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Abstract

This article introduces the conjecture that mathematics, logic and related disci-
plines may usefully be understood as information compression by ‘multiple alignment’,
‘unification’ and ‘search’.

As a preparation for the two main sections of the article, concepts of Hartley-
Shannon information theory and Algorithmic Information Theory are briefly reviewed
together with a summary of the essentials of the simpler ‘standard’ methods for in-
formation compression. Related areas of research are briefly described: philosophical
connections, information compression (IC) in brains and nervous systems, and IC in
relation to inductive inference, Minimum Length Encoding and probabilistic reasoning.
Then the concepts of information compression by ‘multiple alignment’, ‘unification’ and
‘search’ (ICMAUS) are outlined together with a brief description of the SP61 computer
model that is a partial realisation of the ICMAUS framework.

The first of the two main sections describes how many of the commonly-used forms
and structures in mathematics, logic and related disciplines (such as theoretical linguis-
tics and computer programming) may be seen as devices for IC. In some cases, these
forms and structures may be interpreted in terms of the ICMAUS framework.

The second main section describes a selection of examples where processes of calcu-
lation and inference in mathematics, logic and related disciplines may be understood
as IC. In many cases, these examples may be understood more specifically in terms of
the ICMAUS concepts and illustrated with output from the SP61 model.

Associated issues are briefly discussed.

Abbreviations used in the article: IC—information compression; ICMAUS—
information compression by multiple alignment, unification and search; MA—multiple
alignment; ML—mathematics and logic; MLE—Minimum Length Encoding; OOD—
object-oriented design; PCS—Post Canonical System; UTM—Universal Turing Ma-
chine.
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mathematics, logic, information compression, theory of computing, multiple alignment, Uni-
versal Turing Machine, ICMAUS.

1 Introduction

This article introduces some conjectural ideas about the foundations of mathematics, logic
and related disciplines such as theoretical linguistics and computer programming. In brief,
the main conjecture to be discussed is the proposition that:

Mathematics, logic and related disciplines may usefully be understood as infor-
mation compression by ‘multiple alignment’, ‘unification’ and ‘search’.

The concepts of information compression (IC), multiple alignment (MA), unification and
search (collectively abbreviated as ICMAUS) will be described. To anticipate a little, the
key ingredients of the ICMAUS model for the purposes of this article are the primitive
operations of matching and unifying patterns. In this context, ‘unification’ means a simple
merging of two or more instances of a pattern to make one.

As will be seen, the conjecture will be discussed in relation to the ‘static’ representation
of concepts in mathematics, logic and related disciplines (abbreviated hereinafter as ML1),
and also in relation to the ‘dynamics’ of ML inferences: ‘calculation’, ‘proof’, ‘deduction’
etc.

For many readers, it may seem strange to suppose that there should be any significant
connection between ML and IC. After all, IC is the function performed by those humble
but useful computer utilities like PkZip and WinZip that can be used to reduce the sizes of
files but do not otherwise seem to have any particular significance. In this article, I hope to
show that there are many other facets to IC than what is apparent in compression utilities
and that there are deep intellectual roots to the ideas to be described.

There are no formal proofs in this article and indeed formal proofs in this context are
probably inappropriate since the argumentation depends on one’s sense of analogy and what
is or has potential to be intellectually fruitful. The treatment of the proposals is very far
from being exhaustive: the article merely introduces some ideas in support of the proposals
and presents a selection of examples. Whether or how the ideas may be applied to the many
areas of ML not discussed in this article are matters that readers may like to consider.

1.1 ‘Computing’, ML and IC

In a recent article [Wolff, 1999b], I have suggested that the intuitive concept of ‘computing’
may be understood as ICMAUS. If the arguments in that article are accepted, and if ‘com-
puting’ is seen to include ML, then the present article might be thought to be redundant.

However, the purpose of the previous article is to show that the workings of a Univer-
sal Turing Machine (UTM) and the workings of a Post Canonical System (PCS) may be
understood in terms of ICMAUS and to discuss how this interpretation suggests how the
UTM and PCS models may, with profit, be augmented so that the practical benefits of
the augmentation outweigh the costs. By contrast, the purpose of this article is to show

1Not to be confused with the programming language of the same name.
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how specific aspects of ML other than UTMs or PCSs may be understood in terms IC and,
more specifically in some cases, in terms of ICMAUS. The two articles may be seen to be
complementary rather than competing.

Since it is clear that computers can be used to decompress information as well as com-
press it, readers may reasonably ask whether it is sensible to propose that ‘computing’ may
be understood as IC. What I believe is a satisfactory resolution of the paradox of “decom-
pression by compression” is discussed briefly in Section 5.1 and more fully in Wolff [2000].

1.2 Presentation

The main sections of this article are as follows:

• Section 2, next, is a preparation for two main sections that follow.

• Section 3, which is the first of the two main sections, presents arguments and examples
in support of the idea that ML forms and structures can often be understood in terms
of IC. The possible application of the ICMAUS concepts is considered briefly.

• Section 4, the second of the two main sections, describes how a range of ML processes
of calculation and inference can be understood in terms of IC, and shows with examples
and output from the SP61 model how the ICMAUS concepts may be applied.

• Section 5 briefly considers a range of issues that relate to the ideas that have been
described.

2 Preliminaries

2.1 Representation, Semantics and Platonism

In mathematics and logic, it is often convenient to make a distinction between the repre-
sentation of an ML entity and the thing itself (the meaning or ‘semantics’ associated with
the representation). Thus the concept four may be represented by ‘four’, ‘4’, ‘IV’, ‘1111’ (in
unary arithmetic), ‘100’ (in binary arithmetic), and so on.

In mathematical Platonism, mathematical entities “are not merely formal or quanti-
tative structures imposed by the human mind on natural phenomena, nor are they only
mechanically present in phenomena as a brute fact of their concrete being. Rather, they
are numinous and transcendent entities, existing independently of both the phenomena they
order and the human mind that perceives them.” [Hersh, 1997, pp. 95–96]. Such ideas are
“invisible, apprehensible by intelligence only, and yet can be discovered to be the formative
causes and regulators of all empirical visible objects and processes.” (ibid. p. 95).

The view of mathematical (and logical) concepts that has been adopted here is quite
different. It is assumed that both the representations of ML concepts and the concepts
themselves are ‘information’ in a technical sense (to be described in Section 2.2). If it is
accepted that brains and computers are valid vehicles for ML concepts and ML processes
of calculation and inference, it is difficult to resist the conclusion that ML concepts must
exist within those systems in some relatively concrete form—arrays of binary digits in digital
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computers or, in brains, something like ‘cell assemblies’, patterns of nerve impulses or, per-
haps, DNA or RNA sequences. There is no place for “numinous and transcendent entities”
in a Platonic world outside the brain or computer.

In the non-Platonic view of ML that has been adopted here, a distinction between rep-
resentation and semantics has informal uses but, it seems, should not be rigidly maintained
in every situation.

2.2 Information Compression

As a preparation for the rest of the article, this subsection presents an outline view of IC,
picking out what I regard as the key ideas. A much fuller and more technical presentation
may be found in text books such as Cover and Thomas [1991].

The advent of computers has made familiar the idea that ‘information’ of all kinds -
speech, writing, paintings, diagrams, music, and so on can be translated into arrays of
binary digits (‘0’ and ‘1’—‘bits’) stored in computer memory or on disk. These arrays may
be one-dimensional sequences, or arrays in two or more dimensions.

2.2.1 Randomness and Redundancy

Arrays or patterns of information like those just mentioned may be totally random (some-
thing that rarely occurs in practical applications) and we judge the information to be totally
lacking in ‘structure’.2

Most of the information we encounter in practical applications is not random but is
structured in some way. This means that the information contains redundancy, a tech-
nical concept with a meaning that is quite close to the everyday meaning of ‘surplus to
requirements’. If there is redundancy in a given body of information, I,3 there is, in effect,
repetition of information. And information that is repeated is, in terms of communication,
unnecessary.4

2.2.2 Hartley-Shannon Information Theory and Algorithmic Information The-
ory

In the Hartley-Shannon concept of information, I contains the maximum possible informa-
2In this research, the term pattern has been adopted to mean an array of one or more symbols, including

a one-dimensional array or sequence of symbols, an array of symbols in two or more dimensions and also
a subset of symbols within a larger array where the symbols in the subset need not be contiguous within
the larger array. Although most of the examples in this article are about sequences, the term pattern will
generally be used in this article in preference to the word sequence for the sake of generality. Notice that an
array of symbols can be as small as a single symbol.

In this research, the term symbol means an atomic ‘mark’ that can be differentiated in a yes/no manner
from other symbols.

The meanings of pattern, symbol and other concepts used in this research are defined in Appendix A of
Wolff [1999a].

3Here and throughout this article, the phrase “a given body of information” or “the given body of
information” will be abbreviated as ‘I’.

4Of course, redundancy can be useful in other ways: guarding against loss of information (as in the use
of backup copies or mirror disks in computing), in speeding up processing in databases that are distributed
over a wide area, or in aiding the correction of errors when information is corrupted (as in error-correcting
codes).
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tion for the given alphabet of symbol types if the absolute and conditional probabilities of
all the symbol types in I are equal [see Cover and Thomas, 1991]. In this case, I is random
and contains no redundancy. If there are variations amongst the probabilities, I contains
less than the maximum possible information for the given symbol types and, for that reason,
it is not random and contains redundancy. The redundancy in I is the difference between
the information it actually contains and the maximum possible information for the given
alphabet of symbol types.

These concepts of randomness and redundancy are often useful but can be difficult to
apply in a sensible way if I is small. Alternative but complementary concepts, that do not
suffer from this weakness, form part of the foundation of Algorithmic Information Theory
(AIT), pioneered by Kolmogorov, Chaitin and others [see Li and Vitányi, 1997].

The key idea in AIT is that I is random if no computer program can be discovered or
designed that generates I but is smaller than I in the sense that it contains fewer symbols.
If any such program can be discovered or designed, then I is not random and contains
redundancy. For all instances of I except very small ones, it is not possible to prove that
there is no computer program that will generate I but is smaller than I—because failure to
find or devise such a program within a given time does not exclude the possibility that one
may be found later. Thus, in the great majority of cases, it is not possible to prove that any
I is random although the opposite may be proved in particular cases.

2.2.3 Redundancy and the Repetition of Symbols and Patterns

Very often, redundancy in I takes the form of repeating patterns, including the repetition
of single symbols. Consider, for example, a sequence like this: ‘a a a a a a a a a a b
a a a a a a a a a a a a a a a’. In this sequence, the frequency and thus the (absolute)
probability of ‘a’ is very much higher than the frequency or probability of ‘b’ so the sequence
clearly contains redundancy in terms of the Hartley-Shannon theory. Likewise, the sequence
contains redundancy in terms of the AIT concepts of randomness and redundancy because
it can be compressed into a ‘program’ for generating the sequence that looks something like
this: ‘pr(a[10], b, a[15])’, where ‘pr’ means ‘print’.

In other examples of I containing redundancy, it may be much less easy to see the redun-
dancy as repetition of patterns. And in some cases, such as long sequences of the decimal
values of π, it may be very hard to see any kind of structure or redundancy at all, although
decimal expansions of π (apart from very small ones) are known to be highly redundant
because they can be generated by a relatively short computer program. Notwithstanding
the difficulty of seeing repeating patterns in examples like this, a working hypothesis in
this research is that all kinds of redundancy may, ultimately, be understood in terms of the
repetition of patterns.

2.2.4 IC and the Unification of Matching Patterns

IC is achieved by the removal of some at least of the redundancy in I, with or without the
removal of some of the non-redundant information too.

If redundant information is removed from I and all the non-redundant information is
retained, then in principle and usually in practice it is possible to reconstruct I in its
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original form with complete fidelity. This is lossless IC. Clearly, lossless compression is not
possible if there is no detectable redundancy in I.

If some of the non-redundant information is removed from I together with the removal
of redundant information, it is never possible to reconstruct I with complete fidelity. This
is lossy IC. If the degradation of I is not too great, lossy IC may be adopted for some
applications because it can be achieved more quickly than lossless IC, or more cheaply, or
because it leads to greater compression, or all these things.

The sobriquet ‘SP’ is sometimes used as an alternative name for ICMAUS and asso-
ciated ideas because IC may be understood as a reduction in redundancy in a body of
information—thus increasing Simplicity—whilst preserving as much as possible of the non-
redundant descriptive Power.

The fact that redundancy often manifests itself as repeating patterns (Section 2.2.3)
suggests a simple method for finding and removing redundancy: look for patterns that
repeat in I—by systematically comparing or matching patterns against each other—and
then merge or unify two or more instances of a given pattern to make a single instance.
All the simpler ‘standard’ techniques for IC (such as PkZip) operate in this way [see, for
example, Storer, 1988]. A corollary of the working hypothesis that all kinds of redundancy
may be seen as repeating patterns is that all kinds of technique for IC, including the more
elaborate ones, may be seen to work by the unification of matching patterns.

Notice that the concept of counting the number of instances of a pattern implies the
matching of patterns against each other to establish that they are instances of the given
pattern. And the concept of frequency of a given pattern implies the unification of the
several instances to form a representative ‘type’ instance of the pattern. Since the concept
of probability in this context is a normalised expression of frequencies, it is apparent that
there is a strong connection between the concept of probability used in Hartley-Shannon
information theory and the notions of matching and unification of patterns. Of course, all
of the foregoing also applies to symbols and symbol types.

2.2.5 Three Techniques for IC by the Matching and Unification of Patterns

This section describes three techniques for achieving IC by matching and unification of
patterns and principles that apply in all three cases. The first technique, which we shall call
chunking-with-codes is the most basic technique. The other two may be seen to be variants
of it.

• Chunking-with-Codes. If two or more matching patterns in I are unified to form a
single ‘type’ pattern, the result is lossy compression. This is because the location of
each of the original patterns is lost. To avoid this loss of non-redundant information,
the chunk (pattern) of information may be assigned a relatively short name, ‘tag’,
‘identifier’ or ‘code’.5 Then copies of this code are placed in each location where
copies of the pattern originally appeared, thus preserving the information about the
original locations of the given pattern.

This chunking-with-codes technique is so widespread and ‘natural’ that we hardly no-
tice it: in this article, the abbreviation ‘IC’ is used as a short ‘code’ for the relatively

5The meaning of the word ‘code’ in this context is ‘name’ or ‘identifier’ and not the same as the meaning
of the word in cryptography.
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long pattern ‘information compression’; a citation like ‘Storer [1988]’ may be seen as
a code for the relatively long bibliographic details of the book given in the references
section of the article; in everyday speaking and writing, names of people, places and so
on may all be regarded as relatively short codes for concepts where the full description
in each case represents a relatively large body of information. No doubt, readers can
think of many other examples.

• Schema-plus-Correction. A variant of the basic chunking-with-codes technique is an-
other technique that is often called schema-plus-correction. In this case, the unified
pattern is not a monolithic chunk but is a chunk containing gaps or holes within which
a variety of other patterns may appear on different occasions. In this case, the unified
pattern is the schema and the other patterns that fill the gaps are corrections to or
completions of the schema.

In everyday life, a common example is a menu in a restaurant. In this case the schema
is the basic framework of the menu, e.g., ‘Starter ... main course ... sweet course ...’
and the ‘corrections’ are the dishes chosen to fill the gaps. Another example is any
kind of form with fields that will be filled with various ‘corrections’ or completions
each time the form is completed.

• Run-Length Coding. If a sequence of symbols contains a pattern that repeats in a
sequence of instances that are contiguous, one with the next, then IC can be achieved
by reducing the repeating series to one instance with something to mark the repetition
or, for fully lossless compression, with something to show the number of repetitions.
For example, the pattern ‘a x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z
b’ may be reduced to something like ‘a (x y z)* b’ in the case of lossy compression or,
for lossless compression, something like ‘a (x y z)[10] b’.

This kind of run-length coding can always be expressed using a ‘recursive’ function—
one that contains one or more calls to itself, either directly or via calls to other functions
(see Section 3.4.1).

2.2.6 Using Short Codes for Frequent Patterns and Long Codes for Rare Pat-
terns

Other things being equal, there is a clear advantage in terms of IC if pattern types that
occur frequently in I have shorter codes than ones that are rare. A well-known scheme
that generates variable-length codes precisely geared to this principle is Huffman coding [see
Cover and Thomas, 1991].

2.2.7 The Complexity of Searching and the Need for Constraints

The idea of matching and unifying patterns is simple enough in itself but can be complex
to apply, especially if we allow partial matches like the matching of ‘x z’ with the first and
third characters in ‘x y z’. For most patterns, the size of the search space is astronomically
large. Given that search spaces are normally so large, it is not normally possible to search
them exhaustively. In the vast majority of cases, it is necessary to constrain the search in
some way, either eliminating parts of the search space a priori (e.g., by restricting the search
to exact matches) or by applying heuristic techniques or both these things.
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In heuristic search, the search is conducted in stages with a narrowing of the search space
at each stage using some measure of ‘goodness’ to choose where the next stage of searching
will be concentrated. In the present context, it is appropriate to use some kind of measure
of IC as the measure of ‘goodness’ of matches.

2.3 The Proposals in Relation to Established Ideas

The various ‘isms’ in the philosophy and foundations of mathematics and logic— foun-
dationism, logicism, intuitionism (constructivism), formalism, Platonism, neo-Fregeanism,
humanism, structuralism and so on—are well described in various sources (see, for example,
Potter [2000], Hersh [1997], Craig [1998], Hart [1996], Barrow [1992], Eves [1990], Epstein
and Carnielli [1989], Boolos and Jeffrey [1980]) and there is no intention to describe them
again here.

Insofar as the embryonic ideas to be presented constitute any kind of philosophy of ML,
it seems that they do not fit easily into any of the existing isms or schools of thought about
the philosophy and foundations of ML.

2.3.1 Possible Connections

Devlin’s interesting ideas about logic and information [Devlin, 1991] might be thought to
be related to the present proposals because a concept of information is fundamental in
ICMAUS. However, Devlin develops a concept of information that is different from the
‘standard’ concepts of Hartley-Shannon information theory and AIT that have been adopted
in the present work. Perhaps more important is the fact that IC does not have any role in
his proposals in contrast to the ICMAUS proposals where IC has a key significance.

Two recent books about mathematics suggest in their titles that mathematics is a “sci-
ence of patterns” [Devlin, 1997, Resnik, 1997]. Given the use of the word ‘pattern’ in the
present research, one might think that these two books give an account of mathematics that
is closely related to the ICMAUS concepts. However, the word ‘pattern’ in the present work
is merely a generic name for an array of atomic symbols in one or more dimensions whereas
in Devlin [1997] and Resnik [1997], the word ‘pattern’ has more abstract meanings.

That said, Devlin’s book—which is intended as a ‘popular’ presentation of mathematics
rather than an academic treatise—gives a hint of a connection with the present work because
the term ‘pattern’ is used in a way that seems to be roughly equivalent to ‘regularity’ and
there is a connection between regularities and IC. Resnik uses the term ‘pattern’ to mean
the same as the abstract concept of ‘structure’ as it has been developed in the structuralist
view of mathematics [see also Shapiro, 2000]. As with Devlin’s book, there is a hint of a
connection with the present work because of an apparent link between structuralist concepts
and the intuitive concept of structure which itself seems to reflect redundancy.

Despite these possible links with the present work, neither of the books cited develops
any connection with established concepts of information, redundancy or IC and there is
no mention of any concept of multiple alignment. Readers may wish to view the present
proposals as an extension or development of structuralism. Alternatively, the proposals may
be seen as an application of an independent intellectual tradition—information theory—to
concepts in mathematics and logic, with some points of similarity with structuralism.
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2.3.2 IC in the Workings of Brains and Nervous Systems

Parsimony has been recognised as an important principle in thinking, science and the work-
ings of brains and nervous systems from at least as far back as the fourteenth century
when William of Occam suggested that, in thinking and theorising, “entities are not to be
multiplied beyond necessity”. Other thinking in this area includes:

• Ernst Mach and others in the nineteenth century wrote on this theme and, in a similar
vein, Zipf [1949] published Human Behaviour and the Principle of Least Effort.

• The advent of Hartley-Shannon information theory (ca. 1949) led to a surge of interest
in ‘cognitive economy’ and economical encoding in brains and nervous systems [see,
for example, Attneave, 1954, Oldfield, 1954, Garner, 1974, von Békésy, 1967]. H. B.
Barlow has published extensively on neurophysiology over many years with IC as a
recurring theme [see, for example, Barlow, 1959, 1969, 1997, 2001].

• The idea that pattern recognition may be understood in terms of IC has been recog-
nised for some time [see, for example, Watanabe, 1972].

• In an extensive programme of research by the author, modelling first-language learning
by children, MLE principles (see Section 2.3.3, below) emerged as a unifying theme
(see Wolff [1988, 1982] and earlier publications cited there).

• In everyday life, we understand our world to be populated by discrete, persistent
‘objects’, including discrete entities like words. Whatever else they may be, these
entities seem to have the role of information ‘chunks’ and, as such, they are a powerful
aid to economy in our encoding of the world (Section 2.2.5, above). Relevant discussion
may be found in Wolff [1993, 1988, 1982] and earlier publications cited there.

• Many pointers to more recent work relating IC to the workings of brains and nervous
systems may be found in Chater [1999, 1996].

If it is accepted that IC does indeed have a fundamental role in the way brains and
nervous systems operate, it is reasonable to ask what advantage this may have in natural
selection.

The most obvious answer is that, given finite resources in brains and nervous systems,
compression of information enables us to achieve more than would otherwise be the case—
or use fewer resources for a given level of performance. This would apply to the storage of
information and also to the internal transmission of information and the input and output
of information.

Although these things are probably important, it seems likely that there is a second
reason that is at least as important. This is that there is an intimate connection between IC
and inductive prediction of the future from the past (described briefly in the next subsection).
For any creature, an ability to learn from experience and anticipate positive or negative
events in the future must be indispensable for survival.
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2.3.3 Inductive Inference, Minimum Length Encoding and Probabilistic Rea-
soning

Largely independent of the research just described, there has been another programme of
research elucidating the theoretical significance of IC in the abstract problem of inductive
inference: probabilistic prediction of future events from patterns of events in the past. This
programme of research on ‘Minimum Length Encoding’ (MLE) was pioneered by Solomonoff,
Wallace and Boulton, and Rissanen amongst others [see Li and Vitányi, 1997].

The connection between IC and inductive inference—which may at first sight seem
obscure—lies in the identification of recurrent patterns. As we have seen (Section 2.2.3),
IC may be achieved by the unification of recurrent patterns. And a repeating pattern
like ‘Spring, Summer, Autumn, Winter’ informs out expectations that Summer will follow
Spring, Autumn will follow Summer, and so on.

The key idea in MLE is that, in grammar induction and related kinds of processing,
one should seek to minimise (G + E), where G is the size (in bits) of the ‘grammar’ (or
comparable structure) under development and E is the size (in bits) of the raw data when it
has been encoded in terms of the grammar. This principle achieves a compromise between
grammars that are very small but inefficient for coding and grammars that can encode data
economically but are unduly large [Solomonoff, 1986].6

2.4 The ICMAUS framework and the SP61 Model

The ICMAUS framework is founded on MLE principles, just described. The framework
is intended as an abstract model of any natural or artificial system for ‘computing’ or
‘cognition’. It is envisaged that any such system may be seen to receive ‘raw’ (or ‘New’)
data from the environment and to compress it as much as possible by matching it against
itself and against already-stored patterns (designated ‘Old’), unifying those parts that match
(thus achieving the effect of ‘recognition’) and storing the parts that do not match (which
seems to be a key to ‘learning’).

This framework is partially-realised in a software model, SP61, described quite fully
in Wolff [2000]. SP61 performs the recognition part of the ICMAUS process but does
not attempt learning. Work is currently in progress to extend the model to unsupervised
inductive learning. Notwithstanding this limitation of the current model, it is good enough
to provide illustrations for many of the examples described below.

Currently, all kinds of information for the SP61 model are expressed as one-dimensional
patterns of atomic symbols (examples will be seen below). It is envisaged that, at some
stage, the model will be generalised to patterns in two or more dimensions.

At the core of the ICMAUS framework (and the SP61 model) is a process for finding
full matches between patterns or good partial matches. It is a refined version of ‘dynamic
programming’ [see, for example, Sankoff and Kruskall, 1983] with advantages compared with
standard methods: it can process patterns of arbitrary length, it can find several alternative

6In the SP61 model (that provides all the examples of multiple alignment shown in this article), G has a
fixed size. This means that it is only necessary to seek to minimise E. In the SP70 model, currently under
development, G and E can both vary so both of them must be evaluated in the search for minimum length
encoding.
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alignments for any given set of patterns, and the thoroughness of searching can be controlled
by parameters.

The matching process is applied recursively so that the system can build up ‘multiple
alignments’, with two or more levels, as will be seen below.

Notwithstanding astronomically large search spaces for most multiple alignments, the
heuristic techniques used in the SP61 model mean that its computational complexity (time
complexity and space complexity) is within acceptable polynomial limits.

To date, application of the ICMAUS framework and the SP61 model include: natural
language processing Wolff [2000]; modelling a Post Canonical System (and hence a Universal
Turing Machine) Wolff [1999a]; and probabilistic and human-like reasoning Wolff [1999b,
2001].

2.5 Example

As a typical example of the kind of alignment formed by SP61, Figure 1 shows how the
sentence ‘j o h n r u n s’ (supplied to the model as ‘New’) may be aligned with patterns
(stored in ‘Old’) that represent grammatical rules. The overall effect of this alignment is an
analysis or parsing of the sentence into its constituent parts.

0 j o h n r u n s 0
| | | | | | | |

1 N 0 j o h n #N | | | | 1
| | | | | |

2 S N #N V | | | | #V #S 2
| | | | | |

3 V 1 r u n s #V 3

Figure 1: Parsing of the sentence ‘j o h n r u n s’ as an alignment amongst patterns representing
the sentence and relevant rules in a grammar.

In this and other alignments shown below, New is placed at the top of each alignment
with patterns from Old below it. Each appearance of a pattern in any alignment is given a
line to itself and, below the top line, the order in which patterns appear (from top to bottom
of the alignment) is entirely arbitrary.

A good alignment is defined here as one that provides a basis for an economical coding
of New in terms of the patterns in Old. There is no space here to describe the method of
evaluation which is used in SP61. A full description may be found in Wolff [1999b].

2.6 Parsing in Mathematics and Logic

To bring us a little closer to mathematics and logic, this subsection presents an example
showing how expressions in logic and mathematics may be parsed. This, in itself, is not
a process of mathematical or logical inference such as addition or multiplication but it is
necessary for the interpretation of ML symbols prior to the application of such processes.
The example provides a bridge from the ‘linguistic’ example shown above to other examples
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presented later showing how mathematical and logical structures and processes may be
understood in terms of ICMAUS.

Both mathematics and logic make frequent use of ‘expressions’ that need to be analysed
into their constituent parts before they can be evaluated. An example from arithmetic is
(((6 + 4)(16− 4))− 6). In logic one might write a composite proposition like ∼ ((p ∧ q) ⇒
((x∧y)∨(s∧p))), where the letters are simple ‘atomic propositions’ like “Today is Tuesday”
or an equivalent ‘atomic formula’ like ‘today(Tuesday)’ and the other symbols have their
standard meanings in logic (see the key to Figure 2). Any such analysis is essentially a
form of parsing in the same sense as was used in Section 2.5. And, like ‘linguistic’ kinds of
parsing, it requires an appropriate grammar.

It may be objected that the examples are already parsed because they contain the kinds
of brackets that may be used to represent the structure of a sequence of symbols. The
reason that parsing is needed in examples like these is that, until the constituent parts of a
sequence are recognised by the system, the sequence is merely a stream of symbols and the
role of the brackets in marking structures has not yet been recognised. Brackets are, in any
case, not a necessary part of the examples—they might equally well be presented in Polish
notation without the use of brackets.

Figure 2 shows part of a grammar for expressions in symbolic logic. Readers will see that
it contains three main rules (beginning with ‘F’). The first one creates an ‘atomic formula’
like ‘today(Tuesday)’. In a fuller grammar there would be rules for the creation of a variety
of such atomic formulae. The second rule is a recursive rule covering cases like ‘proposition
implies proposition’, where ‘proposition’ can be simple or complex. The third rule is also
recursive, covering all forms of ‘not proposition’. The patterns beginning with ‘R’ show
some of the symbols that may be put between two propositions in the second rule in the
grammar.

F → a
F → ( F R F )
F → ( ∼ F )
R → ⇒
R → ∧
R → ∨

etc

Figure 2: Part of a grammar for symbolic logic. Key: ‘a’ = ‘atomic formula’, ‘∼’ = ‘not’, ‘∧’ =
‘and’, ‘∨’ = ‘or’, ‘⇒’ = ‘implies’.

Figure 3 shows the same grammar as the one in Figure 2 but it is recast into a form
that is appropriate for ICMAUS. The main differences are that the grammar in ICMAUS
style leaves out the rewrite arrow, it uses numbers to differentiate the three ‘F’ rules and
the three ‘R’ rules, and it puts in a ‘terminating’ symbol for each rule and each ‘call’ to a
rule. Each ‘terminating’ symbol is formed by copying the initial symbol and adding ‘#’ to
the front of it.

Finally, Figure 4 shows the best alignment that was found by SP61 with the pattern ‘(
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F 1 a #F
F 2 ( F #F R #R F #F ) #F
F 3 ( ∼ F #F ) #F
R 1 ⇒ #R
R 2 ∧ #R
R 3 ∨ #R

Figure 3: The grammar shown in Figure 2 recast in ‘ICMAUS’ style.

( ∼ ( a ⇒ a) ) ∧ a )’ in New and the patterns from Figure 3 in Old. The alignment may
be interpreted as a parsing of the logical expression in terms of the given grammar and, as
such, appears to be ‘correct’.

0 ( ( ~ ( a => a ) ) ^ a ) 0

| | | | | | | | | | | |

1 | F 3 ( ~ F | | | | | #F ) #F | | | 1

| | | | | | | | | | | | |

2 F 2 ( F | | | | | | | #F R | #R F | #F ) #F 2

| | | | | | | | | | | | |

3 F 2 ( F | #F R | #R F | #F ) #F | | | | | | 3

| | | | | | | | | | | | | | |

4 F 1 a #F | | | | | | | | | | | | 4

| | | | | | | | | | | |

5 R 1 => #R | | | | | | | | | 5

| | | | | | | | |

6 F 1 a #F | | | | | | 6

| | | | | |

7 | | | F 1 a #F 7

| | |

8 R 2 ^ #R 8

Figure 4: The best alignment found by SP61 with the expression ‘( ( ∼ ( a ⇒ a) ) ∧ a )’ in New
and the patterns shown in Figure 3 in Old.

2.7 Realisation of the Three Compression Techniques in ICMAUS

The two examples of multiple alignment that we have seen so far give us a preliminary view
of the way in which the three compression techniques described in Section 2.2.5 may be
modelled in ICMAUS.

2.7.1 Chunking-with-Codes

In our first example (Figure 1), a pattern like ‘N 0 j o h n #N’ may be seen as a chunk of
information (‘j o h n’) together with its ‘code’ (‘N 0 #N’). In this case, the code has a dual
function of providing a unique identifier for the chunk and marking the beginning and end
of the chunk.

Superficially, the code in this example appears to be only slightly smaller than the chunk
and there does not seem to be much advantage in terms of IC in recognising the chunk. If
‘j o h n’ had been replaced by ‘j i m’, there would appear to be no compression at all. But
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it must be born in mind that each symbol has its own code and calculations of IC are based
on symbol sizes in bits not simple counts of numbers of symbols.

What about patterns like ‘R 1 ⇒ #R’ in our second example where, even allowing for
varying sizes of symbol codes, it looks as if the code (‘R 1 #R’) is larger than what it encodes
(‘⇒’)? This is discussed in Section 2.7.2, next.

2.7.2 Schema-Plus-Correction

In our first example (Figure 1), it should be clear that a pattern like ‘S N #N V #V #S’
is taking the role of a schema that may be corrected or completed by the addition of a
noun pattern and a verb pattern. Although sentence patterns in a language like English are
relatively abstract concepts, they are patterns that repeat very often in the language and
thus represent, in compressed form, relatively large amounts of redundancy. In a similar
way, patterns like ‘F 2 ( F #F R #R F #F ) #F’ and ‘F 3 ( ∼ F #F ) #F’ represent very
frequently recurring patterns in the language of logic (‘F ⇒ ( F R F )’ and ‘F ⇒ ( ∼ F )’
respectively) and thus capture a significant amount of the redundancy in that language.

An answer to the question raised at the end of the last subsection is that, when IC is
achieved using schemata like ‘F 2 ( F #F R #R F #F ) #F’ and ‘F 3 ( ∼ F #F ) #F’, it is
also necessary to create patterns like ‘R 1 ⇒ #R’ that are corrections or completions of the
schemata. Such ‘correction’ patterns may not, in themselves, represent any redundancy but
they contribute to IC via their role in conjunction with patterns that function as schemata
(see also Section 3.3.1).

2.7.3 Run-Length Coding

In ICMAUS, there is no explicit mechanism for representing iterated structures as there is
in computer programming (e.g., the while loop, the for loop, or the repeat ... until loop).
The sole mechanism is recursion (in the sense of computer programming) as can be seen in
the examples in Sections 4.2 and 2.6.

The ICMAUS grammar in Figure 3 exhibits this kind of recursion (in the second and
third lines). Another example is described in Section 4.2.

2.8 Mathematics, Logic, Information, Redundancy and Structure

Before we proceed to the two main sections of this article, it may be useful to take a ‘global’
view of ML in terms of concepts that have been introduced in this section.

The concept of ‘information’, as described above, is a highly abstract concept with a very
wide scope. Anything and everything of which we may conceive, including mathematics,
logic, brains, computers, trees, houses, and so on, may be seen as information. We cannot
learn about the world without absorbing information and any inborn knowledge that we
may have may also be seen as information.

Information that is totally random—without any detectable redundancy—is totally lack-
ing in structure. All persistent entities, concepts, laws, theorems or regularities, including
the concepts of mathematics and logic, represent redundancy or structure in information.
Any kind of repeatable calculation or deduction is a manifestation of redundancy in the
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substance of mathematics and logic. And information compression is the mechanism by
which we detect and manipulate these redundancies.

In short, it is difficult to escape from the conclusion that concepts in ML are intimately
related at a fundamental level to concepts of information, redundancy, structure and the
compression of information.

2.9 The ICMAUS Framework and AIT

AIT (described briefly in Section 2.2.2, above) is closely related to MLE principles. Since
the ICMAUS framework is founded on MLE principles, one might ask what distinguishes
the ICMAUS proposals from AIT. The key differences are these:

• Within AIT, the Turing model of ‘computing’ is taken as ‘given’, whereas, within the
ICMAUS theory, it may be seen as a special case of the ICMAUS framework [Wolff,
1999a].

• The concept of multiple alignment, as it has been developed within the ICMAUS
theory, has no counterpart within AIT.

• The ICMAUS framework provides a perspective on a range of AI issues and on the
nature of mathematics and logic which is quite different from anything in AIT.

3 ML Structures and Information Compression

The previous sections of this article have prepared the ground for what is really the main
substance of the article:

• This section describes the idea that ML notation and ML structures may be seen as a
set of devices for representing information in a compressed form.

• The next section presents the idea that processes of mathematical and logical inference
may also be understood in terms of IC.

As was noted earlier, the arguments and examples to be presented are not intended as
any kind of proof of the proposition that ML is based on IC. They are merely suggestive
indications of what may turn out to be a fruitful way to view mathematics, logic and related
disciplines—an avenue to new insights and understanding.

Within this main section, Section 3.1 considers some general features of ML that suggest
that there is a close connection between ML and IC. Next, we consider some aspects of
number systems that seem to relate to IC. Then in Sections 3.2, 3.3 and 3.4, we consider
how the IC principles of chunking-with-codes, schema-plus-correction and run-length coding
may be seen to operate in ML forms and structures. Section 3.5 considers some of the ways
in which these concepts may be modelled in ICMAUS.
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3.1 Suggestive Evidence

Considering, first, the idea that ML notations and structures might be seen as devices for
representing information in a compressed form, a general indication that something like
this might be true is provided by three aspects of mathematics discussed in the next three
subsections.

3.1.1 Mathematics as the “Language of Science”

In the context of science as a search for succinct descriptions of the world, it is often remarked
that mathematics provides a remarkably and ‘mysteriously’ convenient way to express sci-
entific truths. Thus Penrose [1989], who takes a Platonic view of mathematics, writes:

It is remarkable that all the SUPERB theories of Nature have proved to be ex-
traordinarily fertile as sources of mathematical ideas. There is a deep and beau-
tiful mystery in this fact: that these superbly accurate theories are also extraor-
dinarily fruitful simply as mathematics. (pp. 225–226, emphasis as in the
original).

In a similar vein, Barrow [1992] writes:

For some mysterious reason mathematics has proved itself a reliable guide to
the world in which we live and of which we are a part. Mathematics works:
as a result we have been tempted to equate understanding of the world with its
mathematical encapsulization. ... Why is the world found to be so unerringly
mathematical? (Preface, p. vii).

This last question is partly answered later:

Science is, at root, just the search for compression in the world. ... In short, the
world is surprisingly compressible and the success of mathematics in describing
its workings is a manifestation of that compressibility. (ibid., p. 247).

Thus he recognises that mathematics provides a good medium for expressing scientific
observations in a compressed form but he stops short of making the connection, which is the
subject of this article, between mathematical concepts and standard concepts of information
and IC.

3.1.2 The Nature of Mathematical ‘Functions’

A mathematical ‘function’ is a mapping from one set (X) to another set (Y ) and, in the
‘strict’ form of a function, each element of X is mapped to at most one element of Y
[Sudkamp, 1988, p. 7] although it is sometimes useful to consider more ‘relaxed’ kinds of
‘function’ where each element of X may be mapped to more than one element of Y . In
essence, a function is a table with one or more columns representing the ‘input’ and one or
more columns representing the ‘output’. Thus an element of set X may be one or more cells
from one row of the table and the corresponding element of set Y is the complementary set
of one or more cells from the same row of the table.
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Very simple functions, such as the exclusive-OR function, can be and often are repre-
sented literally as a table. This and other examples will be considered later. But, in the
vast majority of cases, the definition of a function (the ‘body’ of the function in computer-
science jargon) does not look anything like a table. Nevertheless, whatever the definition of
a function might look like, all functions behave as if they were ‘look up’ tables that yield an
output value or set of values in response to an appropriate input.

The key point here is that, with regard to the more complex kinds of functions that
do not look like a table, they are almost invariably smaller than the abstract table they
represent and, in most cases, they are smaller by a large factor.

This feature of the more complex kinds of functions means that they can provide a very
effective means of compressing information. Consider, for example, a function relating the
distance travelled by an object to the time since the object was dropped from a high place
and allowed to fall freely under the influence of gravity (ignoring the effect of resistance
from air). If the function is represented as a table and if there is an entry in the table for
each microsecond or nanosecond, then for a fall of 100 metres, say, the table will be very
large. By comparison, Newton’s formula, s = (gt2)/2 (where s is the distance travelled, g
is the acceleration due to gravity and t is the time since the object was allowed to fall), is
extremely compact.

This feature of the more complex kinds of function goes a long way to explaining why
mathematics is such an effective “language of science”. However, as we shall see, there is
more to be said than this about IC and the nature of functions.

3.1.3 The Nature of Counting

Given its close association with the number system, the process of counting things is clearly
central in mathematics.

A little reflection shows that it is not possible to count things without some kind of
process of recognition. If we are asked to count the number of apples in a bowl of fruit, we
need to be able to recognise each apple and distinguish it from other fruits in the bowl—
oranges, bananas and so on. Even if we are asked to count the number of ‘things’ in some
location, we need to recognise each one as a ‘thing’ and distinguish it from the environment
in which it lies.

Recognition is a complex process which can be applied at various levels of abstraction.
But notwithstanding this complexity it seems clear that it necessarily involves a process of
matching patterns. And, as we noted in Section 2.2.4, if the things to be counted are all to
be assimilated to a single concept (e.g., ‘apple’ or ‘thing’ or other category), this implies the
unification of matching patterns.

Given the connection between IC and the matching and unification of patterns (described
in Section 2.2.4), it seems that counting involves a process of compressing information. Given
the central importance of counting in mathematics, this is one strand of evidence pointing
to the importance of IC in mathematics.

3.2 Chunking-with-Codes

As we saw earlier (Section 2.2.5), the idea of giving a name, ‘identifier’, ‘tag’ or ‘code’
to a relatively large chunk of information is a means of compressing information that we
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use so often and that comes so naturally that we scarcely realise that we are compressing
information.

In ML, as in many other areas, names are widespread. We use names for mathematical
and logical functions, for sets and members of sets, for numbers, for variables, for matrices
and for geometric forms. In computer programming, names are used for functions and sub-
routines, for methods, classes and objects (in object-oriented design (OOD)), for arrays and
variables, for tables and columns (in databases) and, in the bad old days of spaghetti pro-
gramming, names were used copiously for individual statements or lines where the program
could ‘go to’.

In almost every case, it seems that a name has the role of being a relatively short code
representing a relatively large chunk of information. As such, most or all of these names
contribute to the achievement of IC.

In the following subsections we shall consider these ideas in a little more detail.

3.2.1 The Concept of a Discrete Object in ML

Historically, it seems likely that the concept of number originated with the need to keep
a tally on concrete objects like sheep, goats, oranges etc. Arguably, the earliest number
system was the system of unary natural numbers where 1 = 01, 2 = 011, 3 = 0111 etc and
other number systems were invented or discovered later as a generalization of that simple
kind of counting.7

Whether or not that historical speculation is accepted, most people will accept that there
is a connection between the concept of natural numbers, especially unary numbers, and the
concept of discrete objects in the world. The latter do not depend on the former (because
animals—and people without any knowledge of numbers—can recognise discrete objects).
But each stroke in a unary number is itself recognised as a discrete entity and, even if we
are using numbers with bases higher than one, we know that it is often convenient to make
a one-to-one association between strokes in the underlying unary number and objects in the
real world.

In a similar way, the concept of a set, with elements of the set being discrete entities
(some of which may themselves be sets), provides a link with the way we see the world as
composed of discrete objects.

Thus the concept of a discrete object has a significant role in both the concept of number
and of a set. And the concepts of number and set are both key parts of ML. Bearing in mind
that seeing the world in terms of discrete objects is almost certainly a reflection of the way
our perceptions and concepts are governed by IC principles (Section 2.3.2), it is apparent
that IC plays a significant part in the foundations of ML.

3.2.2 Chunking-with-Codes in Number Systems?

With regard to names or codes as relatively short identifiers for chunks, let us begin with a
type of name which, at first sight, does not appear to have a role in IC. It can be argued
that the names (words or numerals) that we give to numbers merely serve to differentiate
one number from another and are not codes for relatively large chunks of information. We
may argue that this is true even for names like ‘one billion’ or ‘109’ that represent relatively

7A concept of zero was, historically, a relatively late development.
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large numbers and would take a lot of space if they were written out using unary arithmetic
or even binary arithmetic. The reason we may give is that the base of a number (unary,
binary etc) is irrelevant to the calculation of the amount of information it represents so that
any number in any base is totally equivalent to the same number in another base in terms
of information, apart from errors arising from any rounding of numbers that we may choose
to make.

This line of reasoning is valid for conversions between two numbers both of which have
a base of 2 or more, but it appears to be wrong for conversions between numbers where one
of the two numbers is unary.

Although unary numbers are conventionally considered to have a base of 1, there is a
sense in which they have no base at all. Each stroke in a unary number seems to be a
primitive representation of a discrete entity and the stroke cannot be analysed into anything
simpler.

By contrast, any number that uses a base greater than 1 introduces a new principle: the
idea that groups of symbols may be given a relatively short name or code, and that this may
be done recursively through any number of levels. In the decimal system, for example, 8 is
a relatively short name for the unary number ‘011111111’. At this point, a sceptic might
object that, to accommodate decimal digits from 0 to 9, each one must be assigned at least
dlog210e = 4 bits of space in a computer memory and that this is equivalent to the amount
of information in the corresponding unary number.

In the case of the decimal digits from 0 to 9, this objection may carry some force. But
it appears not to be valid when we consider numbers of 10 or more. The decimal number
100, for example, uses digits within the range 0 to 9 and so, on the assumption that we are
not needing to represent anything other than numbers, we could accommodate the three
digits in ‘100’ with only 3× 4 = 12 bits (or, if we started counting from 0 and thus finished
counting at 99, we could accommodate the number with only 2 × 4 = 8 bits). This is very
much less than the number of strokes in the corresponding unary number and thus, prima
facie, seems to be a clear case of IC.

In Section 2.2.4 we saw that lossless compression of I is only possible if we can detect
redundancy in I. Where is the redundancy in unary arithmetic that might allow us to use the
chunking-with-codes technique as suggested above? The answer seems to lie in the apparent
need to provide a symbol (normally ‘0’) to represent zero in the unary number system.8 If
the symbols ‘0’ and ‘1’ are both provided in the unary number system then it is clear that in
all the many unary numbers where the number of ‘1’s is large, the probability of ‘1’ is very
much higher than ‘0’ and so, in accordance with Hartley-Shannon information theory, these
numbers generally contain considerable amounts of redundancy. Thus the conversion of any
unary number (except very small ones) into the equivalent number using a base of 2 or more
seems to be a genuine example of chunking-with-codes and seems to achieve genuine IC.

3.2.3 Grammars and Re-Write Rules

CF-PSGs comprising rewrite rules like ‘S → NP VP’ are used in theoretical linguistics al-
though, since Chomsky’s monograph on Syntactic Structures [Chomsky, 1957], it is well

8Apart from the need to represent the concept of zero, a system containing nothing but unary numbers
would need some means of marking the beginnings and ends of numbers. This can be achieved if every
number starts with ‘0’.
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known that such grammars are not adequate to handle the full complexity of natural lan-
guages. Essentially the same kind of grammar and rules are known as Bachus-Naur form
(BNF) and are used widely in computer science, especially in specifying the syntax of pro-
gramming languages. Again, the same kind of grammar and rewrite rules are used in studies
of logic [see, for example, Plaisted, 1993].

In many examples of rewrite rules, but not all, there are fewer symbols to the left of the
rewrite arrow than there are on the right. Very often, there is only one symbol before the
rewrite arrow and several to the right.

In cases like these, it seems reasonable to interpret the symbol or symbols to the left of
the rewrite arrow as a relatively short code for the symbols to the right of the arrow. And in
most cases, it is clear that these codes do indeed have a role in IC: a grammar is, in effect,
a compressed representation of the natural or artificial language that it generates.

In general, a grammar represents lossy compression of any one sample of the language.
This is because, in most cases, a grammar does not encode specific sentences or computer
programs. Nevertheless, the rules of a grammar normally correspond to repeating patterns
found in samples of the language and thus represent a distillation of some at least of the
redundancy to be found in the language. The patterns that repeat in a sample of language
can be relatively concrete patterns such as words, or they can be more abstract patterns at
‘higher’ levels, like phrases, clauses and sentences.

3.2.4 Named Functions and Operators

In the course of writing a computer program, it often happens that the programmer en-
counters sections of the program in two or more different places within the program that
are the same as each other or very similar. In cases like this, it is normal practice to reduce
the several sections to a single function, to give the function a name and then to use that
name as a ‘call’ to the function in each of the places where one of the original sections was
found. This kind of procedure provides us with an illustration of the chunking-with-codes
technique and its use in the service of IC. It is so convenient to be able to reuse functions
like ‘date’ or ‘time’ under Unix by just giving their names, and it would be so tedious if we
had to write out in full the program statements for these functions every time we wanted to
use them.

Of course, a named function can itself contain one or more named functions and this
gives rise to the familiar hierarchies of function calls in computer programs and other areas
of ML.

Notions of ‘method’ (in OOD) or ‘subroutine’ provide similar examples. An ‘operator’
like ‘+’ or ‘×’ is essentially the same except that it is normally supplied by the programming
system (although systems like Prolog allow users to define their own operators).

Very often, two or more sections of a program are the same except that different numbers
or data structures are processed. In this case, a named function can be formed but the
variable part is supplied as an ‘argument’ to the function, e.g., ‘4’ in ‘square root(4)’. More
will be said below about this kind of function.

In practice, things are not quite as simple as just described. In conventional computers,
there is a run-time ‘overhead’ arising from the creation of a named function and, if run-
time considerations are pressing, a programmer may deliberately choose to leave repeating
sections as they are. In other situations, it can be convenient for reasons of readability or
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layout of the program to create a named function even though there is only one instance
of the relevant section of the program. Notwithstanding examples like these, it remains
true that a major reason for the use of named functions is to avoid undue redundancy in
computer programs.

Very much the same things can be said about the concept of ‘function’ in mathematics.
Repeated chunks may not always be converted into a named function and there may be
occasions where a named function is recognised even though it is used only once. But in
the great majority of cases, the use of a named function can be seen to be a way of avoiding
undue redundancy in mathematical text.

Systems like Prolog that are designed for ‘programming in logic’ provide similar struc-
tures. A Horn clause in Prolog with both a ‘head’ and a ‘body’ is very much like a function
in procedural programming languages. The head serves as an identifier or code for the clause
and the body is the chunk of information which is identified. Normally, the body is signifi-
cantly larger than the head and, normally, the body is a pattern that would be repeated in
two or more parts of the program if it had not been recast as a named chunk in the form
of a Horn clause. As with functions, there may be ‘arguments’ or ‘parameters’ to allow for
variations in the data being processed.

3.3 Schema-Plus-Correction

This subsection considers some constructs in ML that seem to be examples of the IC principle
of schema-plus-correction.

3.3.1 Structures Containing Variables

The concept of a ‘variable’ is widespread in mathematics, logic, computer programming and
theoretical linguistics. In all its uses it is understood as some kind of ‘receptacle’ that may
receive a ‘value’ by ‘assignment’ or by ‘instantiation’. In many systems, each variable has a
‘type’ with a ‘type definition’ that defines the range of values that the variable may receive.

In the majority of cases, a variable has a name, although unnamed variables are used
sometimes in systems like Prolog. If the size of the value of a named variable is relatively
large compared with the name (and values in Prolog can be very large, complex structures),
then, in some cases, the name may be understood as a ‘code’ and the value may be seen
as a corresponding chunk so that the two together may be seen to make a contribution to
IC via the chunking-with-codes technique. But in many cases, the value and the name are
similar in size or the value is smaller than the name. Surely, in cases like these, or in cases
where the variable has no name, there cannot be any contribution to IC?

The answer to this question seems to be much as was described in Section 2.7.2, above. A
structure that contains variables may usually be seen as a schema, the variables may be seen
as ‘holes’ or ‘slots’ in the schema and the values may be seen as ‘corrections’ or ‘completions’
of the schema. In cases like these, the schema may often be seen as a unification of two or
more patterns with a corresponding gain in IC. In short, the contribution that variables can
make to IC is not normally a function of the variables in themselves but because they form
part of a larger structure—a schema—that contributes to IC. Some examples are described
in the subsections that follow.
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3.3.2 Functions with Arguments or Parameters

As we noted in Section 3.2.4, a function need not be a monolithic chunk of information:
most functions allow for variations in the data to which they will be applied by providing
‘arguments’ or ‘parameters’ that may take different values on different invocations of the
function.

This kind of function may be seen as a schema with holes or slots (the arguments or
parameters) that may be filled with a variety of ‘corrections’ or ‘completions’ on different
occasions. Provided the function is called two or more times in an ML text, it can be seen
as a means of avoiding undue redundancy in that text.

3.3.3 Classes, Objects and Inheritance of Attributes

In our everyday talking, writing and thinking, we make frequent use of general classes like
‘person’, ‘house’, ‘furniture’ and so on. Classes may include other classes, recursively through
any number of levels. The class ‘person’ for example, may include subclasses like ‘man’ or
‘woman’ and it may be included in higher level classes like ‘living thing’.

Although it is difficult to be sure how our brains actually use these kinds of concepts,
it seems likely that they provide a powerful means for compressing information. Certainly,
this would be very much in keeping with the variety of other evidence of economy in the
functioning of brains and nervous systems that we noted earlier (Section 2.3.2).

The trick is to store all the attributes of living things in general in our memory of the
class ‘living thing’, to store all the additional things we know about people in general in our
memory for ‘person’, and likewise for the classes ‘man’ and ‘woman’. Then if we recognise
something as a man, we can infer that he has all the attributes of ‘man’ and of ‘person’ and
of ‘living thing’. Without this device, information about the attributes of ‘man’, ‘person’
and ‘living thing’ would have to be repeated in the mental record for each of the men that
we may know. If, like most people, we know at least a little about each of a large number
of different men, the redundancy would be huge.

Starting with Simula (invented by Dahl, Myhrhaug and Nygaard [see, for example,
Birtwistle et al., 1973]), these ideas have been incorporated in a variety of ‘object-oriented’
programming languages. Using such a language, it is possible to define classes like those
above and, usually for the lowest level classes, we can create any number of specific objects,
each one with its own specific attributes (e.g., ‘name’, ‘address’, ‘telephone number’ etc for
an object of the class ‘man’). Any one object inherits all the ‘attributes’ of its lowest level
class and, following the hierarchy upwards, it inherits the attributes of all the higher-level
classes of the object. In this programming context, ‘attributes’ are data structures and
‘methods’ (similar to functions). Each object contains its own data structures following the
patterns defined in the relevant classes but it can inherit its methods by ‘borrowing’ from
the class description as and when they are needed.

This is not the place to rehearse the many benefits of this style of programming. The
key point here is that it makes it easy to design programs with a minimum of redundancy.
In terms of the concept of schema-plus-correction:

• A class at any level is, in effect a schema describing attributes which are found in every
member of the class.
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• Any subclass of a given class provides full or partial ‘corrections’ or ‘completions’ of
its parent class.

• The details of any specific object (e.g., the name, address etc of a man) are, likewise,
corrections or completions of the lowest level class in which the object belongs.

Notwithstanding the ‘power’ of the concepts of classes, objects and inheritance of at-
tributes they seem not to have been taken up in any significant way in mathematics, logic or
theoretical linguistics. That said, there have been some moves to incorporate OO principles
in versions of Prolog and, as we shall see below, some similarities may be traced between
these ideas and others that are prominent elsewhere in ML.

3.3.4 Sets

Perhaps the closest relative of the OO concepts just described in mathematics and logic is
the concept of a set.

A set can be defined extensionally—by listing the elements in the set (e.g.,
{sun,wind, rain})—or it may be defined intensionally—by listing the defining character-
istics of the class (e.g., {n|n is prime}). An intensionally-defined set is similar to a class
as described in Section 3.3.3 and, when one set includes one or more other sets recursively
through an arbitrary number of levels, the structure is similar to a class hierarchy as de-
scribed above. But, to my knowledge, little or no attempt has been made to develop concepts
like inheritance of attributes or the instantiation of a class by one or more objects.

With regard to IC, an intensionally defined set that describes two or more elements may
be regarded as a compressed representation of the relevant attributes of those elements.

3.3.5 Propositions in Logic with the Universal Quantifier

Here are two examples of propositions expressed in English and in logical notation:

• “All humans are mortal.”

∀x : human(x) ⇒ mortal(x).

• “For any integer which is a member of the set of natural numbers (N) and which is
even, it is also true that the given integer with 1 added is odd.”

∀i ε N · is even(i) ⇒ is odd(i + 1).

Each example is a proposition containing a universal quantifier and a variable (all three
instances of x refer to a single variable and likewise for i). The first statement is a general-
ization about what it is to be human and the second one is a generalization about natural
numbers. Both of them represent repeating (redundant) patterns. Each may be regarded as
a schema rather than a chunk because, notwithstanding its status as ‘bound’, the variable
in each example can receive a variety of values.
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3.4 Run-Length Coding

When something repeats in a series of instances, each one contiguous with the next, we find
it very natural to find some way to reduce the repetition to a single instance with something
to mark the repetition. As noted previously, lossless compression is achieved if the number
of repetitions is marked; otherwise the IC is lossy.

This section identifies some examples of run-length coding and further examples will be
described in Section 4.

3.4.1 Iteration and Recursion in Computer Programming

In computer programming, repetition of a part of a program can be shown using forms like
a while loop or a for loop or a repeat ... until loop. Generally speaking, there is some change
in the value of one or more variables on each iteration of the block of program. So this
kind of repetition may be regarded as a combination of run-length coding and schema-plus-
correction.

As we have seen earlier (Section 2.2.5), repetition can also be expressed with recursion (in
the sense understood in computer programming). Here is an example (in the C programming
language) of the factorial function:

int factorial(int x)
{

if (x == 1) return(1) ;
return(x * factorial(x - 1)) ;

}

3.4.2 Repetition in Mathematics

Mathematics uses a variety of ways to show repetition in a succinct manner:

• Multiplication is a shorthand for repeated addition.

• The power notation (e.g., 109) is a shorthand for repeated multiplication.

• A factorial (e.g., 10!) is a shorthand for repeated multiplication and subtraction.

• The bounded summation notation (‘
∑

’) and the bounded power notation (‘
∏

’) are
shorthands for repeated addition and repeated multiplication, respectively. In both
cases, there is normally a change in the value of a variable on each iteration, so these
devices may be seen as a combination of run-length coding and schema-plus-correction.

• As in our previous examples, repetition of a function may be achieved by a direct or
indirect ‘recursive’ call to the function.

As we noted previously (Section 2.2.5), the use of shorthands is so automatic and ‘natural’
that it is easy to overlook the fact that they are examples of information compression.
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3.5 Modelling these Concepts in ICMAUS

If it is accepted that our three basic techniques for IC can be modelled in ICMAUS (as
outlined in Section 2.7) and if it is accepted that many forms and structures in ML may
be understood in terms of IC (as described in the preceding parts of this main section),
then one might expect that many of the forms and structures of ML could be modelled in
ICMAUS. The majority of examples will be seen in Section 4. As a preparation for these
later examples, this subsection focuses on some basic structures in ML and how they may
be modelled in ICMAUS.

3.5.1 Variable, Value and Type Definition

The basic idea of a named variable can be represented quite simply in ICMAUS by a pair
of symbols that are contiguous within a pattern. In principle, any pair of symbols may be
seen to function as a variable but in most examples we shall be considering the left and right
symbols will correspond to the initial and terminal symbols of patterns. Thus, in Figure 1,
each of the pairs of symbols ‘N #N’ and ‘V #V’ in the pattern ‘S N #N V #V #S’ may
be seen to function as variables with the first symbol of each pair acting as a name for the
variable and the second serving to mark the end of whatever ‘value’ goes between the two
symbols. These ‘values’ are patterns representing a noun in the case of ‘N #N’ and a verb
between the symbols ‘V’ and ‘#V’. In a similar way in Figure 4, each of the pairs of symbols
‘F #F’ and ‘R #R’ in the pattern ‘F 2 ( F #F R #R F #F ) #F’ function as a variable
that can take other patterns in the grammar as values.

In these examples, each variable may be seen to have a ‘type definition’ in the form of the
set of patterns that has initial and terminal symbols that match the left and right symbols
of the variable. For the variable ‘N #N’, the type definition is the two ‘noun’ patterns that
can fit in that slot and for the variable ‘V #V’ the type definition is the two patterns for
verbs. Of course, in a realistic system, those two types would have many more members.

Although the examples shown seem to capture the essentials of the concepts of ‘variable’,
‘value’ and ‘type definition’, they lack two of the features that are commonly found in
computer systems:

• Scoping: In most computer systems, a variable can have a ‘scope’ meaning a part of a
program within which repeated instances of a variable name refer to a single variable.

• Assignment of a type to a variable: In many computer systems, any variable can be
assigned a type that is independent of its name. This contrasts with the examples
given above where the name of the variable is also the name of its type definition.

It seems likely that these two ideas can be modelled in ICMAUS but not in the SP61
model in its current state of development. Discussion of how these things might be done in
ICMAUS in the future would take us too far afield for this article.

3.5.2 Objects, Classes and Inheritance of Attributes

Although notions of objects, classes and inheritance of attributes seem not to have been
adopted in ‘mainstream’ mathematics or logic, they have become prominent in OOD. The
example presented here is intended to show the essentials of how these concepts can be
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accommodated in ICMAUS. As elsewhere in this article, a simple example has been chosen
for the sake of clarity and to save space but readers should not infer that it represents the
limits of what the SP61 model can do. The scaling properties of the model are good [see
Wolff, 1999b] and more complicated examples are well within its reach.

Figure 5 shows a set of patterns that represent, in highly simplified form, part of the
taxonomic hierarchy of animals recognised by zoologists. The seventh pattern, for example,
represents the class ‘bat’ and describes its attributes briefly as ‘flies echo sounder’. Of course,
in a realistic example, this description of the attributes of a bat would be much fuller.

After the symbol ‘bat’ in the pattern for the class ‘bat’ is the name of the class (‘mammal’)
that is immediately above ‘bat’ in the taxonomy of animals. References like this from one
class to another means that the patterns capture the (simplified) taxonomic hierarchy, from
‘vertebrate’ and ‘invertebrate’ at the most abstract level down to ‘Fido’ and ‘Tibbs’ at the
most concrete level.

vertebrate backbone #v
invertebrate no backbone #iv
mammal vertebrate #v furry warm blood milk #m
bird vertebrate #v feathers wings #bd
cat mammal #m retractile claws #c
dog mammal #m barks d
bat mammal #m flies echo sounder #bt
inst Fido dog #d i
inst Tibbs cat #ct i

Figure 5: A set of patterns representing part of the taxonomy of animals in highly simplified form.
Frequencies of occurrence are assigned to the patterns in accordance with what one would naturally
find: ‘animals’ are more frequent than ‘vertebrates’ which are more frequent than ‘mammals’, which
are more frequent than ‘dogs’.

Figure 6 shows the best alignment found by SP61 with the pattern ‘Fido backbone’ in
New (describing something called ‘Fido’ that has a backbone) and the patterns from Figure
5 in Old. In effect, the alignment has shown that Fido belongs in the class ‘dog’, that this is
a ‘mammal’ and that the class ‘mammal’ belongs in the class ‘vertebrate’. All the attributes
of each class are brought into the alignment and, together, they provide a relatively full
description of the attributes of Fido. This is the essence of the concept of ‘inheritance of
attributes’.

4 ML Processes and Information Compression

The previous section presented a range of examples showing that many notations and forms
in ML may be seen as devices for representation of ML concepts in a succinct form. This sec-
tion presents a range of examples in support of the idea that, very often, the computational
or inferential processes in ML may also be understood in terms of IC. More specifically, it
is suggested that, very often, they may be understood in terms of ICMAUS.
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0 Fido backbone 0

| |

1 inst Fido dog | #d #i 1

| | |

2 dog mammal | #m barks #d 2

| | |

3 | vertebrate backbone #v | 3

| | | |

4 mammal vertebrate #v furry warm_blood milk #m 4

Figure 6: The best alignment found by SP61 with ‘Fido backbone’ in New and the patterns from
Figure 5 in Old.

As previously noted, an argument has already been presented [Wolff, 1999a] that the
concept of ‘computing’, as defined by the structure and functioning of the UTM and PCS
models, may be understood in terms of ICMAUS. The arguments and examples here may be
seen as a development of the theme with other examples in mathematics, logic and related
disciplines.

4.1 Sets

This subsection considers briefly how some of the basic features of sets may be understood
in terms of the alignment and unification of patterns.

4.1.1 Creating a Set from a Bag or Multiset

The concept of ‘New’ as it has been described in this article allows two or more patterns
within New to be identical and, in that respect, New is like a ‘bag’ or ‘multiset’ in logic.

If New were to contain a range of one-symbol patterns like this:
{(A)(B)(C)(D)(A)(D)(B)(A)(C)(C)(A)(C)} (or if New were to contain multi-symbol
patterns that repeated exactly in a similar way) it is not hard to see how, with Old initially
empty, the alignment and unification of patterns in a learning process like that outlined in
Section 2.4 would reduce New to a set of patterns in Old like this: {(A)(B)(C)(D)}.

Thus, the process of converting a bag into the corresponding set containing a single ex-
ample of each type of element in the bag may be seen as a process of information compression
by the alignment and unification of patterns.

4.1.2 Union and Intersection of Sets

If the set {(B)(C)(D)(F)(G)} were in New and the set {(A)(B)(C)(E)(F)} were the entire
contents of Old, it is not hard to see that, in much the same way as just described, the result
would be: {(A)(B)(C)(D)(E)(F)(G)}. This set is the union of the first two sets and their
intersection is the one-symbol patterns show in bold type—the set {(B)(C)(F)}.

In general, we can see that the union and intersection of two sets may be seen as IC by
alignment and unification amongst the elements of the sets.
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4.1.3 Intensionally-Defined Sets

An intensionally-defined set such as {x|x > 1} may be regarded as a representation of a set
in compressed form. Unless the set has only a few members (or is empty), this representation
is clearly more economical than the extensional definition that itemises every element of the
set. The process of deriving an intensional definition from the corresponding extensional
definition may be seen as the alignment and unification of the defining attributes in the
elements of the set.

4.2 Generation and Recognition of Numbers

The simplest system of numbers, in terms of numbers of symbol types, is the unary system
mentioned earlier. This kind of system can be defined using a PCS [Post, 1943], like this:

• Alphabet: 0, 1.

• Axiom: 0.

• Production: If any string ‘$’ is a number, then so is the string ‘$ 1’. This can be
expressed with the production: $ → $ 1

Here, the production is a rewrite rule of the kind discussed earlier and ‘$’ represents a
variable. With this ‘successor function’, it should be clear that, if the variable is initialised
with the value of the axiom (0), then the system will generate, recursively, the infinite set
of unary natural numbers, 01, 011, 0111 etc. Slightly less clear is the fact that the system
may be run ‘backwards’ so that it can recognise any unary number as a unary number and
thus distinguish it from all other strings which are not unary numbers.

The axiom and production can be modelled with ICMAUS-style patterns shown in Figure
7. In these patterns, the symbols ‘a’ and ‘b’ are needed for the scoring system used in SP61
and may be ignored. Notice that symbol ‘$’ in Figure 7 is not a variable. It is an atomic
symbol with exactly the same status as the other symbols in the figure. In functional terms
(as described in Section 3.5.1, above), the ‘variable’ in Figure 7 is the pair of symbols ‘$
#$’.

The recursive nature of the production shown above is represented in Figure 7 in the last
pattern shown in Old by the fact that the initial and terminal symbols of the pattern match
the two symbols ‘$ #$’ which, together, constitute the ‘variable’ in the body of the pattern.
This pattern may be read as “A unary number is any unary number (in the ‘variable’ in the
body of the pattern) followed by ‘1”’. There is no need for the rewrite arrow which appears
in the production, above.

4.2.1 Generation of Unary Numbers

Figure 8 shows one of many possible ‘good’ alignments between the one-symbol pattern in
New in Figure 7 and the patterns in Old. The symbol ‘0’ in New aligns with the matching
symbol in the ‘axiom’ in Old. And then that pattern matches the ‘production’ pattern which
then matches its initial and terminal symbols to its ‘variable’ symbols recursively.

All the symbols in the alignment other than the ‘0’ and ‘1’ symbols may be regarded as
‘service’ symbols and may be ignored. If the alignment is unified to form a single pattern,
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New

0

Old

$ a 0 #$
$ b $ #$ 1 #$

Figure 7: Patterns for processing by SP61 to model a PCS to generate unary numbers.

0 0 0
|

1 $ a 0 #$ 1
| |

2 $ b $ #$ 1 #$ 2
| |

3 $ b $ #$ 1 #$ 3
| |

4 $ b $ #$ 1 #$ 4
| |

5 $ b $ #$ 1 #$ 5

Figure 8: One of the many good alignments found by SP61 with the one-symbol pattern ‘0’ in
New as shown in Figure 7 and with patterns in Old as shown in that figure.
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it contains the sequence ‘01111’ which is the unary number for 4. In short, the alignment
may be seen as the generation of that number.9.

4.2.2 Recognition of a Unary Number

Figure 9 shows the best alignment that is found by SP61 with the pattern ‘01111’ in New and
patterns in Old as shown in Figure 7. This alignment may be interpreted as the recognition
of the binary number for 4 in terms of patterns in Old as shown in Figure 7.

0 0 1 1 1 1 0
| | | | |

1 $ a 0 #$ | | | | 1
| | | | | |

2 $ b $ #$ 1 #$ | | | 2
| | | | |

3 $ b $ #$ 1 #$ | | 3
| | | |

4 $ b $ #$ 1 #$ | 4
| | |

5 $ b $ #$ 1 #$ 5

Figure 9: The best alignment found by SP61 with ‘0 1 1 1 1’ in New and patterns in Old as shown
in Figure 7.

4.3 Execution of Simple Functions

The concept of a ‘function’, that we have already considered as an example of chunking-
with-codes (Sections 2.2.5 and 3.2.4) and as a mediator of IC (Section 3.1.2), is one of the
most distinctive features of ML, especially in mathematics and computer programming.

It is often convenient to think of a function as some kind of ‘black box’ that can receive
some kind of ‘input’ and, after some processing, will deliver some ‘output’. As we noted
in Section 3.1.2, a function can, in principle, be regarded as a lookup table and, in simple
cases, functions can often be implemented in that way. But in more complex cases, a simple
lookup table would not be appropriate, either because the size of the table would be finite
but too large to be practical or because the table would be infinitely large.

The remainder of this subsection describes with an example how the execution of simple
functions may be modelled in ICMAUS and the next subsection considers how the execution
of the more complicated kinds of functions may be understood within ICMAUS.

9Readers may, very reasonably, ask “How is it possible for a relatively large pattern like ‘01111’ to be
the outcome of the compression of a relatively small pattern like ‘0’?” Discussion of the paradoxical way
in which ICMAUS allows IC to have the effect of creating something bigger than the original pattern is
discussed briefly in Section 5.1, below, and more fully in Wolff 2000
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4.3.1 A Simple Function as a Look-up Table: A One-Bit Adder

Where a simple function is structured as a table, it can be processed by searching for a row
in the table where the input matches the input side of the row and then reading off the
corresponding output.

In ICMAUS, a table may be represented with a set of patterns like those shown in
Figure 10. These patterns define the function for the addition of two one-bit numbers in
binary arithmetic. The two digits immediately following ‘A’ in each row are the two one-bit
numbers to be added together, the bit following ‘S’ is the sum of the two input bits, and
the bit following ‘C’ is the carry-out bit, to be carried to the next column. Thus, reading
the results in each pattern from right to left and writing them in the usual manner, the four
possible results are ‘1 0’, ‘0 1’, ‘0 1’ and ‘0 0’, in order from the top row to the bottom.

A 1 1 S 0 C 1
A 1 0 S 1 C 0
A 0 1 S 1 C 0
A 0 0 S 0 C 0

Figure 10: Four patterns representing a table to define the function for the addition of two one-bit
numbers in binary arithmetic, with provision for the carrying out of one bit. The meanings of the
letters are described in the text.

Apart from their function in conveying the meanings of the bits to human readers, service
symbols (like ‘A’, ‘S’ and ‘C’) are needed to constrain the search for possible alignments and,
in effect, to tell the system which digits represent the ‘input’ digits and which are ‘output’.10

Figure 11 shows the best alignment that has been found by SP61 with the pattern ‘A 0 1
S C’ in New and the patterns shown in Figure 10 in Old. (Notice that the first and last digit
in each row is a row number, not part of the pattern for that row.) Generally speaking, in
ICMAUS the ‘result’ of an alignment is the symbols in patterns from Old in the alignment
that have not been aligned with any symbols from New. The result in this case is ‘1’ for the
sum bit and ‘0’ for the carry-out bit. In a very straightforward way, the matching process
has functioned as a process of ‘table lookup’ and has ‘selected’ the pattern in Figure 10 that
yields the ‘correct’ addition of ‘0’ and ‘1’ in binary arithmetic.

0 A 0 1 S C 0
| | | | |

1 A 0 1 S 1 C 0 1

Figure 11: The best alignment found by SP61 with ‘A 0 1 S C’ in New and the patterns shown in
Figure 10 in Old. The first and last digit in each row is a row number, not part of the pattern for
that row.

In general, any function that can be represented as a look-up table can be represented
in ICMAUS as a set of patterns and processed in essentially the same way as the example

10A distinction between ‘content’ symbols and ‘code’ symbols provides additional constraint but the details
are not relevant to the subject of this article and need not be spelled out here.
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of one-bit addition shown here.

4.4 Composite Functions and Their Execution

We saw in Section 3.1.2 that, although all functions in ML are defined abstractly as a table
of inputs and outputs, many functions do not look much like a table and are very much
more compact than the table that they represent. In later parts of Section 3 we have seen
that the succinctness of many functions, and the succinctness of ML in general, can often be
attributed to the exploitation of our three simple compression techniques: chunking-with-
codes, schema-plus-correction and run-length coding.

So far, all of this seems to be reasonably straightforward. A complication, however,
is that when two or more functions are part of a higher-level function, or when there is
a repetition of a function two or more times, it is often necessary for the output of one
function to become the input of another function or for the output of a function to become
the input for another invocation of the same function. Does this passing of information
between functions represent any kind of IC and, in particular, can it be modelled with
ICMAUS?

The next subsection shows how, in a simple case, it can be modelled in ICMAUS. And
the following subsection considers this issue in more general terms.

4.4.1 Adding Two-Bit Numbers or Larger

Conceptually, the simplest way to add together a pair of numbers containing two or more
bits is to apply the one-bit adder recursively to successive bits in each of the two numbers
which are to be added. And this means that it should be possible for any carry-out bit from
one application of the adder to become the carry-in bit for the next application of the adder
in the next higher column of the addition.

In the jargon of computer engineering, a one-bit adder like the one shown in Figure 10 is
called a half adder [see Richards, 1955, pp. 83–89] because it lacks any means of receiving a
carry-in bit from the column immediately below. This deficiency is made up in a full adder
[see Richards, 1955, pp. 89–95], a version of which is represented by the set of patterns
shown in Figure 12. Here, the ‘C’ bit at the beginning of each pattern is the carry-in bit
and all the other bits are the same as in the half adder (Figure 10).

Notice that the pair of symbols ‘C ... #C’ marking the carry-in bit at the beginning of
each pattern is the same as the symbols ‘C ... #C’ that mark the carry-out bit at the end
of the pattern. Matching of these pairs of symbols allows the carry-out bit at any one level
to become the carry-in bit at the next higher level so that values can, in effect, be passed
from level to level. This can be seen in the example described next.

Consider, for example, how we may add together two three-bit numbers like ‘1 1 0’ and
‘0 1 1’. The two numbers need to be arranged so that the bits for each level lie together
and are marked in the same way as in the New pattern in Figure 11. The order needs to
be reversed to take account of the way the SP61 model searches for alignments.11 Thus the

11In principle, SP61 can search for good alignments by processing all the symbols in New together. But
in practice, some types of good alignment (including the ones described here) are much easier to find if the
symbols from New are processed one at a time in left-to-right order. And, in addition, it is natural to process
columns in sequence from the lowest order to the highest.
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sequence of symbols for these two numbers should be: ‘A 1 0 S A 1 1 S A 0 1 S’. However,
the symbols ‘C 0 #C’ need to be added at the beginning of New to ensure that the carry-in
bit for the first addition is ‘0’. So the final result is ‘C 0 #C A 1 0 S A 1 1 S A 0 1 S’.

The best alignment found by SP61 with ‘C 0 #C A 1 0 S A 1 1 S A 0 1 S’ in New and the
patterns shown in Figure 12 in Old is shown in Figure 13. Ignoring the ‘service’ symbols,
the sum of the two numbers can be read from this alignment as the three ‘sum’ bits (each
one between an ‘S’ and a ‘C’ column), with the order reversed, and preceded on the left by
the last carry-out bit on the right of the alignment. The overall result is ‘1 0 0 1’. Readers
will verify easily enough that this is the correct sum of the binary numbers ‘1 1 0’ and ‘0 1
1’.

C 1 #C A 1 1 S 1 C 1 #C
C 1 #C A 0 1 S 0 C 1 #C
C 1 #C A 1 0 S 0 C 1 #C
C 0 #C A 1 1 S 0 C 1 #C
C 1 #C A 0 0 S 1 C 0 #C
C 0 #C A 0 1 S 1 C 0 #C
C 0 #C A 1 0 S 1 C 0 #C
C 0 #C A 0 0 S 0 C 0 #C

Figure 12: Eight patterns representing a table to define the function for the addition of two one-bit
numbers in binary arithmetic, with provision for the carrying in of a digit as well as the carrying
out of a digit. The meanings of the symbols are described in the text.

0 C 0 #C A 1 0 S A 1 1 S A 0 1 S 0
| | | | | | | | | | | | | | |

1 C 0 #C A 1 0 S 1 C 0 #C | | | | | | | | 1
| | | | | | | | | | |

2 C 0 #C A 1 1 S 0 C 1 #C | | | | 2
| | | | | | |

3 C 1 #C A 0 1 S 0 C 1 #C 3

Figure 13: The best alignment found by SP61 with the pattern ‘C 0 #C A 1 0 S A 1 1 S A 0 1 S’
in New and the patterns shown in Figure 12 in Old.

4.4.2 Other Composite Functions

Compared with conventional systems, the method just shown for passing information from
one invocation of a function to another is somewhat inflexible. This is because it requires
the ‘output’ variable to have the same name as the ‘input’ variable. In conventional systems
there is a variety of notations for showing that the output of one function becomes the input
to another and none of them are restricted in this way.

Modelling these more flexible methods in ICMAUS probably requires an ability to model
‘scoping’ of variables and, possibly, an ability for ‘learning’. Both these things are beyond
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what the SP61 model can do as it has been developed to date and discussion of these issues
would take up too much space in this article.

4.5 Propositional Logic and IC

Figure 14 shows four patterns representing a ‘truth table’ for the ‘exclusive OR’ logical
proposition (p ∨ q. “Either p is true or q is true but they are not both true”). Here, ‘1’
means TRUE and ‘0’ means FALSE, the first two digits in each pattern are the truth values
of p and q (individually) and, for each pattern, the last digit, between the symbols ‘R .. #R’
, is the truth value of p ∨ q.

Readers will notice that the XOR truth table is very similar to the definition of one-
bit addition shown in Figure 10, not merely in the arrangement of the digits but, more
importantly, in the fact that both things can be represented as a simple lookup table that
can be represented by a set of patterns. It should be no surprise that the XOR function can
be evaluated by SP61 in essentially the same way as with the function for one-bit addition.

XOR 1 1 R 0 #R
XOR 0 1 R 1 #R
XOR 1 0 R 1 #R
XOR 0 0 R 0 #R

Figure 14: Four patterns representing the ‘exclusive OR’ (XOR) truth table as described in the
text.

Again, one might expect to be able to evaluate combinations of simple propositions in
ICMAUS in essentially the same way as was done for the addition of numbers containing
two or more bits (Section 4.4.1). As before, this can be achieved with the SP61 model in
its current stage of development if outputs are made to match inputs. This can be seen in
the definition of ‘NOTXOR’ shown in Figure 15. Here, the alternative ‘outputs’ of the XOR
proposition are contained in the field ‘A ... #A’ and the same two symbols are used to mark
the possible ‘inputs’ of the truth table for NOT (that changes ‘1’ to ‘0’ and vice versa).

NOTXOR XOR NOT R #R #NX
XOR 1 1 A 0 #A
XOR 1 0 A 1 #A
XOR 0 1 A 1 #A
XOR 0 0 A 0 #A
A 1 #A NOT R 0 #R
A 0 #A NOT R 1 #R

Figure 15: A set of patterns defining the ‘not XOR’ proposition as described in the text.

Figure 16 shows the best alignment found by SP61 with the pattern ‘NOTXOR 0 1 A
#NX’ in New and the patterns from Figure 15 in Old. In the alignment, the digits ‘0’ and
‘1’ in New yield ‘A 1 #A’ as the ‘result’ of the XOR component. These three symbols match
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the first three symbols in the first of the two ‘NOT’ patterns and this yields ‘R 0 #R as the
overall ‘result’ of the NOTXOR proposition.

0 NOTXOR 0 1 A #NX 0
| | | | |

1 | XOR 0 1 A 1 #A | 1
| | | | | |

2 | | A 1 #A NOT R 0 #R | 2
| | | | | |

3 NOTXOR XOR NOT R #R #NX 3

Figure 16: The best alignment found by SP61 with ‘NOTXOR 0 1 A #NX’ in New and the
patterns shown in Figure 15 in Old.

As in the case of adding numbers containing two or more digits, the ICMAUS patterns
that have been shown are somewhat contrived owing to the need to make the output at one
stage match the input at the next stage. It is anticipated that more elegant solutions may
be found when the SP61 has been further developed.

4.6 TRUE and FALSE in ICMAUS

Although readers may accept that, in broad terms, the matching and unification of patterns
in ICMAUS can model the kinds of inferences that can be made in propositional logic, an
objection may be raised that, in propositional logic per se, every inference has only two
values, TRUE or FALSE, whereas in ICMAUS, there may be and often are alternative
alignments for a given inference that suggests that there are uncertainties attaching to the
inferences that the system makes.

ICMAUS applies most naturally to probabilistic reasoning [see Wolff, 1999b] and this
suggests that ‘exact’ reasoning may be seen as reasoning where probabilities are very close
to 0 or 1. In itself, this idea is not satisfactory owing to uncertainties about the precise
meaning of ‘close to’ in this context. A better idea is to use explicit TRUE and FALSE
values in ‘output’ fields (or ‘0’ and ‘1’ values as in the examples we have been considering),
coupled with a focus always on the ‘best’ alignment for any set of patterns. If alignments
are created and interpreted in this way then the effect of two-valued reasoning can be
achieved within the ICMAUS framework without ambiguity. An example is shown in the
next subsection.

4.7 Syllogistic Reasoning

Consider the following text book example of a modus ponens syllogism:

1. All humans are mortal.

2. Socrates is human.

3. Therefore, Socrates is mortal.

35



In logical notation, this may be expressed as:

1. ∀x : human(x) ⇒ mortal(x).

2. human(Socrates).

3. ∴ mortal(Socrates).

The traditional ‘strict’ interpretation in logic of syllogistic reasoning requires explicit
values (TRUE and FALSE) for propositions, in much the same style as the ‘output’ fields
of the XOR, NOT and NOTXOR functions shown above.

In the ICMAUS framework, the first of the propositions just shown may be expressed
with the pattern ‘X #X human true ⇒ mortal true’. In the manner of Skolemization,
the variable ‘X #X’ in the pattern represents anything at all and may thus be seen to be
universally quantified. The scope of the variable may be seen to embrace the entire pattern,
without the need for it to be repeated. The symbol ‘⇒’ in the ICMAUS pattern serves
simply as a separator between ‘human true’ and ‘mortal true’.

If this pattern is included (with other patterns) in Old and if New contains the pattern
‘Socrates human true ⇒’ (corresponding to ‘human(Socrates)’ and, in effect, a request to
discover what that proposition implies), SP61 finds one alignment (shown in Figure 17)
that encodes all the symbols in New. After unification to form the pattern ‘X Socrates #X
human true ⇒ mortal true’, we may read the alignment as a statement that because it is
true that Socrates is human it is also true that Socrates is mortal. In this reading, we ignore
the ‘service’ symbols, ‘X’ and ‘#X’.

0 Socrates human true => 0
| | | |

1 X | #X human true => mortal true 1
| | |

2 X Socrates #X 2

Figure 17: The best alignment found by SP61 with ‘Socrates human true ⇒’ in New and
patterns in Old that include ‘X #X human true ⇒ mortal true’.

Notwithstanding the probabilistic nature of the ICMAUS framework, there is no am-
biguity in an alignment like this because it is the only alignment formed that encodes all
the symbols in New. Given that we restrict our attention to alignments of this kind, it is
entirely possible for the framework to yield deductions that are either TRUE or FALSE and
not something in between.

4.8 Probabilistic Reasoning

Apart from the ‘strict’ logical interpretation of examples like the one above, there is a more
relaxed ‘everyday’ interpretation that allows statements and inferences to have levels of
confidence or ‘probabilities’. This kind of interpretation would view a proposition like “All
humans are mortal” to be an inductive generalisation about the world which, like all induc-
tive generalisations, might turn out to be wrong. Likewise, we may not be totally confident
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that Socrates is human. As a consequence of uncertainties like these, the proposition that
“Socrates is mortal” may have some doubt attaching to it.

A relatively full discussion of the way the ICMAUS framework may be applied to prob-
abilistic reasoning (including such things as default reasoning, nonmonotonic reasoning and
‘explaining away’) may be found in Wolff [1999b].

4.9 Chains of Reasoning

By now it should be clear that more complex kinds of reasoning, including ‘chains’ of rea-
soning, may be built up from simpler kinds, by arranging patterns so that, by matching
and unification of symbols, the ‘output’ of one stage can determine the ‘input’ of the next
stage. For example, simple ‘if ... then’ rules of the kind that are the stock in trade of expert
systems may be modelled in ICMAUS with patterns that associate conditions with actions
or consequences (e.g., “If smoke, then fire”, “If litmus paper is red, then solution is acid”).

In the simplest schematic terms, a rule like ‘IF A THEN B’ may, in ICMAUS, be sim-
plified to the association of ‘A’ and ‘B’ in a pattern like ‘A B’. Then an argument like “A
means C because A means B and B means C” can be modelled by the alignment of an initial
‘A’ to the first ‘A’ in ‘A B’, followed by the alignment of the two instances of ‘B’ in the
patterns ‘A B’ and ‘B C’.

Readers wishing to pursue these ideas will find other examples and relevant discussion
in Wolff [1999b]. For the purposes of this article, the key point here is the way in which
inferences may be understood in terms of IC arising from the alignment of patterns and
parts of patterns.

5 Discussion

Before concluding this article, let us consider briefly a few issues that relate to the ideas that
have been presented. There is insufficient space to discuss these issues fully—this section
merely flags their relevance and indicates some lines of thinking.

5.1 The Paradox of ‘Decompression by Compression’

Given the thesis that ML may be understood in terms of IC, it is reasonable to ask how
it is possible, as it clearly is, for decompression to be achieved by mathematical processes
of calculation and inference. Newton’s formula, s = (gt2)/2, may be seen as a compressed
representation of the table relating distances travelled by an object falling freely from rest in
a given time. But, with ordinary mathematical processes of calculation, the formula may be
used to recreate large numbers of rows in that table and thus decompress the information.

This paradox and how it may be resolved is discussed fairly fully in Wolff [2000], with
examples. In essence, the idea is to replace the original New with an encoded, compressed
version and run the system again. Generally, it will recreate the original alignment (except
for the substitution in New). Unification of the new alignment yields the elements of the
original New, in the same order, together with ‘service’ symbols that can be ignored.

The reason that there is no real paradox is that the ‘query’ pattern used to retrieve infor-
mation is new information. It is the compression of this new information by the unification
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of patterns that match each other that achieves the retrieval of the previously compressed
information. This retrieval of information achieves the effect of decompression.

5.2 Could IC be a Foundation for ML?

Rather than suppose that mathematics is founded on logic or vice versa, this article has
suggested that mathematics, logic and related disciplines may be seen to be founded on IC,
itself the product of primitive operations of matching and unification of patterns.

Possible objections to this thesis are that:

• Concepts of information that are the basis of methods for IC are couched in mathe-
matical terms and

• Mathematics is used in methods for IC, including the ICMAUS model.

A possible answer to the first point is that the Hartley-Shannon and AIT concepts
of information are themselves founded on a more primitive idea of discriminable changes
(patterns of variation) across one or more dimensions and that the role of mathematics is to
measure information, not define the concept itself. Mathematics is useful as a way of giving
precision to the measurement of information but it is not the only way in which information
may be measured (see below).

In a similar vein, an answer to the second point is that mathematics can be useful in
methods for IC but that the core operations of matching and unifying patterns do not, in
themselves, use mathematical constructs.

Rather less certainly, it may be said that, although a concept like ‘frequency’ (which
has an important role in discriminating amongst alternative ways in which patterns may be
matched and unified) may conveniently be expressed in the form of numbers (that are clearly
mathematical) the concept may equally well be expressed as a non-numeric ‘strength’ of some
kind of chemical or physical variable in a brain or computer. Much depends, of course, on
what does or does not count as being ‘mathematical’.

In general, there are alternatives to mathematics in the measurement of information, in
compression of information and in the measurement of frequencies of occurrence. The proof
of these assertions is that all of these things can be and often are done by brains and nervous
systems in humans and other animals without the assistance of mathematical knowledge.
It would be perverse to say that a fox’s ability to learn where rabbits are most likely to be
found is a mathematical ability. Capabilities of this sort may be less accurate than those
that exploit mathematical techniques but they are useful for everyday living and probably
essential for survival of species through millions of years.

5.3 ML and Human Psychology

Section 2.3.2 briefly reviewed some of the writings and research relating to the idea that much
of learning, perception and cognition in humans (and animals) may be seen to be founded
on information compression. In that section and later it was suggested that concepts in
ML may be seen to be an outgrowth or development of this fundamental feature of human
cognition.
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Here we simply note this suggestion as a matter for further consideration in the future.
Relevant issues include the nature of the evidence that one might recognise as being relevant
to the acceptance or rejection of the hypothesis, whether or not the hypothesis yields insights
into ML that might otherwise be missed and, in a similar way, whether the hypothesis leads
to new insights into human learning, perception and cognition.

5.4 Mathematics and its Applicability

The arguments and examples in this article may provide some solution to the ‘mystery’ of
why mathematics is such a good “language of science”. As Barrow says [1992, p. 247],
“Science is, at root, just the search for compression in the world”. If the arguments in this
article are accepted, then mathematics is a good medium for the expression of laws and
other regularities in the world because mathematics provides the kinds of mechanisms that
are standardly used for IC, with matching and unification of patterns at their core.

Notice that the usefulness of IC in this connection is not merely in reducing the volume
of scientific information (which may facilitate storage or transmission of that information).
At least as important is the intimate connection that appears to exist between IC and
the inductive prediction of the future from the past (Section 2.3.3, above, and Section 5.5,
below).

5.4.1 The World is Compressible

Barrow goes on to say [ibid., p. 247], “... the world is surprisingly compressible and the
success of mathematics in describing its workings is a manifestation of that compressibility.”

It is interesting to reflect on what things would be like if the world (and the universe)
were not compressible. In accordance with AIT principles, such a world would be totally
random. This would mean that there would be no ‘structure’ of any kind, including the
world itself, people, brains, computers and, indeed, the structures of mathematics, logic and
related disciplines. So all of the things we have been discussing, including mathematics and
science, would not exist. Science and the expression of scientific truths in mathematics can
only exist because the world is compressible!

It is true that, out of all the possible patterns of information, compressible patterns
(containing regularities) are relatively rare [Li and Vitányi, 1997]. If surprisingness depends
on rarity, then it is surprising that the world is compressible. But since, in accordance
with the anthropic principle, we can only exist in a compressible world that accommodates
persistent structures like ourselves, it is not surprising that the world is compressible!

5.4.2 The Scope of Mathematics in Science

Mathematics is useful in many areas of science but it has limitations. The theory of evolution
by natural selection, which is by any standards a SUPERB theory (to use Penrose’s word
and emphasis) is not, fundamentally, mathematical. Mathematics can certainly be used to
analyse aspects of evolution but the theory in itself does not use any mathematical constructs
(unless one adopts a definition of mathematics that is so wide that it becomes meaningless).
Again, there are many aspects of the world—like distributions of plants and animals or
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patterns of political beliefs—that seem to be fundamentally ‘messy’ and not amenable to
‘neat’ compression into mathematical formulae.

In short, mathematics is a good language of science but it is not the only language for
expressing regularities in the world. And there are many aspects of the world that have not
yet been compressed into compact formulae or any other succinct representation and seem
unlikely to yield to that treatment in the future.

5.5 ML and Inductive Prediction of the Future from the Past

If the main thesis of this article is accepted, then it is accepted that ML is founded on the
same principles that appear to underlie concepts of probability and probabilistic inductive
inference. As we saw in Section 2.3.3 and later: there is a very close connection between
IC and concepts of probability; the ICMAUS framework is based on MLE principles; and
Solomonoff [1986] has argued that the great majority of problems in science and mathe-
matics can be seen as either ‘machine inversion’ problems or ‘time limited optimization’
problems, and that both kinds of problems can be solved by inductive inference using the
MLE principle.

Of course, there are parts of mathematics to do with probability and there are types
of logic that are probabilistic. But, for many mathematicians and logicians, the idea that
mathematics or logic are founded on the same principles that underlie concepts of probability
and probabilistic inductive inference may be hard to accept. It is, after all, the highly
predictable ‘clockwork’ nature of these disciplines that gives them their appeal.

There is no space here to discuss these issues fully. Five points are noted here briefly:

• Non-determinism and associated uncertainties can appear in the Turing model itself,
depending on the transition function built into the model. Likewise, the Post Canonical
System model can exhibit non-determinism, depending on the productions provided
in the model.

• Section 4.6 described briefly how the effect of two-valued logic might be obtained in a
system that is otherwise geared to probabilistic reasoning.

• As we saw in Section 4.7, some kinds of syllogistic argument can be seen to have
inductive origins.

• That mathematics may not, fundamentally, be quite as ‘clockwork’ as is commonly
supposed has been suggested by Chaitin [1988, p. 80]: “I have recently been able
to take a further step along the path laid out by Gödel and Turing. By translating a
particular computer program into an algebraic equation of a type that was familiar even
to the ancient Greeks, I have shown that there is randomness in the branch of pure
mathematics known as number theory. My work indicates that—to borrow Einstein’s
metaphor—God sometimes plays dice with whole numbers.”

• The idea that we can only exist in a compressible world (Section 5.4.1, above) seems
to provide an answer to the problem of finding a rational basis for inductive reasoning.
Of course, we cannot justify such reasoning by saying that it has always worked in
the past—because this simply invokes the principle we are trying to justify. A better
answer seems to be as follows:
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– The assumption that the future will repeat the past is equivalent to the assump-
tion that there is information redundancy between past and future.

– If we make that assumption and it turns out to be true, then we will reap the
benefits of inductive reasoning—remembering where food or shelter can be found,
avoiding dangers, and so on.

– If we make that assumption and it turns out to be false, the universe will have
exploded into total randomness (or exploded and reformed into totally unrecog-
nisable patterns) and we are dead anyway!

– In short, there is no downside risk to the assumption that the past is a guide to
the future and a very substantial upside if it turns out to be true. Hence, it is a
rational assumption to make.

5.6 Reconciling the Inevitability of Mathematics with its Applica-
bility

Potter [2000] writes that the chief philosophical problem posed by arithmetic is “that of
reconciling its inevitability—the impression we have that it is true no matter what—with
its applicability.” (p. 1). Presumably, the same can be said about mathematics as a whole
and, indeed, logic.

This section has already suggested a reason why ML is so applicable: because it is an
embodiment of standard techniques for information compression and, as such, it provides a
convenient means of describing the world in a succinct manner and, perhaps more impor-
tantly, it gives us a handle on the inductive prediction of the future from the past.

What about the ‘inevitability’ of arithmetic and other aspects of ML? The first point in
this connection is that, as was noted above, the work of Gödel, Turing, Chaitin and others
has shown that arithmetic, at least, has a probabilistic aspect (“God sometimes plays dice
with whole numbers”): it may not be as true as is commonly assumed that 2 + 2 = 4,
no matter what. That said, any ‘fuzziness’ in arithmetic is not apparent in its everyday
applications and it is still pertinent to ask why the laws of arithmetic are amongst the most
certain things that we can know.

The view of ML that has been sketched in this article suggests possible reasons for the
certainties of arithmetic and, indeed, the uncertainties too:

• With the simple kinds of patterns that seem to form the basis of natural numbers
(Section 4.2, above), ICMAUS often yields an alignment that stands out very clearly
as better in terms of compression than any of the alternative alignments—because
simple patterns impose relatively tight constraints on the number of alternative ways
in which symbols may be matched and unified. This phenomenon may be responsible
for our subjective impression of the inevitability of arithmetic truths.

• The uncertainties and paradoxes of ML (Gödel’s theorems, the Halting Problem,
Chaitin’s work, Russell’s paradox, etc) seem all to arise from the infinite regress of
recursion that can occur in ML systems. This sits comfortably with the ICMAUS
view of ML because recursion can easily arise in the matching and unification of pat-
terns (as we saw in Section 4.2).
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6 Conclusion

I hope that the view of mathematics, logic and related disciplines that is presented in this
article will prove interesting to readers. It is a long way from being any kind of ‘proof’ that
ML is based on IC but may provide a perspective that stimulates new thinking about the
nature of mathematics, logic and related disciplines, and new insights into those disciplines.
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