appears that the technique may be generalised to related problems such as the N-lcs problem without the problems of computational complexity which arise with dynamic programming [22].

5.
Examples

Information retrieval by SP21 is illustrated in this sec​tion using the small text database shown in Fig. 2. In the text, spaces between words and the ends of para​graphs are marked with explicit symbols (‘#‘ and ‘91’ respectively) but these symbols have no special signif​icance for the program and are treated in exactly the same way as other characters. For these examples, the match structure was big enough to accommodate 500 different hit sequences.
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Fig. 3 shows the best three hit sequences for the query “B r o n w e n s”. In accordance with our intu​itions about what the query ‘really’ represents, the sys​tem finds the three instances of ‘Brangwens’ in the text, despite the substitution of ‘o’ for ‘a’ and the omission of ‘g’.

All of these poorer hit sequences have higher proba​bility values than the three shown in Fig. 3.

Fig. 4 shows the best hit sequence for each of three other query strings representing phrases. These examples show how the search method can find plau​sible hit sequences between the query and the data​base, despite the addition, substitution or omission of characters in the query relative to the ‘correct’ phrase in the database.
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nathe#Marsh#Farm, sintthosmeadows#wheres
thewErewash#twistodssluggishlynthroughaald
er#trees #separating#DorbyshiresiromsNotti
nghamshire,

Bron wens

WheneversonesofathesBrangwens#insthotfio
|1ds#lifted#hiswhead#from#his#work shovsaw|
| #thoschurch-towersat#llkestonsinsthosempty|
sy,

Bron

Therenwasva®look#insthesoyestofathenBran

gwonshaskifstheysworavexpectingssomethin |
gunknown,saboutswhich#they twere#eager. |

Fig. 3. The bost thron matches botwoen the query B £ 0
e n " and the text daabase i i, 2. p, i 2970 x 10
ool thres cases.

The system also finds a large number of less plausible
it sequences like this:

B Fonwe o

Wheneverson  e#oftho#Brangwens#inwthesfildss




In accordance with the principles of metrics-guided search described above, the system sometimes fails to find the intuitively ‘correct’ match between a query and the database. As previously noted, failures like this can normally be remedied by increasing the size of the match structure thus increasing the thoroughness of the search.

6.
Computational complexity

Given the ‘combinatorial explosion’ of possible matches which was described earlier, a key question about any retrieval system of this kind is the demand which it makes on processing time and computer memory when the quantities of data are increased. This section presents analytic and empirical evidence on these points.

6.1.
Analysis

6.1.1.
Time complexity in a serial processing environment

The core of the search process is the broadcasting of query characters, one at a time, to each of the charac​ters in the database. In a serial processing environ​ment, it is clear that the processing time for this operation is proportional to the length of the query string and, independently, it is proportional to the length of the database. In other words, the time com​plexity for this operation is O(Q(D), where Q is the number of characters in the query and D is the number of characters in the database.

The process of updating the match structure includes the time required to search the match struc​ture for the best hit sequences and the time required to add new nodes. The time required to search the match structure will vary, depending on whether the match structure is full or has recently been purged; but, apart from a small effect at the start of processing as the space available for the match structure is filled, the time required for this operation should be independent of Q or D.

Since the updating operation occurs only for hits, and since the proportion of hits amongst the yes/no matches should be independent of Q or D, we may
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conclude, overall, that our initial assessment of the algorithm remains valid. In short, an analysis of the algorithm shows that its time complexity in a serial processing environment should be O(Q ( D). This analy​sis is independent of the size of the match structure.

The foregoing analysis remains valid when the data​base is divided into sections with the exclusion of hit sequences from one section to another. This kind of constraint can save overall processing time by reduc​ing the variety of hit sequences and thus reducing the number of purges of the match structure; but the constraint does not change the relationship between processing time and Q or D.

6.1.2.
Time complexity in a parallel processing environment

As previously noted, the search process lends itself well to parallel processing:

•
the process of broadcasting a query character to every character in the database is an intrinsically parallel operation;

•
if the database is divided into parts, each part with its own small match structure, then updating of the match structures may be performed in parallel.

If finding hits and updating the match structure takes unit time independent of the size of the database, as seems possible in a parallel processing environ​ment, then the time complexity of the process should be O(Q).

6.1.3.
Space complexity

The space required to store the database is indepen​dent of any retrieval mechanism and is therefore excluded from this analysis of the space complexity of the search process. At this level of abstraction, there is no distinction between ‘main memory’ and ‘secondary storage’, both kinds of memory being assumed to func​tion as a unified ‘virtual memory’. The memory required specifically for the search process is mainly the space required to store the match structure.

Although the match structure varies in size as the program runs, it never exceeds a pre-defined limit because it is purged whenever the limit is reached. If the user requires all hit sequences down to a fixed level of ‘quality’ then, for typical data, the size of the match structure should be increased in proportion to D and the space complexity of the process would be O(D).
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6.2.
Empirical results

The plotted points in Fig. 5 shows how processing time for SP21 varies with the size of the query (with a database of constant size) and the points in Fig. 6 show how processing time varies with the size of the data​base (with a query of constant size). In both cases, the program was run on a Sun SPARCstation SLC.

As can be seen from the figures, both relationships are approximately linear. These results confirm the analytic conclusion that the time complexity of the SP21 process in a serial processing environment is O(Q ( D).
Of course, the running times are rather slow for a small database like this. These slow times are probably due to the way the program stores and processes the query and the database in the form of lists. For this experimental model, list processing is convenient. Alternative implementations and other optimisations should reduce running times in a production model.

7.
Future developments

SP21 is a software simulation which runs on a con​ventional computer. As already indicated, a working system which incorporates these concepts will almost certainly need to be realised using hardware which provides parallel processing.

To reap the full benefits of parallelism, it should be possible to broadcast a character in one step to every character in a database of one or more gigabytes and perform updates of the match structure in parallel for all the hits which are found. It is not obvious how this can be achieved with current technology, but creative thinking with electronic or optical techniques may provide an answer.

More prosaically, a hybrid system using established technology may provide a practical solution on rela​tively short time scales. The broadcasting of characters can be performed quite well on a small scale with an array-processing SIMD machine like the DAP. Indeed, this has already been done with other kinds of search [9]. Because the array of processors in a machine like this is relatively small, the broadcasting of a character to the whole of a large database must be done in stages, or machines must be replicated, or both these things.

The most promising scheme on short time scales is probably a ‘farm’ of conventional processors, each one with a copy of the query string and its own match structure searching a relatively small part of the data​base [13]. A ‘master’ processor is required to distribute copies of the query string to slave processors and to collate the results which they return. This kind of MIMD technology has been established for several years in ICL’s CAFS system and it has proved its worth as an ‘accelerator’ for relatively simple string searches in textual databases and relational databases.

A practical system will need a graphical user inter​face for the input of queries and the display of results. It is likely that a practical system will also need some generalisation of the search algorithm so that it can find the best match or matches for unordered sets of patterns as well as a single pattern. Generalising the process in this way should not require any radical new concepts and should be straightforward to do within the framework which has been described.

Looking further ahead, it seems likely that the search technique which has been described may be gener​alised for two-dimensional (or higher dimensional) patterns. Generalised in this way, it may find applica​tion for the ‘content-addressable’ retrieval of maps, diagrams or pictures of various kinds.

As mentioned earlier, the background to the ideas reported here is a programme of research which aims to integrate and rationalise diverse computing functions under the rubric of information compression. Progress to date [34, 35] provides evidence that such processes as information retrieval, pattern recognition, deductive and abductive inference, the execution of functions, unsupervised learning, planning and problem solving can be understood, in large part, in terms of pattern matching, unification and search. On this evidence, a system for information retrieval of the kind which has been described may provide a foundation for the later development of an ‘intelligent’ database which incor​porates some or all of those other functions.

8.
Conclusion

The technique which has been presented appears to provide a sound basis for the design of a working system for best-match retrieval of text or other kinds of sequential information. It lends itself well to parallel processing and it offers the prospect of generalisation and development in related areas.
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