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This article develops the idea that the 
storage and processing of information 
in computers and in brains may often 
be understood as information compres­
sion. 
The article first reviews what is meant 
by information and, in particular, what 
is meant by redundancy, a concept 
which is fundamental in all methods for 
information compression. 
Principles of information compression 
are described. 
The major part of the article describes 
how these principles may be seen in a 
range of observations and ideas in com­
puting and cognition: the phenomena of 
adaptation and inhibition in nervous 
systems; 'neural' computing; the crea­
tion and recognition of 'objects' and 
'classes'in perception and cognition; 
stereoscopic vision and random-dot 
stereograms; the organisation of natural 
languages; the organisation of gram­
mars; the organisation of functional, 
structured, logic and object-oriented 
computer programs; the application and 
de-referencing of identifiers in comput­
ing; retrieval of information from data­
bases; access and retrieval of informa­
tion from computer memory; logical 
deduction and resolution theorem 
proving; inductive reasoning and prob-

abilistic inference; parsing; normalisation 
of databases. 

1. Introduction 

The theme of this article is that the storage and 
processing of information in computers and in 
brains may often be understood as information 
compression. 

That brains and nervous systems may be governed 
by some kind of principle of economy is not a new 
idea. Although it is currently out of fashion, this 
notion has attracted intermittent interest from at 
least as long ago as Zipf's [49] Human Behaviour 
and the Principle of Least Effort and Attneave's 
pioneering ideas [1] about information processing 
in visual perception. Other studies in this tradition 
are referenced at appropriate points below. 

That economy may also be a significant feature of 
computing is less widely recognised. It is promi­
nent, of course, in the literature on data compres­
sion and it features in other more or less specia­
lised aspects of computing (some of which will be 
discussed below). But the intimate connection 
which appears to exist between information com­
pression and many familiar aspects of computing 
is not widely understood. 

In a previous article, I have developed this idea as 
a proposed theory of computing [45], drawing on 
earlier research on inductive learning [46]. Proto­
types have been developed of a 'new generation' 
computing system which is based on the theory 
[41,43,44,42: chapter 5]. The purpose of this arti­
cle is to complement the relatively narrow focus of 
this work with a broader perspective on the several 
ways in which information compression may be 
seen in diverse areas of both computing and cogni­
tion. The article aims to show how a variety of es­
tablished ideas may be seen as information com­
pression and to illustrate the broad scope of these 
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principles in information systems of all kinds, 
both man-made and natural. 

The next section reviews what is meant by infor­
mation and, in particular, what is meant by redun­
dancy, a concept which is fundamental in all 
methods for information compression. Principles 
of information compression are then reviewed. 
The major part of the article is a survey of a range 
of observations and ideas in computing and cogni­
tion which may be understood in terms of infor­
mation compression. 

2. Information and Redundancy 

In this article, most of the discussion assumes that 
information is a one-dimensional string compris­
ing a sequence of atomic symbols. Each such sym­
bol is a token drawn, with replacement, from a set 
of available symbol types. Sets of symbol types 
may be the binary digits (0 and 1) or the alphanu­
meric characters or some other convenient set. 

The ideas which will be described can be general­
ized to cases where information takes the form of 
a continuously varying signal. Analogue cases can 
be approximated in digital terms with any desired 
level of precision by varying the granularity of 
digitisation. The ideas can probably also be gener­
alized to cases where information is distributed in 
a two-dimensional (or higher dimensional) pat­
tern. But unless I say otherwise, a one-dimensional 
stream of atomic symbols will be the subject of dis­
cussion. 

The following three sub-sections describe three 
distinct views of information and redundancy 
which appear to complement each other. 

2.1. Shannon's Information Theory 

Claude Shannon defined information in terms of 
the probabilities of the discrete symbol types used 
in a string [32]. In Shannon's information theory 
(originally called 'communication theory') the 
average quantity of information conveyed by one 
symbol in a string is defined as: 

H = - I: Pi log Pi 

where Pi is the probability of the ith symbol type 
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in the set of available symbol types. If the base for 
the logarithm is 2, then the information is meas­
ured in 'bits'. 

If the probabilities of all members of the set of 
symbol types are equal for every location in a 
string (e.g., 0.5 for each of the symbol types 0 and 
1) then the information conveyed by the string is 
a theoretical maximum. In a string like this, the se­
quence of symbols is random. 

If the probabilities of symbol types are not equal 
at any position in a string then the information 
conveyed by the string is less than this maxi­
mum. The difference between the theoretical maxi­
mum and the information contained in a given 
string is called redundancy. The existence of 
redundancy in a string of symbols means that the 
string is not random. Redundancy in information 
seems to correlate with our subjective impression 
of 'organisation' or 'structure' in the information. 

2.2. Redundancy as Relatively Frequent 
Repetition of Patterns 

The term 'probability' as it was used in the last sec­
tion covers both the absolute probability of a sym­
bol type and its contextual probability, meaning 
the probability of the symbol type in a given 
context. 

The absolute probability of a symbol type can be 
derived in a straightforward way from the fre­
quency of that symbol type in a reference string. 
The same is true of contextual probability provide 
ed the notion of 'context' can be adequately 
defined. 

One way of dealing with the problem of context is 
to convert all contextual probabilities into abso­
lute probabilities. This can be done if the notion of 
a 'symbol type' is generalized from atomic sym­
bols to sequences of atomic symbols. A sequence 
of atomic symbols may be regarded as a 'compo­
site' symbol type or pattern. In this case, what was 
previously regarded as the 'context' of a symbol 
now becomes part of a larger pattern. 

Shannon's definition of information says, in ef­
fect, that if a given pattern repeats in the reference 
string more often than the other possible patterns 
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of the same size, then the string contains redun­
dancy. If all the possible patterns of a given size 
occur equally often then the string is random and 
contains no redundancy. 

There is nothing in what has just been said to imply 
that the atomic symbols in a pattern are necessarily 
contiguous or 'coherent'. A sequence of symbols 
which repeats more often than other sequences of 
the same size represents redundancy even if the 
pattern is discontinuous or fragmented and inter­
spersed with other symbols. The significance of 
this point will be considered at relevant points 
later. 

This view of redundancy - as the relatively fre­
quent repetition of patterns - reflects the every­
day meaning of redundancy as something which is 
'surplus to requirements'. Information which 
repeats is information which is unnecessary in 
terms of its communicative value. Repeated infor­
mation may, of course, be very useful for such 
other purposes as error correction or for increas­
ing the speed of responses in computer systems. 

2.3. Algorithmic Information Theory 

In 'algorithmic information theory' (AIT), redun­
dancy is defined in terms of the compressibility of 
information (see, for example, [5,6]). If a string 
can be generated by a computer program which is 
shorter than that string then the information is not 
random and contains redundancy. If no such pro­
gram can be found then the information is regard­
ed as random and contains no redundancy. 

Although randomness and redundancy in AIT 
seem different from how they appear in Shannon's 
theory, the two views are probably complementary 
and not in conflict. Later discussion should help to 
clarify how they may relate to each other. 

3. Compression Principles 

There is a variety of methods for compressing in­
formation but it is not a purpose of this article to 
review them exhaustively. There are useful 
descriptions in [15] and [35]. The main interest 
here is the principles which underly the available 
methods and, in later sections of the article, the 
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ways in which these principles appear in diverse 
areas of computing and cognition. 

The principles which will be described appear to be 
valid for most of the simpler 'standard' techniques 
for information compression. With suitable in­
terpretation and analysis, they may also prove to 
be true of the more elaborate techniques such as 
linear predictive coding (see, for example, [33]) or 
the use of fractals, e.g., [3] or vectors, e.g., [13] 
for representing graphical information in com­
pressed form. Establishing the scope of the princi­
ples is a matter for future research. 

The basis of all techniques for information com­
pression is removing some at least of the redun­
dancy from information. Within this frame, two 
kinds of information compression can be distin­
guished [35]: 

'Lossless' compression. With this kind of tech­
nique, redundant information, and only redun­
dant information, is removed. Since all the 
non-redundant information is preserved, it is 
possible in principle and usually in practice to 
restore the original information with complete 
fidelity. 
'Lossy' compression. With lossy compression 
techniques, redundant information is removed 
together with some of the non-redundant infor­
mation. In these cases, the loss of non-re­
dundant information means that the original 
can never be perfectly restored. This is a 
penalty which can be and often is outweighed 
by the benefit of the extra compression which 
can be achieved and, in many cases, a reduction 
in the amount of processing needed to achieve 
compression. 

For both lossless and lossy compression tech­
niques, two aspects need to be considered: 

How should the compressed information be or­
ganised or 'coded'? 
How can redundancy in information be disco­
vered so that it can be removed? 

3.1. Coding for Information Compression 

The idea of redundancy as relatively frequent repe­
tition of patterns (discussed above) appears to be 
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the key to many of the methods for encoding in­
formation in a compressed form: redundancy in 
information can be reduced by decreasing the 
repetition of those patterns which repeat more 
often than other patterns of the same size. 

Here we can see a link between Shannon's theory 
and AIT. Information which contains relatively 
frequent repetition of patterns contains redundan­
cy in Shannon's terms. But the fact of relatively 
frequent repetition means that the information is 
compressible - and this in itself means that the in­
formation is redundant in terms of AIT. 

The idea of reducing redundancy by reducing repe­
tition of patterns comes in three main forms: 
'chunking and tags', 'run-length coding' and 
'schema plus correction'. 

3.1.1. Chunking and Tags 

Where a pattern of contiguous symbols is repeated 
identically in two or more locations within a body 
of information, these multiple instances may be 
merged or unified! into one single chunk. Merg­
ing patterns in this way reduces redundancy but, 
unless other provision is made, it also loses the 
non-redundant information about where (all but 
one of) the patterns were located in the original in­
formation. 

If this information about locations is to be 
preserved then it is necessary to give the chunk 
some kind of name, label or tag and to place an in­
stance of the tag as a 'reference' to the chunk in 
each of the locations from which the chunk has 
been removed. Of course, to make a chunk and use 
tags only makes sense in terms of information sav­
ing if the information cost of the tags is less than 
what is saved by merging patterns. 

The connection between the redundancy-remov­
ing formation of chunks and the use of tags is not 
rigid: 

Repeating instances of a pattern may be merged 
to form a chunk without the use of tags. Com-

1 The main use of the term unification in this article is to mean 
a simple merging of multiple instances of any pattern. This 
idea is related to, but simpler than, the concept of 'unifica­
tion' in logic which is discussed later in the article. 
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pression in this case is lossy because some or all 
of the information about the locations of the 
chunk is discarded. 
Tags can sometimes be useful for reasons other 
than compression when there is only one refer­
ence to a tagged object. This can happen with 
the referencing of books and articles as is dis­
cussed briefly later. 

There are many variations and refinements of the 
chunking and tags idea. A well-known refinement 
is Huffman coding which assigns shorter tags to 
commonly occurring chunks and longer tags to 
rare ones (see [35], for discussion). 

3.1.2. Run-length Coding 

Where a symbol or a pattern of contiguous sym­
bols forms a repeating sequence, the symbol or 
pattern may be recorded only once, together with 
something to show how it repeats. For example, a 
sequence of 1000 ones in binary coded information 
may be reduced to 1(1000) or 1 *. In the first, 'loss­
less', case the number of repetitions is recorded 
and the original sequence may be recreated. In the 
second, 'lossy', case, only the fact of repetition is 
marked (with '*') and the non-redundant informa­
tion about the number of repetitions has been dis­
carded. 

3.1.3. Schema Plus Correction 

Where two or more patterns are similar but not 
identical, the parts of the patterns which are iden­
tical may be recorded as a 'schema' and the parts 
which are different may be coded as 'corrections' 
to that schema. A schema like this is a recurrent 
pattern which may be and often is discontinuous 
or fragmented in the way which was mentioned 
earlier. 

A 'negation' operator, which is normally seen as a 
logical primitive, may, in the context of the 
schema-pIus-correction idea, be seen as an aid to 
compression. If today's shopping list is the same 
as last week's but with one item omitted, it is more 
economical for any but the very shortest list to 
specify today's list as 'last week's, not soap' than 
to write it out in full. 
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3.2. Finding Redundancy 

To use any technique for encoding information 
with reduced redundancy, it is necessary to find 
the redundancy which is to be removed. Since, as 
already discussed, redundancy can be understood 
as recurrent patterns, finding redundancy means 
comparing patterns to see whether they match or 
not. 

For information compression we often want to do 
more than merely find some redundancy in infor­
mation - we want to find as much as possible, or, 
more practically, as much as possible for a 
reasonable amount of effort. Maximising the 
amount of redundancy found means maximising 
R where: 

i=n 

R E (ii-I)' Si 
i= 1 

Ii is the frequency of the ith member of a set of n 
patterns and S is its size in bits. Patterns which are 
both big and frequent are best. This formula ap­
plies irrespective of whether the patterns are coher­
ent or fragmented. 

Maximising R means searching the space of possi­
ble unifications for the set of big, frequent pat­
terns which gives the best value. For a string con­
taining N atomic symbols, the number of possible 
patterns in which symbol order is preserved (in­
cluding single atomic symbols and all composite 
patterns, both coherent and fragmented) is: 

P=2N-1 

The number of possible comparisons of patterns is 
the number of possible pairings of patterns which 
is: 

C = PcP - 1) /2 

For all except the very smallest values of N the 
value of P is very large and the corresponding 
value of C is huge. In short, the abstract space of 
possible comparisons between two patterns and 
thus the space of possible unifications is normally 
extremely large. 

Since the space is typically so large, the processing 
costs of searching it with any degree of thorough-
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ness is normally significant and needs to be 
weighed against the benefits for compression of 
maximising the amount of redundancy which is 
found. In this connection, two main tactics are 
relevant: 

Restricting the search space. Search costs may 
be kept within bounds by searching only within 
a sub-set of the set of possible comparisons. 
Restrictions of this kind can be seen in most 
practical techniques for information compres­
sion: comparisons may be made only between 
sub-strings of the same size; or the maximum 
size of chunks may be restricted; or some other 
constraint may be imposed. 
Using metrics to guide the search. The costs of 
searching may be minimised without undue 
sacrifices in effectiveness by applying a meas­
ure of redundancy to guide the search. In 
search techniques such as 'hill climbing', 'beam 
search', 'best-first search', 'branch-and-bound 
search' the search effort is curtailed in those 
parts of the search space which have proved 
sterile and it is concentrated in areas which are 
indicated by the metric. 

4. Coding for Reduced Redundancy in 
Computing and Cognition 

In this section, I describe a variety of observations 
and ideas from the fields of artificial computing 
and natural cognition which can plausibly be seen 
as examples of information compression. Con­
cepts from cognate fields such as theoretical lin­
guistics are included in the discussion. 

Earlier examples relate mainly to the brain and 
nervous system while later examples come mainly 
from computing. But the separation is not rigid 
because similar ideas appear in both areas. 

4.1. Adaptation and Inhibition in the Nervous 
System 

A familiar observation is that we are more sensi­
tive to changes in stimulation than to constant 
stimulation. We notice a sound which is new in our 
environment - e.g., the hum of a motor when it 
is first switched on - but then, as the sound con-
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Figure 1: Variation in the rate of firing of a single 
ommatidium of Limulus in response to changing 
levels of illumination [29: p. llB}. 

tinues, we adapt and cease being aware of it. 
Later, when the motor is switched off, we notice 
the change and are conscious of the new quietness 
for a while until we adapt again and stop giving it 
attention. 

This kind of adaptation at the level of our cons­
cious awareness can be seen also at a much lower 
level in the way individual nerve cells respond to 
stimulation. The two studies to be described are of 
nerve cells in a horseshoe crab (Limulus) but the 
kinds of effects which have been observed in this 
creature have also been observed in single neurone 
studies of mammals and appear to be widespread 
amongst many kinds of animal, including hu­
mans. There are more complex modes of respond­
ing but their existence does not invalidate the 
general proposition that nervous tissue is relatively 
sensitive to changes in stimulation and is relatively 
insensitive to constant stimulation. 

Figure 1 shows how the rate of firing of a single 
receptor (ommatidium) in the eye of Limulus 
changes with the onset and offset of a light [29]. 
The receptor responds with a burst of spike poten­
tials when the light is first switched on. Although 
the light stays bright for some time, the rate of fir­
ing quickly settles down to a background rate. 
When the light is switched off, there is a brief dip 
in the rate of firing followed by a resumption of 
the background rate. 
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This relative sensitivity to changes in stimulation 
and relative insensitivity to constant stimulation 
can be seen also in the spatial dimension. Figure 2 
shows two sets of recordings from a single om­
matidium of Limulus [28]. In both sets of record­
ings, the eye of the crab was illuminated in a rec­
tangular area bordered by a dark rectangle of the 
same size. In both cases, successive recordings 
were taken with the pair of rectangles in successive 
positions across the eye along a line which is at 
right angles to the boundary between light and 
bright areas. This achieves the same effect as - but 
is easier to implement than - keeping the two rec­
tangles in one position and taking recordings from 
a range of receptors across the bright and dark 
areas. 

In the top set of recordings (triangles) all the om­
matidia except the one from which recordings were 
being taken were masked from receiving any light. 
In this case, the target receptor responds with fre­
quent impulses when the light is bright and at a 
sharply lower rate when the light is dark. 

In the bottom set of recordings (circles) the mask 
was removed so that all the ommatidia were ex­
posed to the pattern of bright and dark rectangles. 
In this situation, the target receptor fires at or near 
a background rate in areas which are evenly illumi­
nated (either bright or dark) but, near the border 
between bright and dark areas, positive and ne­
gative responses are exaggerated. In the spatial 
dimension, as with the temporal dimension, 
changes in stimulation are more significant than 
constant stimulation. 

It is now widely recognised that this sensitivity to 
temporal and spatial discontinuities in stimulation 
is due to the action of inhibitory pathways in the 
nervous system which counteract the excitation of 
nerve cells. The way inhibition may explain the ob­
servations which have just been described and a 
range of other phenomena (Mach bands, simul­
taneous contrast, motion sensitivity) is well 
described and discussed by [37]. 

It has also been recognised for some time that 
these phenomena may be understood in terms of 
principles of economy in neural functioning (see, 
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Figure 2: Two sets of recordings from a single om­
matidium of Limulus [28: p. 1248J. 

for example, [2]). In the terms discussed earlier, 
adaptation and inhibition in nervous functioning 
have an effect which is similar to that of the run­
length coding technique for data compression. 
Economy is achieved in all these cases by coding 
changes in information and reducing or eliminat­
ing the redundancy represented by sequences or 
areas which are uniform [37]. 

4.1.1. 'Neural' Computing 

The idea that principles of economy may apply to 
neural functioning is recognised in some of the 
theory associated with artificial 'neural' comput­
ing, e.g., 'Hopfield nets' [17] and 'simulated an­
nealing' [16]. But with some notable exceptions 
[e.g., 20], there seems to have been little attempt 
in the development of artificial neural networks to 
exploit the kinds of mechanisms which real ner­
vous systems apparently use to achieve informa­
tion compression. 

4.2. Objects and Classes in Perception and 
, Cognition 

4.2.1. Seeing the World as Objects 

Some things in our everyday experiences are so 
familiar that yve often do not realise how remarka­
ble they are. One of these is the automatic and un­
conscious way we see the world as composed of 
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discrete objects. Imagine a film taken with a fixed 
camera of a tennis ball crossing the field of view. 
Successive frames show the ball in a sequence of 
positions across a constant background. Taken 
together, these frames contain a very large propor­
tion of redundancy: the background repeats in ev­
ery frame (apart from that part of the background 
which is hidden behind the ball) and the ball 
repeats in every frame (let's assume that it is not 
spinning). Uniform areas within each frame also 
represent redundancy. 

Any simple record of this information - on cine­
ma film or digitised images - is insensitive to the 
redundancy between frames or within frames and 
has no concept of 'ball' or 'background'. But peo­
ple automatically collapse the several images of the 
ball into one coherent concept and, likewise, see 
the background as the 'same' throughout the se­
quence of frames. 

This is a remarkable piece of information com­
pression, especially since it is performed in real 
time by nerve cells which, by electronic standards, 
are exceedingly slow. On this last point, Ma­
howald & Mead's work, referenced above, throws 
useful light on how this kind of compression may 
be achieved in a simulated mammalian retina and 
how the necessary speed can be achieved with slow 
components. In keeping with what was said earlier 
about neural functioning, inhibitory pathways 
and processes are significant. 

Of course, the concepts we have of real-world ob­
jects are normally more complicated than this ex­
ample suggests. The appearance of a typical object 
varies significantly depending on orientation or 
view point. In cases like this, each concept which 
we form must accommodate several distinct but 
related views. What we normally think of as a uni­
tary entity should, perhaps, be regarded more ac­
curately as a class of inter-related snapshots or 
views (more about classes below). 

Notwithstanding these complexities, our everyday 
notion of an object is similar to the previously­
described concept of a chunk. Like chunks, ob­
jects often have names or tags but again, as with 
chunks, not every object has a name. An object 
(with or without a name) may, like a chunk, be 
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Figure 3: A random-dot stereogram (from [18: p. 21]). 

seen as the product of processes for extracting 
redundancy from information. 

4.2.2. Stereoscopic Vision and Random Dot 
Stereograms 

"In an animal in which the visual fields of the two 
eyes overlap extensively, as in the cat, monkey, 
and man, one obvious type of redundancy in the 
messages reaching the brain is the very nearly exact 
reduplication of one eye's message by the other 
eye." [2: p. 213]. 

Stereoscopic vision and the phenomenon of ran­
dom dot stereograms provides further evidence of 
information compression by our nervous systems. 
It also provides a striking illustration of the con­
nection between redundancy extraction and our 
tendency to see the world as discrete objects. 

Each of the two images in Figure 3 is a random 
pattern of black and white pixels. Each image, in 
itself, contains little or no redundancy. But when 
the two images are taken together, there is sub­
stantial redundancy because they have been 
designed so that they are almost, but not quite, the 
same. The difference is that a square area in the 
left image has been shifted a few pixels to the right 
compared with a corresponding square area in the 
right image, as is illustrated in Figure 4. 

When the images are viewed through a stereoscope 
- so that the left image is seen by the left eye and 

the right image by the right eye - one's brain fuses 
the two images so that the two areas around the 
squares are seen as the 'same' and the two square 
areas are merged into a single square object which 
appears to stand out vividly in front of its back­
ground. 

Random dot stereograms like this are normally 
used to illustrate and study human abilities to per­
ceive depth using stereoscopic vision. But they are 
also good examples of our ability to extract redun­
dancy from information by merging matching 
patterns. 

In Figure 3, the central square, and its back­
ground, are chunks in the sense described earlier, 
each of which owes its perceptual existence to the 
merging of matching patterns. It is the redundancy 
which exists between the two images, coupled with 
our ability to find it, which gives coherence to the 
objects which we see. The vivid boundary which 
we can see between the square and its background 
is the product of search processes which success­
fully find the maximum possible unification be­
tween the two images. 

In everyday vision (e.g., the tennis ball example 
discussed above) recognition of an object may owe 
something to redundancy within each frame. Since 
each of the two images in a random dot stereogram 
contains little or no redundancy, our ability to see 
coherent objects in such stereograms demonstrates 
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Figure 4: Diagram to show the relationship between the left and right images in Figure 3, based on 
[18: p. 21]. 

that we do not depend on redundancy within each 
image but can derive an object concept exclusively 
from redundancy between images. 

4.2.3. Classes and Sub-Classes 

It is commonly recognised that objects may be 
grouped into classes and classes may themselves be 
grouped into higher level classes. Cross-classi­
fication with overlapping classes (e.g., 'woman' 
and 'doctor') is also seen. 

A class may be defined extensionally by listing its 
constituent objects or classes. It may also be de­
fined intensionally in terms of attributes which 
members of the class have in common. Although 
many commonly-used classes are 'polythetic' - no 
single attribute need necessarily be shared by all 
members of the class - it is similarity amongst 
members of a class - some degree of sharing of at­
tributes - which gives 'natural' classes their co­
herence. 

Grouping things by their similarity gives us a me­
ans of compressing the information which 
describes them. An attribute which is shared by all 
members of a class (or, in the case of poly thesis, 
a set of alternative attributes which is shared by 
members of ~ class) need be recorded only once 
and not repeated for every member. The shared at­
tributes of a class constitute a 'schema' in the sense 

discussed earlier, which may be 'corrected' for 
each member by the addition of more specific in­
formation about that member. 

The widespread use of classes and subclasses in 
our thinking and in language, coupled with their 
obvious value in compressing information, strong­
ly suggests that we do store classes and attributes 
in this way. But it is difficult to obtain direct con­
firmation of this idea. Attempts to verify the idea 
experimentally [e.g., 9] have proved inconclusive. 
This is probably more to do with the difficulties of 
making valid inferences from experimental studies 
of human cognition than any intrinsic defect in the 
idea. 

4.3. Natural Languages 

Samples of natural language - English, French, 
etc. - are normally about 50070 redundant [24]. 
This redundancy often serves a useful purpose in 
helping listeners or readers to correct errors and to 
compensate for noise in communication - and 
this is almost certainly the reason why natural lan­
guages have developed in this way. 

Despite the existence of redundancy in natural lan­
guages, they provide a further example of econom­
ical coding in cognition. Every 'content' word in a 
natural language (e.g., noun, verb, adjective or 
adverb) may be regarded as a tag or label for its 
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S - NP V NP 
NP - D N 
D - the 
D-a 
N - boy 
N - girl 
V - likes 
V - meets 

Figure 5: A context-free phrase structure gram­
mar. 

meaning. The meaning of a typical word is a rela­
tively complex chunk of knowledge associated 
with the word. 

Without a convenient brief label like 'table', the 
concept of a 'horizontal platform with four, some­
times three, vertical supports, normally about 
three feet high, normally used for ... ' would have 
to be long-windedly repeated in every relevant con­
text rather like the slow language of the Ents in 
Tolkien's The Lord of the Rings. A sentence is 
normally a highly 'coded' and compressed 
representation of its meanings. 

An even more obvious example of tags in natural 
language is the use of 'references' in books or arti­
cles. "[49]" is an example which appears in the se­
cond paragraph of this article and also in the para­
graph after this; it references the fuller details 
given at the end of the article. These details may 
themselves be seen as a label for the whole book. 
Like any tag, a reference can circumvent the need 
to repeat information redundantly in two or more 
contexts. But it can be and often is convenient to 
use this device for reasons of consistency and style 
when a given reference appears only once in a 
book or article. 

Before leaving this section on natural language, it 
is relevant to comment on Zipf's extensive studies 
of the distribution of words in natural languages 
[50] and his Principle of Least Effort [49], men­
tioned earlier, which he proposed to explain these 
observations and others. Zipf's arguments are in­
teresting and quite persuasive but, as Mandelbrot 
[21] and others have pointed out, the phenomena 
described by 'Zipf's law' could be due to nothing 
more profound than a random process for creating 
words and the boundaries between words in natur­
allanguages. However, in George Miller's words 
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NP - D V AN 
D - the 
D-a 
V - NULL 
V - very V 
A - tall 
A - short 
N - boy 
N - girl 

Figure 6: A CF-PSG with recursion. 

[23], "It is impossible to believe that nothing more 
is at work to guide our choice of letter sequences 
than whatever random processes might control a 
monkey'S choice, or that the highly plausible argu­
ments Zipf puts forward have not relevance at 
all." (p vii). The jury is still out! 

4.4. Grammars 

A grammar may be regarded as a compressed ver­
sion of the language which it represents. More ac­
curately, the notational conventions which are 
used in grammars may be regarded as a set of 
devices which may be, and normally are, used to 
encode information in an economical form. They 
are not necessarily used to good effect in anyone 
grammar. 

4.4.1. Context-free Phrase Structure Grammars 

Compression is illustrated by the grammar shown 
in Figure 5. This grammar is written according to 
the notational conventions of context-free phrase 
structure grammar (CF-PSG), a simple type of 
grammar which is essentially the same as Backus 
Normal Form (BNF) , commonly used to represent 
the syntax of computer languages. 

This grammar represents the set ofterminal strings 
(sentences) which include the boy meets the girl, 
the girl likes the boy etc., but with none of the 
redundancy represented by repeated instances of 
individual words - boy, girl, etc. - or of 'noun 
phrase' groupings like the boy, the girl, etc. These 
repeating elements are 'chunks' of information in 
the sense described earlier. The symbols S, NP, V, 
D and N are 'tags' used to identify their cor­
responding chunks in each of the contexts in which 
they occur. 

Notice that a grammar like the one just shown says 
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nothing about the order in which the sentences 
may appear and it says nothing about how many 
of each sentence may appear. A grammar is typi­
cally a 'lossy' compression of anyone sample of 
the language which it represents. 

The 'chunks with tags' device also permits the en­
coding of recursion which can itself be seen as a 
form of run-length coding. The fragment of gram­
mar shown in Figure 6 generates phrases like the 
very very very tall girl, a very very short boy, etc. 
Notice that the number of instances of very in any 
one phrase is not specified: recursion like this 
represents lossy compression of any finite set of 
terminal strings. 

4.4.2. More Powerful Grammars 

It has been recognised for some time (and pointed 
out most notably by [8] that CF -PSGs are not 
'powerful' enough to represent the structure of 
natural languages effectively. As shown by the ex­
amples just given, CF-PSGs can be used to 
represent simple sub-sets of English in a succinct 
form. But the full complexity of English or other 
natural language can only be accommodated by a 
CF-PSG, if at all, at the cost of large amounts of 
redundancy in the grammatical description. 

The phenomenon of 'discontinuous dependencies' 
highlights the shortcomings of CF-PSGs. In a sen­
tence like The winds from the West are strong, 
there is a 'number' dependency between winds and 
are: the plural noun must be followed by a plural 
verb and likewise for singulars. The dependency is 
'discontinuous' because it jumps over the inter­
vening structure (from the West in the example) 
and this intervening structure can be arbitrarily 
large. 

To represent this kind of dependency with a CF­
PSG requires one set of rules for singular sen­
tences and another set of rules for plurals - and 
the two sets of rules are very similar. The conse­
quent redundancy in the grammar can multiply 
substantially when other dependencies of this kind 
are included. 

This problem can be largely overcome by using a 
more 'powerful' kind of grammatical system like 
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a Definite Clause Grammar [26] or a Transforma­
tional Grammar (see, for example, [27]). This kind 
of system may be seen as a superset of a CF-PSG 
with additional mechanisms which, amongst other 
things, allow discontinuous dependencies to be 
represented without undue redundancy. 

It is not appropriate here to discuss these systems 
in detail. In general, they can be seen as variations 
on the 'schema-plus-correction' idea which was 
described above. They provide the means of 
representing sentence structure as a 'schema' 
which may, in the example given earlier, be 'cor­
rected' by the addition of singular or plural com­
ponents at appropriate points in the structure. 

4.5. Computer Programs 

Functions in computing and mathematics are 
often defined 'intensionally' in terms of rules or 
operations required to perform the function. But 
functions are also defined 'extensionally' by 
specifying one or more outputs for every input or 
combination of inputs [36]. This idea applies to 
functions of various kinds ('total', 'partial' and 
'multi') and also to 'programs' and information 
systems in general. 

Elsewhere [40] I have discussed how a computer 
program or mathematical function may be seen as 
a compressed representation of its inputs and out­
puts, how the process of designing programs and 
functions may be seen to be largely a process of in­
formation compression, and how the execution of 
programs or functions may also be seen in terms of 
information compression. 

In this section, I view computer programs more 
conventionally as a set of 'operations' and discuss 
how principles of compression may be seen in the 
way programs are organised. In the same way that 
the notational conventions used in grammars may 
be regarded as a means of compressing linguistic 
information, the conventions used in computer 
programs may be seen as devices for representing 
computing operations in a succinct form. As with 
grammars, the provision of these facilities does 
not in itself guarantee that they will be used to best 
effect. 
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Compression techniques may be seen in 'function­
ai', 'structured' and 'logic' programming and, a 
fortiori in 'object-oriented' programming. 

4.5.1. Functional and Structured Programming 

Chunking and tags. If a set of statements is repeat­
ed in two or more parts of a program then it is 
natural to declare them once as a 'function', 
'procedure' or 'sub-routine' within the program 
and to replace each sequence with a 'call' to the 
function from each part of the program where the 
sequence occurred. This is an example of compres­
sion: the function may be regarded as a 'chunk' 
and the name of the function is its 'tag'. 

Whether or not a programmer chooses to create a 
function in a situation like this - or to leave 
repeated sequences as 'macros' - depends, 
amongst other things, on whether the sequence is 
big enough to justify the 'cost' of giving it a name 
and whether the run-time overhead which is typi­
cally associated with the use of functions in con­
ventional computers is acceptable for the applica­
tion in hand. 

Run-length coding. If a body of code is repeated 
in one location within the program then it may be 
declared as a function or marked as a 'block' and 
the fact of repetition may be marked with one of 
the familiar conventions for showing iteration: 
repeat . .. until, while . .. do,jor ... do. Each of 
these is a form of run-length coding. 

Recursion, which is available in most procedural 
programming languages, is another means of 
showing repetition of program operations. It is es­
sentially the same as recursion in grammars. 

Schema plus correction. It often happens in soft­
ware design that two or more sets of statements are 
similar but not identical. In these cases, it is natur­
al to merge the parts which are the same and to 
provide conditional statements (if . .. then ... 
else statements or case statements) to select alter­
native 'paths' within the software. The complete 
set of statements, including the conditional state­
ments, may be regarded as a 'schema' describing 
a set of behaviours for the program, much as a 
grammar describes a set of terminal strings. 
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To specify a particular path through the program, 
it is necessary to supply the information needed in 
the conditional statements so that all the relevant 
choices can be made. This additional information 
is the 'correction' to the schema represented by the 
program code. If the program statements have 
been encapsulated in a function then these correc­
tions to the program schema will normally be sup­
plied as arguments or parameters to the function. 

4.5.2. Logic Programming 

Similar ideas appear in logic programming lan­
guages like Prolog. For example, the chunking and 
tags idea can be seen in the structure of a Prolog 
Horn clause. The predicate in the head of the 
clause may be seen as a label or tag while the body 
of the clause may be seen as the chunk which it 
labels. 

As with functional and structured programs, a 
Prolog program may be seen as a schema which 
represents the set of possible behaviours of the 
program. The information supplied in a Prolog 
query serves as a correction to the schema which 
reduces the range of possible behaviours of the 
program. 

Repetition III Prolog programs is coded using 
recursion. 

4.5.3. Object-Oriented Programming 

Object-oriented programming (OOP), as it was 
originated in Simula and has been developed in 
Smalltalk, C++ and several other languages, em­
braces the kinds of mechanisms just described but 
includes an additional set of ideas which may also 
be understood in terms of information com­
pression. 

One important idea in OOP, which was introduced 
in Simula, is that there should be a one-for-one 
correspondence between objects in the real world 
and 'objects' in the software. For example, an 00 
program for managing a warehouse will have a 
software object for every person employed in the 
warehouse, a software object for every shelf or 
bay, a software object for every item stored, and 
so on. In 00 terms, a software object is a discrete 
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piece of program: data structures and associated 
procedural code or either of these without the 
other. For example, an object for a 'person' would 
be a program which can respond to 'messages' 
such as a request for the person's name, an instruc­
tion to move an item from one location to another, 
and so on. 

Superficially, this is an extravagant - and redun­
dant - way to design software because it seems to 
mean that the same code is repeated in every object 
of a given type. But, of course, this is not how 
things are done. As with 'real world' objects, 
economy can be achieved by the use of classes and 
sub-classes. 

In 00 programming languages, every object be­
longs to a class (in some 00 languages an object 
can be assigned to more than one class), the code 
for that class is stored only once within the pro­
gram and is inherited by each instance of the class. 
There can be a hierarchy of classes with in­
heritance of code from any level down to individu­
al objects. 

As with individual objects, a recognised principle 
of OOP is that the classes which are defined in an 
00 program should correspond, one for one, with 
the classes which we recognise in the real world. In 
the warehouse example, there would be a class for 
each of 'person', 'shelf' and 'item'. Each class -
'person', for example - may be divided into sub­
classes like 'manager', 'foreman', 'operative', etc. 

The ideas which have been described - software 
objects, classes and inheritance are further ex­
amples of the way information compression per­
vades the organization of computer programs: 

As discussed earlier, objects and classes as we 
see them in the real world may be understood 
in terms of our subjective compression of per­

'ceptual information received from the world. 
By using similar devices in software design we 
can make the structure of software reflect pat­
terns of redundancy in the real world which our 
brains are apparently so efficient at exploiting. 
Within the program code itself, class hierar­
chies with inheritance of code are powerful 
mechanisms for information compression. In-
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stances of a class may be multiplied without 
creating any corresponding redundancy be­
cause all the data structures and procedural 
code which they have in common can be in­
herited from the class definition. Likewise, sets 
of classes which have common attributes may 
inherit these attributes from a higher level class. 
As was mentioned in connection with natural 
classes, the mechanisms of class hierarchies 
with inheritance may be seen as an example of 
the schema plus correction technique for infor­
mation compression: a class definition is a 
'schema' and information which is supplied 
when a new instance of the class is created (e.g., 
the name of that object) is a 'correction' to the 
schema. In a similar way, a high level class may 
be seen as a relatively abstract schema which is 
refined or 'corrected' by the more specific in­
formation contained in lower level classes. 

It is perhaps pertinent to comment, in passing, on 
the advantages of designing software in this way: 

One advantage is psychological: software 
which reflects the structure of our established 
concepts is easier to understand than software 
which does not. 
A more subtle, but nonetheless important, ad­
vantage is that software designed in this way 
will normally be easier to modify than other­
wise: the fact that the structures reflected in the 
software are persistent (repeating) patterns in 
the world means that new versions of software 
are more likely to be refinements or rearrange­
ments of already established objects and classes 
than radical reorganizations of the code. 
There is a third advantage for software design­
ers in using these mechanisms for information 
compression: if any given piece of information 
is recorded only once within a program then 
any change to that information needs be made 
only once and there is no need to check that it 
is correctly repeated in other parts of the 
program. 

4.6. Other Aspects of Computing 

We have already seen several uses for identifiers or 
tags in computing - as the names of functions, 
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procedures or sub-routines, as the names for OOP 
objects and classes of objects and as identifiers for 
rules in grammars. Some other examples of tags in 
computing include: 

Names of tables or records in databases. 
Names of fields in tuples or records. 
Names of files. 
Names of variables, arrays and other data 
structures used in computer programs. 
Labels for program statements (for use with the 
now shunned 'go to' statements). 

The names of directories in Unix, MS-DOS and 
similar operating systems are also tags in the sense 
of this article. But an hierarchical directory struc­
ture may also be seen as a simple form of class hi­
erarchy and, as such, it may be seen as a restricted 
form of schema plus correction. The name of a 
directory is a name which applies to all the files 
and sub-directories within that directory and to all 
files and sub-directories at lower levels. Rather 
than redundantly repeat the name for every file 
and sub-directory to which it applies, the name is 
recorded once and, in effect, 'inherited' by all the 
objects at lower levels. 

5. Searching for Redundancy in 
Computing and Cognition 

So far, we have reviewed a variety of ways in which 
redundancy extraction appears in computing and 
cognition, focusing mainly on the ways in which 
coding techniques relate to these two fields. Now 
we shall look at the dynamic side of the coin - the 
things in computing and cognition which may be 
understood as searching for the redundancy which 
may then be removed by the use of coding tech­
niques. 

As we have seen, searching for redundancy can be 
understood as a search for patterns which match 
each other and, as we have seen, there is normally 
a need to circumscribe the search or to guide the 
search by some measure of redundancy or both. 
The sections which follow describe some of the 
ways in which this kind of search appears in com­
puting and cognition. As with the section on cod­
ing, earlier examples are mainly from natural 
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information processing with later examples from 
computing. 

5.1. Random Dot Stereograms 

A particularly clear example of this search 
problem is what the brain has to do to enable one 
to see the figure in the kinds of random dot stereo­
gram described earlier. 

In this case, assuming the left image has the same 
number of pixels as the right image, the size of the 
search space is p2 where P is the number of possi­
ble patterns in each image, calculated in the same 
way as before. (The fact that the images are two 
dimensional needs no special provision because 
the original formula covers all combinations of 
atomic symbols.) 

For any stereogram with a realistic number of pix­
els, this space is very large. Even with the very 
large processing power represented by the 1010 
neurones in the brain, it is inconceivable that this 
space can be searched in a few seconds and to such 
good effect without the use of metrics-guided 
searching of the kind described earlier and proba­
bly also with some restriction on what compari­
sons between patterns will be made. 

David Marr [22: chapter 3] describes two al­
gorithms which solve this problem. In line with 
what has just been said, both algorithms rely on 
constraints on the search space and both may be 
seen as incremental search guided by redundancy­
related metrics. 

5.2. Recognition of Objects and Patterns 

As we have seen, perceptual objects can be under­
stood as 'chunks' which promote economy in the 
storage and processing of perceptual information. 
We not only create such chunks out of our percep­
tual experience but we have a very flexible and effi­
cient ability to recognise objects and other patterns 
which have already been stored. 

How we recognise objects and other patterns is, of 
course, the subject of much research and is cer­
tainly not yet well-understood. Amongst the com­
plexities of the subject is the problem, mentioned 
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earlier, of how we can recognise objects despite 
variations in their appearance due to variations in 
orientation. Likewise, we can recognise patterns 
such as handwriting despite many variations of 
style. 

Despite these complexities, it is reasonably clear 
that, in general terms, the phenomenon of recogni­
tion can be understood as information compres­
sion. Recognition of an object or a pattern means 
the partial or complete unification of perceptual 
input with a corresponding pattern already in 
memory - and thus an overall reduction in the in­
formation which they jointly contain. 

5.3. Grammar Discovery, Language Acquisition 
and Other Kinds of Learning 

If, as was suggested earlier, we view a grammar as 
a compressed version of its terminal strings, then 
it is natural to see the process of discovering or in­
ferring a grammar from examples as being largely 
a matter of discovering the redundancy in those 
examples and removing it wherever it is found, 
using the coding devices provided by our chosen 
grammatical notation. Since a grammar is normal­
ly an incomplete representation of anyone sample 
of its corresponding language, the process of infer­
ring a grammar will normally mean loss of non­
redundant information. 

In line with these expectations, practical tech­
niques for grammar discovery are largely a search 
for repeating patterns in data with unification of 
repeating patterns, the assignment of tags and, 
quite often, a discard of some portion of the non­
redundant information in the samples [47,48]. 
Principles of economy have been recognised in this 
field for some years [11]. 

The learning of a first language by children is 
clearly a richer and more complex process than 
gra'iTImar discovery as it is normally understood. 
But computer models of language learning which 
I have developed in earlier research, which are 
based on principles of information compression, 
show remarkable correspondences in their learn­
ing behaviour to well-documented phenomena in 
the way children learn a first language [46]: 

- The unsupervised induction of grammatical 
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structure, including segmental structure (words 
and phrases) and disjunctive structure (parts of 
speech and other classes). 
Generalisation of rules and correction of over­
generalisations without external error cor­
rection. 
The way the rate of acquisition of words and 
other structures varies as learning proceeds. 
The order in which words are acquired. 
Brown's [4] Law of Cumulative Complexity. 
The S-P /episodic-semantic shift. 
The learning of semantic structures and their 
integration with syntax. 
The word frequency effect. 

This evidence lends support to the proposition that 
language learning may be understood, in large 
measure, as information compression. 

Other kinds of learning have also been analysed in 
terms of economical coding. Pioneering work on 
the learning of classifications [38] has been fol­
lowed by related work on economical description 
of data, e.g., [7,14,25,30,39]. A significant strand 
of thinking in much of this work is the close con­
nection between compact coding and probabilistic 
inference. 

5.4. Query-by-Example 

This section and those that follow discuss areas of 
computing where pattern matching and search of 
the kinds described earlier can be seen. Unifica­
tion, with corresponding compression of informa­
tion is less obvious but can still be recognised in 
most cases. 

A commonly-used technique for retrieving records 
from a database is to provide a query in the form 
of an incomplete record - an 'example' of the 
kind of complete record which is to be retrieved. 
This is illustrated in Figure 7 where the query 'ex­
ample' has the general form of the complete 
records but contains asterisks ('*') where informa­
tion is missing. The search mechanisms in the 
database match the query with records in the data­
base to retrieve the zero or more records which fit. 

Most systems of this kind are driven by some kind 
of redundancy-related metric. In Figure 7, there is 
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An 'example' used as a query: 
Name: John * 
Address: * New Street * 

Some records in a database: 
Name: Susan Smith 
Address: 8 New Street, Chicago 
Name: John Jones 
Address: 4 New Street, Edinburgh 
Name: John Black 
Address: 20 Long Street, London 
Name: David Baker 
Address: 41 Avenue des Pins, Paris 

Figure 7: A query and database records to illus­
trate query-by-example. 

some degree of matching between the query and 
the first three of the records shown. But John 
Jones of 4 New Street, Edinburgh is the preferred 
choice because it gives a better fit than the other 
records. 

Retrieval of a record may be seen as 'unification' 
between the record and the query and a cor­
responding extraction of the redundancy between 
them. However, this compression is normally 
evanescent, appearing only temporarily on the 
operator's screen. When a query operation has 
been completed, the records in the database are 
normally preserved in their original form, while 
the unification and the query are normally deleted 
from the system. 

5.5. De-referencing of Identifiers in Computing 

Identifiers, names, labels or tags of the kinds 
described earlier - names of functions, proce­
dures or sub-routines, names of OOP objects and 
classes of objects, names of directories or files, 
etc. - have a psychological function providing us 
with a convenient handle on these objects in our 
thinking or in talking or writing. But a name is at 
least as important in computing systems as an aid 
to finding a particular information object amongst 
the many objects in a typical system. 

Finding an object by means of its name - 'de­
referencing' the identifier - means searching for a 
match between the 'reference' as it appears 
without its associated object (e.g., a 'call' to a pro­
gram function) and the same pattern as it appears 
attached to the object which it identifies (e.g., a 
function name together with the function decla­
ration). 
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Finding an object by means of its name is like a 
simple form of query-by-example. The name by it­
self is the incomplete record which constitutes the 
query, while the object to be found, together with 
its name, corresponds to the complete record 
which is to be retrieved. 

As with query-by-example, there is normally some 
kind of redundancy-related metric applied to the 
search. In conventional computing systems, a 
'full' match (including the termination marker) is 
accepted while all partial matches are rejected. A 
character-by-character search algorithm may be 
seen as a simple form of hill-climbing search. The 
seemingly 'direct' technique of hash coding ex­
ploits memory access mechanisms which, as is 
described below, may also be understood in terms 
of metrics-guided search. 

As with query-by-example, unification and com­
pression are less obvious than pattern matching 
and search. Certainly, a computer program is not 
normally modified by de-referencing of the identi­
fiers it contains. Unification and compression are 
confined to the evanescent data structures created 
in the course of program execution. 

5.6. Memory Access in Computing Systems 

The mechanisms for accessing and retrieving in­
formation from computer memory, which operate 
at a 'lower' level in most computing systems, may 
also be seen in similar terms. 

Information contained in a computer memory -
'data' or statements of a program - can be ac­
cessed by sending an 'address' from the CPU to 
the computer memory along an address bus. The 
address is a bit pattern which is 'decoded' by logic 
circuits in the computer memory. These have the 
effect of directing the pattern to the part of the 
memory where the required information is stored. 

The logic circuits in memory which are used to de­
code a bit pattern of this kind have the effect of 
labelling the several parts of memory with their in­
dividual addresses. Accessing a part of memory by 
means of its address may be seen as a process of 
finding a match between the access pattern and the 
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address as it is represented in computer memory -
together with a unification of the two patterns. 
The search process is driven by a metric which 
leads to a full match via successively improving 
partial matches. 

5.7. Logical Deduction 

Logical deduction, as it appears in systems like 
Prolog, is based on Robinson's [31] 'resolution' 
principle. The key to resolution is 'unification' in 
a sense which is different from but related to how 
it has been used here. Unification in the resolution 
sense means giving values to the variables in two 
structures which will make them the same. 

Unification in this sense embraces the simpler 
sense of the word as it has been used in this article. 
A significant part of logical deduction as it ap­
pears in systems like Prolog is the comparison or 
matching of patterns and their effective merging 
or unification to make one. The wide scope of 
unification in the sense of logic is recognised in a 
useful review by [19]. 

As was the case in query-by-example, de-ref­
erencing of identifiers and memory access, systems 
for resolution theorem proving normally look for 
a full match between patterns and reject all partial 
matches. This feature - and the search techniques 
which are normally used to find matching patterns 
- may be seen as a crude but effective application 
of metrics to pattern matching and unification. 

5.7.1. Modus Ponens 

Similar ideas may be seen in more traditional treat­
ments of logic, e.g., [10]. Consider, for example, 
the modus ponens form of logical deduction which 
may be represented in abstract logical notation like 
this: 

l.p::Jq 
2.p 
3. :. q 

Here is an example in ordinary language: 

1. If today is Tuesday then tomorrow will be Wed­
nesday. 
2. Today is Tuesday. 
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3. Therefore, tomorrow will be Wednesday. 

The implication p ::J q (today being Tuesday im­
plies that tomorrow will be Wednesday) may be 
seen as a 'pattern', much like a record in a 
database. 

The proposition p ('today is Tuesday') may be 
seen as an incomplete pattern, rather like the kind 
of database query which was discussed earlier. 
Logical deduction may be seen as a unification of 
the incomplete pattern, p, with the larger pattern, 
p ::J q, with a consequent 'marking' of the conclu­
sion, q ('tomorrow will be Wednesday'). 

Of course, there is a lot more to be said about logic 
than this. Elsewhere [42: chapter 5; 43]. I have dis­
cussed some of the associated issues including no­
tions of 'true' and 'false', 'negation', and the 
'chaining' of logical deductions. 

5.8. Inductive Reasoning and Probabilistic 
Inference 

Logicians and philosophers have traditionally 
made a sharp distinction between deductive rea­
soning where conclusions seem to follow with 
certainty from the premises and inductive reason­
ing where conclusions are uncertain inferences 
from premises and the apparent clockwork cer­
tainty of deduction is missing. 

A popular example of inductive reasoning is the 
way (in low latitudes) we expect the sun to rise in 
the morning because it has always done so in our 
experience in the past. Past experience, together 
with the proposition that it is night time now, are 
the 'premises' which lead us to conclude that the 
sun is very likely to rise within a few hours. Our ex­
pectation is strong but there is always a possibility 
that we may be proved wrong. 

There are countless examples like this where our 
expectations are governed by experience. We ex­
pect buds to 'spring' every spring and leaves to 
'fall' every fall. We expect fire where we see 
smoke. We expect water to freeze at low tempera­
tures. And we expect to be broke after Christmas! 

The way we mentally merge the repeating instances 
of each pattern in our experience may be seen as 
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further evidence of chunking in human cognition 
and, as such, further evidence of how human cog­
nition is geared to the extraction of redundancy 
from information. 

Like query-by-example, de-referencing of identifi­
ers, memory access and logical deduction, induc­
tive reasoning may be seen as the matching and 
unification of a pattern with a larger pattern of 
which it is a part. Our experience of day following 
night is a sequential pattern: (night sunrise). The 
observation that it is night time now is another pat­
tern: (night). The second pattern will unify with 
the first part of the first pattern and, in effect, 
'mark' the remainder of that pattern as an expec­
tation or conclusion. 

As was noted earlier, there is a significant body of 
work on economical description and its connec­
tion with probabilistic inference. The connection 
between these two topics and the topics of pattern 
matching and unification seems, not yet, to be 
properly recognised. 

5.8.1. The Possible Integration of Deductive and 
Inductive Reasoning 

That deductive and inductive reasoning may both 
be seen as the matching and unification of a pat­
tern with a larger pattern which contains it sug­
gests that they are not as distinct as has traditional­
ly been thought. The example of modus ponens 
reasoning given earlier may be seen as inductive 
reasoning: the way Wednesday always follows 
Tuesday is a (frequently repeated) pattern in our 
experience and the observation that today is Tues­
day leads to an inductive expectation that tomor­
row will be Wednesday. 

The possible integration of deductive and induc­
tive reasoning is discussed more fully in [41,43]. 

5.9. Normalisation of Databases 

The process of 'normalisation' which is applied in 
the design of relational databases is essentially a 
process of removing redundancy from the frame­
work of tables and columns in the database [12]. 

If, for example, a database contains tables for 
'buildings' and for 'sites' both containing columns 
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such as 'location', 'value', 'date-acquired', 'date­
of-disposal', then these columns (perhaps with 
others) may be extracted and placed in a table for 
'property'. With suitable provision for linkage be­
tween tables, this information may be 'inherited' 
by the tables for 'buildings' and 'sites' (and other 
sub-classes of property), much in the manner of 
object-oriented design. 

5.10. Parsing 

The process of parsing a string - the kind of anal­
ysis of a computer program which is done by the 
front end of a compiler, or syntactic analysis of a 
natural language text - is a process of relating a 
grammar to the text which is being analysed. To a 
large extent, this means searching for a match be­
tween each of the terminal elements in the gram­
mar and corresponding patterns in the text, and 
the unification of patterns which are the same. It 
also means de-referencing of the identifiers of the 
rules in the grammar which, as was discussed 
above, also means matching, unification and 
search. 

That parsing must be guided by some kind of 
redundancy-related metric is most apparent with 
the ambiguous grammars and relatively sophisti­
cated parsers associated with natural language 
processing (see, for example, [34]. In these cases, 
alternative analyses may be graded according to 
how well the grammar fits the text. But even with 
the supposedly unambiguous grammars and sim­
ple parsing techniques associated with computer 
languages, there is an implicit metric in the distinc­
tion between a 'successful' full parse of the text 
and all failed alternatives - much like the all-or­
nothing way in which identifiers are normally 
recognised in computing. 

6. Con.clusion. 

In this article I have tried to show that information 
compression is a pervasive feature of information 
systems, both natural and artificial. But, even if 
this is accepted, it is still pertinent to ask whether 
the observation is significant or merely an inciden­
tal feature of these systems? 
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6.1. The Significance of Information 
Compression 

Since natural and artificial mechanisms for the 
storage and processing of information are not 
'free', we should expect to find principles of econ­
omy at work to maximise the ratio of benefits to 
costs. It may be argued that information compres­
sion in information systems is nothing more than 
a reasonable response to the need to get the most 
out of these systems. 

Other considerations suggest that information 
compression is much more significant than that: 

We gather information and store it in brains 
and computers because we expect it to be useful 
to us in the future. Natural and artificial infor­
mation processing is founded on the inductive 
reasoning principle that the past is a guide to 
the future. 
But stored information is only useful if new in­
formation can be related to it. To make use of 
stored patterns of information it must be possi­
ble to recognize these patterns in new informa­
tion. Recognition means matching stored pat­
terns with new information and unification of 
patterns which are the same. And this means in­
formation compression in the ways that have 
been discussed. 
The inductive principle that the past is a guide 
to the future may be stated more precisely as 
the expectation that patterns which have oc­
curred relatively frequently in the past will tend 
to recur in the future. But 'relatively frequent 
repetition of patterns' means redundancy! It is 
only possible to see a pattern as having repeated 
relatively frequently in the past by the implicit 
unification of its several instances - and this 
means extraction of redundancy and compres­
sion of information in the ways that have been 
discussed. 

These arguments point to the conclusion that in­
formation compression is not an incidental feature 
of information systems. It is intimately related to 
the principle of inductive reasoning which itself 
provides a foundation or raison d'etre for all kinds 
of system for the storage and processing infor­
mation. 
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6.2. Implications 

Readers with a pragmatic turn of mind may say 
"So what?". What benefits may there be, now or 
in the future, from an interpretation of phenome­
na in information processing which puts informa­
tion compression centre stage? 

6.2.1. A New Theory of Computing and 
Cognition 

Elsewhere, I have discussed how this view may be 
developed into a general theory of computing and 
cognition [41,42,45]. There is potential in the idea 
for a radical simplification, rationalisation and in­
tegration of many concepts in these fields. The 
theory offers new insights and suggests new direc­
tions for research. A simplified view of computing 
can mean benefits for everyone concerned with the 
application of computers or the development of 
computer-based systems. It can also be a substan­
tial benefit in the teaching of computer skills. 

6.2.2. 'New Generation' Computing 

In more concrete terms, the view which has been 
described can mean new and better kinds of com­
puter. Conventional computers do information 
compression but they do not do it well. New and 
improved methods for information compression 
are the central feature of proposals for a 'new 
generation' computer which has been dubbed 'SP' 
[41; 42: chapter 5; 43; 44]. 

The prototype systems which we have developed, 
which are described in the publications just refer­
enced, demonstrate how logical deduction, proba­
bilistic inference, inductive learning, information 
retrieval and other capabilities may be derived 
from information compression. 

Evidence to date suggests that, when it is fully de­
veloped, the SP system will provide many benefits 
and advantages compared with conventional com­
puters in the storage and retrieval of knowledge, in 
software engineering and in artificial intelligence 
[42: chapter 6]. 

6.3. Future Work 

These ideas are being developed on two fronts: 

- Developing the SP system and running it on 
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varied examples provides a forcing ground for 
the theory and its applications. 
In parallel with this work we are studying a 
range of established concepts in computing, 
cognition and related fields like mathematics 
and linguistics to see whether and how they 
may be interpreted in terms of information 
compression. 

This area of research promises to be a very fruitful 
field of investigation. Contributions by other 
researchers will be very welcome. 
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