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Abstract

This paper describes a novel approach to medical diagnosis based on the SP theory of computing and cognition. The main

attractions of this approach are: a format for representing diseases that is simple and intuitive; an ability to cope with errors and

uncertainties in diagnostic information; the simplicity of storing statistical information as frequencies of occurrence of diseases;

a method for evaluating alternative diagnostic hypotheses that yields true probabilities; and a framework that should facilitate

unsupervised learning of medical knowledge and the integration of medical diagnosis with other AI applications.
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1. Introduction This paper describes a novel approach to diagnosis
The problem of providing computational support

for medical diagnosis has been approached from many

directions including logical reasoning, fuzzy logic, set

theory, rough set theory, if–then rules, Bayesian net-

works, classical parametric and non-parametric statis-

tics, artificial neural networks, case-based reasoning,

support vector machines, perceptrons, possibility the-

ory, and more, as well as various aggregations or

combinations of methods [14].
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based on the SP theory of computing and cognition

(described below). The main attractions of this ap-

proach are:

! A format for representing diseases that is simple

and intuitive.

! An ability to cope with errors and uncertainties in

diagnostic information.

! The simplicity of storing statistical information as

frequencies rather than conditional probabilities.

! A method for evaluating alternative diagnostic hy-

potheses that yields true probabilities.

! A framework that should facilitate unsupervised

learning of medical knowledge and the integration

of medical diagnosis with other AI applications.
42 (2006) 608–625



J.G. Wolff / Decision Support Systems 42 (2006) 608–625 609
It must be stressed that the primary purpose of this

paper is conceptual: to describe an approach to med-

ical diagnosis that is significantly different from the

main alternatives and with potential advantages com-

pared with those alternatives. Although a prototype of

the proposed new system exists, it is not yet a shrink-

wrapped software system that is ready for immediate

application. Like any other diagnostic system, the SP

system must be equipped with a body of relevant

knowledge and the creation of such a body of knowl-

edge (by automatic learning or by dknowledge
elicitationT from experts) is a major undertaking in

its own right.

Key elements of the SP theory are first described,

just sufficient for present purposes. Section 3

describes how the theory may be applied to medical

diagnosis, viewed as a process of pattern recognition.

This section also discusses how the SP system relates

to several aspects of the diagnostic process, including

causal reasoning and the process of acquiring the

knowledge that is needed for accurate diagnosis. Sec-

tion 4 compares this new approach to medical diag-

nosis with some of the alternatives. The paper

concludes with an outline of what still needs to be

done in this programme of research and with a review

of the main points that have been made.
2. The SP theory

The SP theory grew out of a long tradition in

psychology that many aspects of brain function may

be understood as information compression (see, for

example, Refs. [2,3,24,7]). It is based on principles of

minimum length encoding1 pioneered by Solomonoff

[21], Wallace and Boulton [23], Rissanen [17] and

others (see also Ref. [13]). An overview of the theory

is presented in Ref. [31] and more detail may be found

in other papers cited there (see also Ref. [28]).

The SP theory has been developed as an abstract

model of any system for processing information, either

natural or artificial. In broad terms, the system receives

dNewT information from its environment and transfers

it to a repository of dOldT information. At the same
1 An umbrella term for dminimum message length encodingT and
dminimum description length encodingT.
time, it tries to compress the information as much as

possible by finding patterns that match each other and

merging or dunifyingT patterns that are the same.2 An

important part of this process is the building of

dmultiple alignmentsT as described below.

The SP framework is Turing-equivalent in the

sense that it can model a universal Turing machine

[25] but it has much more to say about the nature of

dintelligenceT than the Turing model of computing (or

equivalent models such as lamda calculus [9] or the

Post canonical system [16]).

To date, the main areas in which the SP framework

has been applied are probabilistic reasoning, pattern

recognition and information retrieval [26], parsing and

production of natural language [27], modelling con-

cepts in logic and mathematics [29], and unsupervised

learning [32,30].

2.1. Computer models

Two computer models of the SP system have been

developed:

! SP62 is a partial realisation of the theory that does

not transfer any information from New to Old. This

model tries to compress the New information in

terms of the Old information by building multiple

alignments of the kind that will be seen below.

SP62 also contains procedures for calculating the

probabilities of inferences that may be drawn from

alignments. A slightly earlier version of this model

(SP61) is described quite fully in Ref. [27]. Both

versions are relatively robust and mature.

! SP70 realises all the main elements of the theory,

including the transfer of information from New to

Old. In addition to building multiple alignments

like SP62, the model compiles one or more alter-

native dgrammarsT for the information in New,

using principles of minimum length encoding.

This model, and its application to unsupervised

learning, is described quite fully in Refs. [32,30].

More work is required to realise the full potential

of this model.
2 The term dunificationT in the SP theory means a simple merging

of two or more identical patterns to make one. This meaning is

different from but related to the meaning of the term in logic.
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2.2. Representation of knowledge

In the SP system, all kinds of knowledge are stored

as arrays of atomic symbols in one or two dimensions

called patterns. Inwork to date, themain focus has been

on one-dimensional patterns (i.e., sequences of sym-

bols) but it is envisaged that, at some stage, the concepts

will be generalised to patterns in two dimensions.

For present purposes, we may define patterns and

symbols as follows:

! A pattern is a sequence of symbols bounded by

end-of-pattern characters such as d(T and d)T, not
shown in the examples in this paper.

! A symbol is a string of non-space characters

bounded by white space (space characters, line-

feed characters and the like).

! Any symbol can be matched with any other symbol

and, for any one pair of symbols, the two symbols

are either dthe sameT or ddifferentT. No other result

is permitted.

! Symbols have no intrinsic meaning such as daddT
for the symbol d+T in arithmetic or dmultiplyT for
the symbol d�T. Any meaning attaching to an SP

symbol takes the form of one or more other sym-

bols with which it is associated in a given set of

patterns.

! Each pattern has an associated integer value repre-

senting the absolute or relative frequency of occur-

rence of that pattern in some domain.

Despite the extraordinary simplicity of this format

for representing knowledge, the way in which SP

patterns are processed within the system means that

they can model a wide variety of established repre-

sentational schemes, including context-free and con-

text-sensitive grammars, class-inclusion hierarchies,
G G A G C A G G G A G
| | | | | | | | | | |
G G | G G C C C A G G G A G
| | | | | | | | | | | | |

A | G A C T G C C C A G G G | G
| | | | | | | | | |
G G A A | A G G G A G
| | | | | | | | | |
G G C A C A G G G A G

Fig. 1. A dgoodT alignment amo
part–whole hierarchies, discrimination networks and

trees, if–then rules, and others.

2.3. Processing knowledge

A key part of the process of matching patterns is

the building of dmultiple alignmentsT, described and

illustrated here. The process of building multiple

alignments in the SP system provides a unified

model for a variety of computational effects including

fuzzy pattern recognition, best-match information re-

trieval, probabilistic and exact styles of reasoning,

unsupervised learning, planning, problem solving

and others, as described in Ref. [31].

2.3.1. Multiple alignments

This subsection and the ones that follow describe

the main elements of the multiple alignment concept

as it has been developed in the SP theory and explains

how multiple alignments are created and evaluated in

the SP system.

In bioinformatics, a multiple alignment is an arrange-

ment of two or more DNA sequences or sequences of

amino acid residues so that matching symbols are

aligned. Fig. 1 shows a typical example. The general

idea is that, by judicious dstretchingT of sequences, as
many symbols as possible are aligned with each other.

A variety of measures of the dgoodnessT of alignments

are used but they all tend to favour alignments where

the number of aligned symbols is high and the gaps

between them are relatively few and relatively small.

In the SP framework, the concept of multiple

alignment has been modified as follows:

! One or more of the sequences (termed patterns, as

described in Section 2.2) are classified as dNewT
and the rest are dOldT.
G A T G G G G A
| | | | | | | |
G A | G G C G G G A
| | | | | | | |
G | G C T G G A | G A
| | | | | | | |
G A | A G G G G A
| | | | | | |
G C G G G G A

ngst five DNA sequences.



0 e p e r i m a n t a t x p i u n 0
| | | | | | | | | | | |

1 < E3 e x p e r i m e n t a t i o n > 1

Fig. 2. The best alignment formed by SP62 when it is supplied with

one New pattern (de p e r i m a n t a t x p i u nT) and a dictionary of

Old patterns, each one of which represents a correctly-spelled word.

0 j o h n r u n s 0
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! A dgoodT alignment is one where the New patterns

can be encoded economically in terms of the Old

patterns in the alignment, as will be explained.

! Any one pattern may appear more than once in one

alignment, not as two or more copies but as two or

more appearances of a single pattern. This has

implications for the way alignments are formed

and for the representation of recursive structures.

These aspects of the multiple alignment concept

are not relevant to the main proposals here and will

not be considered further in this paper. Readers

who wish to know more may consult the sources

cited earlier.

Normally, the SP62 model is run with relatively

few New patterns and a relatively large ddatabaseT or
ddictionaryT of Old patterns. The system typically

forms a set of alternative alignments, each one of

which represents a possible encoding of the New

pattern or patterns in terms of one or more of the

Old patterns.

Fig. 2 shows a simple example, with one New

pattern (in row 0, representing a badly-spelled version

of the word dexperimentationT) and one Old pattern (in
row 1, representing the correctly-spelled version of

the word).3 This is the best alignment produced by

SP62 with the New pattern as shown and a dictionary

of Old patterns, each one of which represents one

word in its correctly-spelled form.

Fig. 3 is a slightly more complicated example, the

best alignment produced by SP62 when it is supplied

with one New pattern (dj o h n r u n sT) and a set of

Old patterns, each one of which represents a gram-
3 By convention, the New pattern or patterns are always shown in

row 0 of alignments like those shown in Figs. 2 and 3, and the Old

patterns are shown in the other rows, one pattern per row and in an

order that is entirely arbitrary, without special significance. As we

shall see, alignments can sometimes fit better on the page if they are

rotated by 908 and in this case the New pattern or patterns are shown

in column 0 with the Old patterns in the other columns, one pattern

per column.
matical rule. This alignment shows how the sentence

dj o h n r u n sT (in row 0) may be analysed (dparsedT)
into its parts. The Old patterns in rows 1 to 3 represent

grammatical rules: db S b N N b V N NT in row 3

means that a (simple) sentence is composed of a noun

(dNT) followed by a verb (dVT), db N 0 j o h n NT in row
2 means that dj o h nT is a noun, and db V 1 r u n s NT
in row 1 means that dr u n sT is a verb.

2.3.2. Evaluation of alignments

As previously mentioned, a dgoodT multiple align-

ment is one where the New pattern or patterns can be

encoded economically in terms of the Old patterns in

the alignment. How is this evaluation done?

Every symbol has an associated dweightT which is

the number of bits needed to encode that symbol. And

the weight is derived from the frequency of occur-

rence of the symbol using the Shannon–Fano–Elias

method (see Ref. [10]) (a method that is similar to the

well-known Huffman method). The frequency value

for any symbol is derived from the frequency value of

the pattern (or patterns) in which that symbol appears

(as described in Section 2.2). In the context of medical

diagnoses, the frequency associated with any given

pattern is the frequency of occurrence of the disease

that is represented by that pattern (see Section 3.1,

below).

A few of the symbols (normally one or two) near the

beginning of each Old pattern are classified as identi-

fication symbols or dID-symbolsT. For example, the ID-

symbol in the pattern db E3 e x p e r i m e n t a t i o n NT
in Fig. 2 is dE3T, and the ID-symbols in the

pattern db N 0 j o h n NT in Fig. 3 are dNT and d0T.
A dcodeT for any alignment may be derived quite

simply by scanning the alignment from left to right

looking for columns in the alignment that contain one

code symbol, not matched with any other identical
| | | | | | | |
1 | | | | < V 1 r u n s > 1

| | | | | | |
2 < N 0 j o h n > | | | 2

| | | | | |
3 < S < N > < V > > 3

Fig. 3. The best alignment formed by SP62 when it is supplied with

one New pattern (dj o h n r u n sT) and a set of Old patterns, each one
of which represents a grammatical rule.
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symbol. The code for the alignment is the sequence of

symbols that have been found, in the given order. For

example, the code derived in this way from the align-

ment in Fig. 2 is dE3T and the code derived from the

alignment in Fig. 3 is dS 0 1T.
The next step in the evaluation of a given align-

ment is the calculation of a dcompression scoreT or

dcompression differenceT as:

CD ¼ Bn � Be; ð1Þ

where Bn is the total size (in bits) of those symbols

within the New pattern that have been matched to Old

symbols within the alignment, and Be is the total size

(in bits) of the symbols in the code that has been

derived as just explained. Adjustments to this score

are made to take account of gaps in the alignment like

those that may be seen in Fig. 2. The details of these

calculations and adjustments are explained in Ref.

[27].

2.3.3. The building of multiple alignments

In bioinformatics, it is generally understood that

the abstract dspaceT of alternative possible alignments

between two or more sequences is, with few excep-

tions, astronomically large—which means that it can-

not be searched exhaustively. All practical methods

for finding dgoodT alignments amongst two or more

sequences use heuristic methods such as dhill climbing

(or ddescentT), dbeam searchT, dgenetic algorithmsT or
the like that search selectively and exclude large parts

of the search space. With methods like these, one can

find good approximate solutions in a reasonable time

but one can never be sure of finding the best possible

solution (unless the sequences are very short and very

few). Finding good multiple alignments in the SP

system is no different.

At the heart of the SP system for building multiple

alignments is an improved version of ddynamic

programmingT for finding full matches and good par-

tial matches between two patterns (see, for example,

Ref. [18]). Unlike standard versions of dynamic

programming, the procedure used in the SP models:

! Can find good matches between patterns without

restrictions on the lengths of the patterns.

! Can normally find several alternative alignments

between two patterns, not just one.
! It allows the ddepthT or thoroughness of searching
to be varied according to need.

Given one New pattern and a database of Old

patterns, SP62 first builds a set of alignments, each

one of which is between the New pattern and one of

the Old patterns. From this set, it selects the best few

alignments, using the measure described in Section

2.3.2. Each of these alignments can itself be treated as

if it was a single pattern. So, in the next stage, SP62

builds larger alignments, each one of which is be-

tween one of the selected alignments and one of the

Old patterns or between one of the selected align-

ments and another of those alignments. As before,

the program selects the best of the alignments that

have been formed.

The process is repeated in this way until no more

alignments can be found. The process for building

alignments containing two or more New patterns is a

generalisation of what has been described here.

2.3.4. Unsupervised learning

At its most abstract level (Section 2), the SP model

is conceived as a system that learns by transferring

New information to its repository of Old information

and compressing it at the same time. This abstract

conception has now been realised more concretely in

the form of the SP70 computer model [32,30] that is

capable of learning simple grammars from raw data.

However, further development of the model is needed

to realise its full potential.

The current model has two stages:

(1) From partial alignments between patterns, the

model creates new patterns that are added to the

repository of Old patterns as explained below.

(2) Amongst the patterns that are generated in this

way, some are dgoodT in terms of the principles

of minimum length encoding and others are

dbadT. In the second stage of processing, the

model measures the frequency with which

each pattern may be recognised in the raw

data and then it uses this information in a hill-

climbing search amongst subsets of the Old

patterns to find one or more sets of patterns

that are good in terms of the principles of min-

imum length encoding. The remaining patterns

may be discarded.
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It is envisaged that, when the model is more fully

developed, these two stages will be repeated so that the

system can progressively bootstrap a set of patterns that

are good in terms of the principles of minimum length

encoding, and thus represent a distillation of the pat-

terns of redundancy in the original data.

SP70 is currently targeted at the learning of syntax

in natural languages. Given a partial alignment like

this:

0 t h e g i r l r u n s 0
| | | | | | |

1 < %1 t h e b o y r u n s > 1

the program creates patterns like these:

< %2 t h e >
< %3 r u n s >
< %4 0 b o y >
< %4 1 g i r l >
< %5 < %2 > < %4 > < %3 > >

The first four are derived from coherent sequences

of matched symbols and coherent sequences of un-

matched symbols in the alignment and they corre-

spond to what we would normally recognise as

words. Each one has a grammatical category repre-

sented by ID-symbols such as d%2T, d%3T and d%4T.
Notice that db o yT and dg i r lT belong to the same

disjunctive category {db o yT, dg i r lT} because they

are alternatives at the same point in the original

alignment and they both share the ID-symbol d%4T.
The ID-symbols d0T and d1T serve to distinguish the

two alternatives in that category.

The last pattern in this example ties everything

together by listing the sequence of categories in the

original alignment. It is an dabstractT pattern describ-

ing the overall structure of the two original sentences.

For an application like medical diagnosis, the style

of learning just described is probably not entirely

appropriate. Section 3.11.2 describes how similar

principles may be applied to medical data. If the

potential of these ideas can be realised, the SP system

should facilitate the automatic or semi-automatic con-

struction of knowledge bases from raw medical data.

2.3.5. Computational complexity

The time complexity of the SP62 model in a serial

processing environment is approximately O(log2
n�nm), where n is the size of the New pattern or

patterns (in bits) and m is the total size of the patterns

in Old (in bits). In a parallel processing environment,

the time complexity may approach O(log2 n�n),

depending on how well the parallel processing is

applied. The space complexity in serial or parallel

environments is O(m). Further details may be found

in Ref. [27].

In medical diagnosis, it seems reasonable to sup-

pose that there will normally be a fairly small maxi-

mum for the number of signs and symptoms

(abbreviated hereinafter as dsymptomsT) exhibited by

any one patient. Correspondingly, there should be a

maximum size for the size of the set of New patterns

that are used to represent the patient’s symptoms. If

we take this to be a constant value for n, then in a

serial processing environment the time complexity is

approximately O(m) and in a parallel processing en-

vironment it may approach O(1).
3. Application of the SP system to medical

diagnosis

To a large extent, medical diagnosis may be viewed

as a problem of (fuzzy) pattern recognition: finding the

best fit between a given set of symptoms for an indi-

vidual patient and the symptoms associated with one or

more diseases. However, causal reasoning also has a

part to play when, for example, it is understood that a

given disease is caused by a bacterial or virus infection.

This section presents an example showing how the

SP systemmay be applied tomedical diagnosis, viewed

as a process of pattern recognition. The system may

also support causal reasoning about medical problems

and this is discussed briefly in Section 3.9, below.

Other aspects of the proposals are discussed in

other subsections.

3.1. Describing diseases using SP patterns

In the SP scheme, knowledge about diseases may

be stored as patterns in a repository of Old informa-

tion, and the symptoms for an individual patient may

be represented as a set of one or more New patterns.

A pattern in the store of Old information may rep-

resent one disease and its associated symptoms, or a

combination of diseases (see Section 3.7.2, below), or
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it may represent a cluster of symptoms that tend to

occur together in two or more different diseases (see

Section 3.5, below). In addition, Old may include

patterns that play supporting rôles (see Section 3.6,

below).

The frequency value of each pattern may be used to

represent the absolute or relative frequency with

which a given disease or cluster of symptoms is

found in a given population. These figures may be

derived from epidemiological surveys or they may be

estimated by medical experts.

By way of illustration, Fig. 4 shows five examples

of such patterns, one describing the symptoms of

chicken pox, another describing the symptoms of

smallpox, the third describing the cluster of symptoms

which is described as dfeverT and two more describing

the class of dhighT temperatures (38–39 8C and 40+

8C). The number in brackets after each pattern is a

very rough estimate of the relative frequencies of

occurrence of the corresponding disease or condition.4

Each of the first three patterns begins and ends

with a pair of symbols dbdiseaseN. . .b/diseaseNT
which indicate that the pattern describes a disease

or a cluster of disease symptoms. Within each

pattern, there are similar pairs of symbols, each

one marking the beginning and end of a dfieldT
which describes some aspect of the disease or clus-

ter. For example, dbdnameN Chicken_Pox

b/dnameNT provides the name of the chicken pox

disease, dbskinN rash b/skinNT describes one of its

symptoms, dbcausative_agentN chicken_pox_virus

b/causative_agentNT describes what causes the

disease, and dbtreatmentN chicken_pox_treatment

b/treatmentNT is a remarkably unhelpful description

of how to treat the disease which would, of course, be

muchmore detailed in a fully developed knowledge base.

Within the pattern for chicken pox, the field dbR2N
fever b/R2NT indicates that dfeverT is one of the

symptoms of the disease. However, by contrast with

other fields like those just mentioned, the symbol

dfeverT is, in effect, a reference or pointer to a cluster

of symptoms such as rapid breathing, flushed face and

high temperature described in the third pattern in the

same figure. In a similar way, dbR1N flu_symptoms
4 The figure for smallpox is clearly too high in the world today

but it will serve for the purpose of illustration.
b/R1NT in the pattern for smallpox is a reference or

pointer to another pattern, not shown in the figure,

that describes a cluster of symptoms associated with

influenza and flu-like diseases. The way in which

pointers like these are dereferenced in the SP system

will be seen in the next section.

Readers who are familiar with XML [6] will notice

that pairs of symbols like dbdiseaseN . . . b/diseaseNT
or dbdnameN . . . b/dnameNT are rather like the start

and end tags used to mark the elements of an XML

document. However, by contrast with XML and re-

lated languages such as HTML, symbols of that kind

have no formal status in the SP system and the styles

of symbols are not defined within the system. Any

convenient style may be used such as ddisease . . .
#diseaseT or ddisease . . . %diseaseT and in some appli-

cations it is not necessary to provide any distinctive

markers for the beginnings and ends of patterns or

fields. The concept of dfieldT has no formal status in

the SP system either.

3.2. Multiple alignment and medical diagnosis

The process of diagnosis may be modelled by the

building of one or more multiple alignments. Fig. 6

shows the best alignment created by SP62 with a set

of New patterns shown in Fig. 5 that describe dJohn
SmithT and his symptoms and a set of Old patterns

like those shown in Fig. 4 that represent diseases or

aspects of diseases.5

An alignment like this may be interpreted as the

result of a process of recognition. In this case, the

symptoms that have been recognised are those of

influenza, as shown in column 2. The following sub-

sections discuss aspects of the alignment and of this

interpretation.

3.3. A framework pattern

In an application like this, it is convenient but not

essential to include amongst the Old patterns a
alignment in Fig. 6 has been rotated by 908 to allow the alignmen

to fit better on the page. As previously noted, the New patterns are

shown in column 0 and the Old patterns are shown in the other

columns, one pattern per column in an order that is arbitrary and

without special significance.
t



<disease> chicken_pox :
<dname> Chicken_Pox </dname>
<R2>  fever </R2>
<appetite> normal </appetite>
<chest> normal </chest>
<chills> no </chills>
<cough> no </cough>
<diarrhoea> no </diarrhoea>
<fatigue> no </fatigue>
<lymph_nodes> normal </lymph_nodes>
<malaise> yes </malaise>
<muscles> normal </muscles>
<nose> normal </nose>
<skin> rash </skin>
<throat> normal </throat>
<weight_change> no </weight_change>
<causative_agent> chicken_pox_virus </causative_agent>
<treatment> chicken_pox_treatment </treatment>

</disease> (2500)

<disease> smpx :
<dname> Smallpox </dname>
<R1> flu_symptoms </R1>
<appetite> normal </appetite>
<chest> normal </chest>
<diarrhoea> no </diarrhoea>
<fatigue> no </fatigue>
<lymph_nodes> normal </lymph_nodes>
<malaise> no </malaise>
<skin> rash with blisters </skin>
<weight_change> no </weight_change>
<causative_agent> smallpox_virus </causative_agent>
<treatment> smallpox_treatment </treatment>

</disease> (5)

<disease> fever
<breathing> rapid </breathing>
<face> flushed </face>
<temperature> <t1> </t1> </temperature>

</disease> (15000)

<t1> 38-39 </t1> (14705)
<t1> 40+ </t1> (147)

Fig. 4. Five SP patterns, one describing the symptoms of chicken pox, another describing the symptoms of smallpox, the third describing the

symptoms of fever and two more describing the class of dhighT temperatures.
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dframeworkT pattern like the one shown in column

1. This is a generalised pattern for diseases of all

kinds that lists the main categories associated with

diseases such as dbdnameN b/dnameNT (the name
of the disease), dbbreathingN b/breathingNT (the

state of the patient’s breathing) and dbtemperatureN

b/temperatureNT (the patient’s temperature), but it does

not specify specific values for any category.



<patient> John_Smith </patient>
<face> flushed </face>
<appetite> poor </appetite>
<breathing> rapid </breathing>
<muscles> aching </muscles>
<chills> yes </chills>
<fatigue> yes </fatigue>
<lymph_nodes> normal </lymph_nodes>
<malaise> no </malaise>
<nose> runny </nose>
<temperature> 38-39 </temperature>
<throat> sore </throat>

Fig. 5. The set of New patterns supplied to SP62 for the example

discussed in the text. These patterns represent the patient dJohn
SmithT and his symptoms.
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This framework pattern serves as an anchor point

for symbols in other patterns and facilitates the

formation of multiple alignments in accordance

with the rules described in Ref. [31] and earlier

publications.

3.4. The ordering of descriptors

In an application like medical diagnosis, it is not

obvious that there is any intrinsic order to the symp-

toms of a disease or associated descriptors such as the

name of the patient. In describing a patient’s symp-

toms, it should make no difference whether dhigh
temperatureT is mentioned before drunny noseT or the
other way round.

In the SP framework, each pattern that describes a

disease or a cluster of symptoms necessarily imposes

an order in which categories of descriptors are spec-

ified. However, users of the system may specify the

patient’s symptoms in any order that is convenient.

This is because symptoms are described using a set of

New patterns and there is no intrinsic order amongst

the New patterns supplied to the system. In our ex-

ample, New patterns were supplied to the SP62 model

in the order shown in Fig. 5 but in the alignment

shown in Fig. 6 they appear in a completely different

order.

Notice that this freedom in the ordering of descrip-

tors only applies to whole patterns. When two or more

symbols in one pattern are matched to two or more

symbols in another, the order of the symbols in one

pattern must be the same as the order of the matching

symbols in the other pattern.
3.5. Dereferencing of pointers

As already noted, a symbol like dfeverT or

dflu_symptomsT in one pattern may serve as a refer-

ence or pointer to another pattern that describes a

cluster of symptoms that may be found in two or

more different diseases.

In Fig. 6, we can see how such pointers are dde-
referencedT in the SP system. The symbol

dflu_symptomsT in column 2 is matched to the same

symbol in column 3 where flu-like symptoms are

listed. Likewise, the symbol dfeverT in column 3 is

matched to the same symbol in column 4 where the

symptoms of fever or listed. Fever is itself part of the

cluster of flu-like symptoms.

The provision of named clusters like these saves

the need to specify the corresponding symptoms re-

dundantly in each of the diseases where such clusters

appear.

3.6. Uncertainties in diagnosis

Diagnosis is not an exact process:

! Most diseases are dfamily resemblanceT or

dpolytheticT concepts because the majority of

symptoms associated with any given disease

are neither necessary nor sufficient for the diag-

nosis of the disease: they are dcharacteristicT of

the disease in the sense that any one such

symptom need not be present in every case

and any of them may be associated with other

diseases.

! There may be and frequently are errors in the

observation or recording of symptoms.

SP62 can accommodate these kinds of uncertainty

in diagnosis in two distinct ways:

! Because it looks for a global best match amongst

patterns, it does not depend on the presence or

absence of any particular symptom. Notice how

SP62 has succeeded in constructing the alignment

shown in Fig. 6 despite there being no match for

dpoorT in the New pattern dbappetiteN poor

b/appetiteNT and dyesT in the New pattern

dbfatigueN yes b/fatigueNT and no match for many

of the symbols in the Old patterns.



0 1 2 3 4 5

<disease> ---------- <disease> ---------- <disease> ---- <disease>
flu

: ------------------ :
<patient> ------ <patient>
John_Smith
</patient> ----- </patient>

<dname> ------------ <dname>
Influenza

</dname> ----------- </dname>
<R1> --------------- <R1>

flu_symptoms ------- flu_symptoms
</R1> -------------- </R1>
<R2> ------------------------------------ <R2>

fever -------- fever
</R2> ----------------------------------- </R2>

<appetite> ----- <appetite> --------- <appetite>
poor normal
</appetite> ---- </appetite> -------- </appetite>
<breathing> ---- <breathing> -------------------------------------------- <breathing>
rapid ------------------------------------------------------------------- rapid
</breathing> --- </breathing> ------------------------------------------- </breathing>

<chest> ------------ <chest>
normal

</chest> ----------- </chest>
<chills> ------- <chills> -------------------------------- <chills>
yes ------------------------------------------------------ yes
</chills> ------ </chills> ------------------------------- </chills>

<cough> --------------------------------- <cough>
yes

</cough> -------------------------------- </cough>
<diarrhoea> -------- <diarrhoea>

no
</diarrhoea> ------- </diarrhoea>

<face> --------- <face> ------------------------------------------------- <face>
flushed ----------------------------------------------------------------- flushed
</face> -------- </face> ------------------------------------------------ </face>
<fatigue> ------ <fatigue> ---------- <fatigue>
yes no
</fatigue> ----- </fatigue> --------- </fatigue>

<headache> ------------------------------ <headache>
yes

</headache> ----------------------------- </headache>
<lymph_nodes> -- <lymph_nodes> ------ <lymph_nodes>
normal ------------------------------ normal
</lymph_nodes> - </lymph_nodes> ----- </lymph_nodes>
<malaise> ------ <malaise> ---------- <malaise>
no ---------------------------------- no
</malaise> ----- </malaise> --------- </malaise>
<muscles> ------ <muscles> ------------------------------- <muscles>
aching --------------------------------------------------- aching
</muscles> ----- </muscles> ------------------------------ </muscles>
<nose> --------- <nose> ---------------------------------- <nose>
runny ---------------------------------------------------- runny
</nose> -------- </nose> --------------------------------- </nose>

<skin> ------------- <skin>
 normal

</skin> -----------  </skin>
<temperature> -- <temperature> ------------------------------------------ <temperature>

<t1> ----------- <t1>
38-39 ------------------------------------------------------------------------------------ 38-39

</t1> ---------- </t1>
</temperature> - </temperature> ----------------------------------------- </temperature>
<throat> ------- <throat> -------------------------------- <throat>
sore ----------------------------------------------------- sore
</throat> ------ </throat> ------------------------------- </throat>

<weight_change> ---- <weight_change>
no

</weight_change> --- </weight_change>
<causative_agent> -- <causative_agent>

flu_virus
</causative_agent> - </causative_agent>
<treatment> -------- <treatment>

flu_treatment
</treatment> ------- </treatment>
</disease> --------- </disease> --------- </disease> --- </disease>

0 1    2 3 4 5

Fig. 6. The best alignment found by SP62 with the set of patterns from Fig. 5 in New (describing the symptoms of the patient dJohn SmithT) and
a set of patterns in Old describing a range of different diseases and named clusters of symptoms, together with the dframeworkT pattern shown in
column 1.
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6 There are, of course, other factors that may be relevant—such as

the possibility that someone might release the smallpox virus de-

liberately—but in this example, knowledge of such other factors has

been excluded.
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Although the system does not depend on the pres-

ence or absence of any one symptom, particular

symptoms can have a major impact on diagnosis,

as described in Section 3.7.1, below.

! Within the SP framework, it is not necessary for

every symptom of a disease to be recorded as a

specific value. For example, in column 4 of the

alignment in Fig. 6, the pair of symbols dbt1N
b/t1NT represents a set of alternative values for

the temperature associated with fever. In this

case, there are just two values, represented in

Old by the patterns dbt1N 38–39 b/t1NT (high

temperature) and dbt1N 40+ b/t1NT (very high

temperature), as shown at the bottom of Fig. 4.

The first of these patterns is shown in column 5

of the alignment, matched to the temperature of

the patient shown in column 0.

Being able to specify symptoms as sets of alterna-

tive values allows the system to accommodate the

kind of variability which is so prominent in many

diseases.

3.7. Weighing alternative hypotheses and the calcula-

tion of probabilities

In medical diagnosis, it is quite usual for the

physician to consider alternative hypotheses about

what disease or diseases the patient may be suffering

from. The SP framework provides a model for this

process in the way the system builds alternative align-

ments for any given pattern or set of patterns in New.

Alignments—and the corresponding diagnoses—may

be evaluated as follows.

As previously noted (Section 2.3.2), a dcompression

differenceT is calculated for each alignment as shown

in Eq. (1). The value Be that is used in that equation

may be translated into an absolute probability for the

given alignment:

P ¼ 2�Be : ð2Þ

For any one alignment (the jth alignment) in a set

of alternative alignments, a1. . .an, that encode the

same symbols from New, a relative probability may

be calculated as:

pj ¼ Pj=
Xi¼n

i¼1
Pi: ð3Þ
A fuller account of the way probabilities are cal-

culated may be found in Ref. [26].

Given that the New patterns represent the symp-

toms of one patient at a particular time and given that

each pattern in Old describes a single disease or a

single cluster of symptoms that may form part of the

description of one or more diseases, then each align-

ment formed by SP62 represents an hypothesis about

any one disease that the patient may have.

Where alternative alignments encode different sub-

sets of the symbols in New, it is possible that the

patient may be suffering from two or more diseases at

the same time. This possibility is discussed in Section

3.7.2, below. However, where two or more of the best

alignments encode exactly the same symbols from

New, then they represent alternative diagnostic hy-

potheses and they may be compared using values for

relative probability ( p).

When SP62 formed the alignment shown in Fig. 6,

it also formed a similar alignment, matching exactly

the same symbols in New, in which column 2

contained a pattern representing the symptoms of

smallpox, instead of the pattern for influenza. The

relative probability values calculated in this case

were 0.99950 for influenza and 0.00049 for smallpox,

reflecting the prevalence of those two diseases in the

world today.6

3.7.1. Explaining away

The symptoms of influenza and smallpox are quite

similar, except for the very distinctive rash and blisters

that occur in smallpox. The example shown in Fig. 6

is silent about whether John Smith had a rash and

blisters or not. If a rash and blisters had been seen to

be absent, this would have been represented as

dbskinN normal b/skinNT. Given this lack of informa-

tion about the state of the patient’s skin, he may have

either influenza or smallpox but he is very much more

likely to have the former than the latter, as indicated

by the calculated probabilities.

If dbskinN rash_with_blisters b/skinNT is added to

the symptoms recorded in New, and if SP62 is run

again with the augmented set of symptoms, the best
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alignment found by the system is similar to that

shown in Fig. 6 but with the pattern for smallpox

(the second pattern in Fig. 4) instead of the pattern

for influenza in column 2 and with a match shown

between dbskinN rash_with_blisters b/skinNT in the set
of New patterns and the same symbols in the pattern

that describes smallpox. However, in this case there is

no other alignment that matches the same symbols in

New. Consequently, the relative probability of the best

alignment is 1.0. In short, the addition of one distinc-

tive symptom to the list of symptoms has a dramatic

effect on the relative probabilities calculated by the

system. Instead of a vanishingly small probability for

smallpox (0.00049), the system now assigns it a prob-

ability of 1.0, in accordance with our intuitions.

From this result, we may conclude that the patient

certainly has smallpox and that his aching muscles

and runny nose are due to smallpox, not influenza.

This is the phenomenon of dexplaining awayT: bIf A
implies B, C implies B, and B is true, then finding that

C is true makes A less credible. In other words,

finding a second explanation for an item of data

makes the first explanation less credible.Q (([15], p.

7), with the emphasis as in the original).

3.7.2. A patient may suffer from two or more diseases

at the same time

As noted above, it is possible for a patient to suffer

from two or more diseases at the same time. Given

that the Old patterns in the system describe single

diseases, then the system would create two or more

dgoodT alignments, each one corresponding to one of

the diseases that the patient is suffering from.

If we want the system to calculate probabilities for

combinations of diseases, then the repository of Old

patterns must contain patterns that represent combina-

tions of that kind. Each such pattern may be con-

structed economically using references to the

component diseases, in much the same way that clus-

ters of symptoms may be referenced, as described in

Section 3.5.

As with single diseases, frequency values for a

combinations of diseases may be obtained from pop-

ulation surveys or by the judgement of medical

experts. In the absence of any direct evidence of a

statistical association between two or more diseases, it

seems reasonable to assume that they are statistically

independent. In such cases, frequency values may be
derived straightforwardly via normalised values for

the frequencies of occurrence of individual diseases.

Whether the frequency values for combinations of

diseases are measured, estimated or derived, they

can be used for the calculation of CD values and

probabilities in exactly the same way as for single

diseases.

Of course, there are so many possible combinations

of diseases that it would be impossible to store infor-

mation about them all. A more practical option may

be to store information in Old about individual dis-

eases and combinations of diseases that are known to

have a statistical association with each other. One may

assume that all other combinations of diseases are

statistically independent.

3.8. Inferences and the diagnostic cycle

In a multiple alignment like the one shown in Fig.

6, any symbol within an Old pattern that is not

matched to a symbol in New represents an inference

that may be drawn from the alignment. In this exam-

ple, we may infer from the alignment inter alia that

the patient is likely to have a cough and a headache

and that the standard treatment for influenza is re-

quired. Probabilities of these inferences can be calcu-

lated as described in Ref. [26].

If a dgoodT alignment makes a prediction about

some marker that may be found in the patient’s

blood or something that may be observed in an X-

ray, this may be interpreted as a suggestion to the

physician that he or she should order an appropriate

blood test or X-ray. If tests of that kind or other kinds

of investigation are instigated as a result of the infer-

ences drawn from preliminary alignments, the results

of those investigations, together with the original

symptoms, may be fed back into the system as New

information. The system may then be run again and the

alignments that are created may suggest a final diag-

nosis or the need for further investigation—and so on.

3.9. Causal reasoning

Apart from the kinds of inference just described,

medical diagnosis often seems to involve a ddeeperT
kind of reasoning about the causes of symptoms and

diseases, using knowledge of bacteria, viruses, anato-

my, physiology and so on.
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The SP framework supports a variety of styles of

reasoning, including probabilistic ddeductiveT reason-
ing, abductive reasoning, nonmonotonic reasoning

and (as we saw in Section 3.7.1) dexplaining awayT
(see Ref. [26]). So there are reasons to believe that,

within the SP framework, it may be possible to extend

the pattern recognition analysis described above to

incorporate causal styles of reasoning.

Recent investigation has confirmed this expecta-

tion. The input–output relations of each subsystem

within a larger system can be modelled in the SP

framework as a set of patterns, and causal connections

can be established by matching outputs to inputs. As

with the analysis described above, a dframe-workT
pattern is also needed to ensure that alignments can

be formed in an appropriate manner. These potential

applications of the system need further exploration

and development.

3.10. Classes and subclasses of diseases

One of the attractions of the SP system is that

it allows concepts to be represented at multiple levels

of abstraction (e.g., dcatT, dmammalT, dvertebrateT,
danimalT) in the manner of object-oriented design

and, via the building of multiple alignments, it allows

a specific entity (such as bmy cat TibsQ) to be recog-

nised at several different levels of abstraction [31,26].

To some extent, this idea is already illustrated by

the example shown in Fig. 6. The concept of dfeverT,
represented by the pattern in column 4 of the figure,

may be seen as a superclass comprising all the dis-

eases where the patient may be feverish. Likewise, the

pattern for flu symptoms (column 3 in the figure) may

be seen as a superclass of the diseases in which such

symptoms may be seen.

By contrast with the classification of animals and

plants, the hierarchy of diseases tends to be relatively

flat. However, there is scope for the recognition of

classes and subclasses in the variants of diseases

such as influenza and diabetes. With the SP system,

each variant of a given disease may be recorded as a

pattern that specifies the symptoms that are charac-

teristic of the variant. Provided that pattern contains

a symbolic link to another pattern describing the

main symptoms of the disease, there is no need to

repeat those symptoms redundantly in each of the

variants.
3.11. Acquisition of knowledge

Broadly speaking, the knowledge that is required

in any artificial system for medical diagnosis can be

obtained dmanuallyT from experts or written sources,

or it may be obtained by the automatic or semi-

automatic abstraction of knowledge from raw medi-

cal data, or some combination of the two. The SP

system has potential to facilitate any or all of these

processes.

3.11.1. Elicitation of expert knowledge

It should be apparent from the example described

above that the SP system provides a means of repre-

senting medical knowledge in a form that is simple

and intuitive. The simplicity of representing all

knowledge as patterns is, perhaps, less important

than the fact that this system allows computer-

based knowledge to be expressed in a form that

apparently reflects the natural structure of the origi-

nal concepts.

This feature of the system should facilitate tradi-

tional kinds of knowledge elicitation from experts or

written sources. Medical experts should have little

difficulty in expressing their knowledge directly in

the form of SP patterns. Given that such experts are

often busy and their time is, in any case, expensive,

there are advantages if at least some of the process of

building computer-based knowledge bases can be

undertaken by knowledge engineers without

specialised medical training. It should be possible

for such people to derive a good deal of the necessary

knowledge from medical text books and other written

sources.

3.11.2. Automatic or semi-automatic learning

Section 2.3.4 presented an outline description of

how the SP70 model learns the kinds of struc-

tures found in the syntax of natural languages. As

was indicated in that section, that style of learn-

ing is probably not entirely appropriate for med-

ical data but the same general principles should

apply. This subsection describes in outline how

the SP system may be applied to the learning of

medical knowledge.

The simplest kind of dlearningT is simply to keep a

record of the symptoms of each specific patient and

the corresponding diagnosis. This is the principle of
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dcase-based learningT and, in conjunction with a sys-

tem that kind of find good partial matches between the

description of a new patient and stored knowledge of

old patients, it can be quite practical and useful in

making new diagnoses. Since the SP system is capa-

ble of finding good partial matches between patterns,

it could well be used in this way, as suggested in

Section 4.5, below.

However, medical practitioners normally recognise

a degree of abstraction in medical knowledge as de-

scribed in Section 3.10: a concept like dfeverT
describes a cluster of symptoms that is found in two

or more different diseases; diseases like influenza

often come in several variants or subclasses; and

symptoms may be described in terms of ranges rather

than specific values as in our example of temperature

(Section 3.6).

As an illustration of the way in which the SP

system may create these kinds of abstraction, consider

two imaginary patients with two different diseases and

symptoms represented by the patterns dX A B Y C D

E Z FT and dA P Q B C R D S E F TT. With these two

patterns, the SP system would create an alignment like

this:

O X A     B Y C   D   E Z F   0

1   A P Q B   C R D S E   F T 1,

and from the matched symbols in this alignment it

may derive the pattern dA B C D E FT. With the

addition of some appropriate ID-symbols, this pattern

may serve like the pattern for dfeverT in Figs. 4 and 6:

it represents a cluster of symptoms that appears in two

or more different diseases. Alternatively, this pattern

may represent the symptoms of a general class of

diseases with two variants represented by the two

original patterns, modified so that the shared cluster

of symptoms are replaced by a pointer to the general

class.

With regard to categories like the set of two alter-

native temperatures represented by the patterns dbt1N
38–39 b/t1NT and dbt1N 40+ b/t1NT in Fig. 4, the SP

system may derive this kind of disjunctive category in

much the same manner as the disjunctive class {db o

yT, dg i r lT} in the example in Section 2.3.4.
3.12. Integration

The very simple format for representing knowl-

edge described in Section 2.2 is intended to be as

nearly duniversalT as possible in the sense that it is

designed to represent a wide range of different kinds

of knowledge. This should be much more nearly true

when the concept of pattern has been generalised to

two dimensions.

In a similar way, the concept of multiple alignment

described in Section 2.3 is intended to be a duniversalT
model for a wide range of different kinds of proces-

sing: pattern recognition, information retrieval, vari-

ous kinds of reasoning, and so on.

To the extent that these two objectives can be rea-

lised, they should facilitate the seamless integration of

different kinds of application, including medical diag-

nosis. It should, for example, be relatively easy to apply

a natural language interface to an SP system for medical

diagnosis or to integrate the kind of visual pattern

recognition needed in the diagnosis of different kinds

of skin cancer with other kinds of medical expertise.
4. Comparison with alternatives

As mentioned in the introduction, a wide variety of

philosophies and systems have been applied to the

problem of medical diagnosis. In this section, I briefly

review some of the more prominent of these

approaches and compare them with the SP approach,

as described in this paper.

4.1. Rule-based systems

Rule-based systems (like the well-known MYCIN

system [20]) contain if–then rules where the dif T side
of any rule is a collection of one or more conditions

for the rule to fire connected by logical operators such

as dANDT, dORT (which may be inclusive or exclu-

sive) and dNOTT. By contrast, the SP system expresses

all knowledge in the form of patterns.

At first sight, SP patterns lack the expressive power

of if–then rules. But the effect of such rules can be

modelled within the SP system if that is required

[25,29]. And if medical diagnosis is viewed as a pro-

cess of pattern recognition (as in this paper), then SP

patterns and the SP framework are, arguably, a more
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natural and flexible medium for the representation and

processing of knowledge than are if–then rules.
IF chills AND cough AND headache AND aching
     THEN influenza (probability = 0.9)  
To illustrate this last point, we can express the

distinctive features of influenza by a rule such as:
 muscles AND runny nose AND sore throat
Although there may be a probability associated

with the rule (as shown), the rule has an intrinsic

logic which, if strictly applied, means that the rule

will only fire if all the conditions are satisfied. By

contrast, a pattern like the one shown in column 3 of

Fig. 6 may appear in the best alignment when any

reasonably large subset of its symbols have been

matched.

If one attempted to achieve this kind of flexibility

with an if–then rule using combinations of AND, OR

and NOT, the rule would become very complex.

Alternatively, one might split up the rule into a num-

ber of smaller rules, one for each symptom or com-

bination of two or three symptoms—but again the

result would be relatively complex.

4.1.1. Probabilities

In systems like MYCIN and some of its successors,

the dprobabilitiesT that the system calculates are really

measures of confidence without the theoretical under-

pinnings of probability theory. In other systems, b. . .
formal approaches based on probability theory are

precise but can be awkward and non-intuitive to

use.Q ([11], p. 272). By contrast, the SP framework

allows true probabilities to be calculated quite simply

(see Section 3.7 and Ref. [26]) and strictly in accor-

dance with established theory (as described in sources

such as Ref. [10]).

4.2. Neural networks

One of the attractions of artificial neural networks

for the support of medical diagnosis is that they can be

trained with appropriate data, thus by-passing the

need for the manual compilation of knowledge by

medical experts or knowledge engineers. However,

bA major drawback is that dknowledgeT embedded

[in the neural network] is cryptically coded as a

large number of weights and activation values. As a

consequence, the lack of neural network validation

tools is often one of the reasons limiting their use in
practice, especially in the context of medical diagnosis

where physicians cannot trust a system without expla-

nation of its decisions.Q ([5], pp. 141–142).
While there may be scope for extracting rules from

a trained neural network ([5], pp. 141–142), this adds

complexity and uncertainty to the technology and

defeats the other main attraction of a neural network:

as a classifier of specific cases in terms of the learned

knowledge.

As a system for unsupervised learning of knowl-

edge structures from raw data, the SP system is not yet

a rival to existing neural network systems. However,

the system has clear potential for unsupervised learn-

ing and, if that potential can be realised, the system

has the advantage that its knowledge is stored in a

form that can be read and understood by people.

Meanwhile, if it is supplied with knowledge about

diseases derived from experts or text books, it can be

used for diagnostic classification of individual

patients.

4.3. Fuzzy logic and fuzzy set theory

Given the variability of diseases and other uncer-

tainties associated with medical diagnosis (Section

3.6), the field of fuzzy logic (and fuzzy set theory)

has the obvious attraction that it has been designed

with the explicit intention of providing a model for

dfuzzyT concepts and dfuzzyT operations on them (see,

for example, Refs. [12,8]).

In purely theoretical terms, the field of fuzzy logic

may be criticised because it introduces a fairly elab-

orate conceptual framework to accommodate the un-

doubtedly fuzzy nature of many human concepts but

this conceptual framework is poorly integrated with

other ideas about the nature of human cognition. By

contrast, the SP theory grew out of research in psy-

chology and it provides a unified model for several

aspects of human perception and cognition [31].

Considerations of that kind may be discounted as

not relevant to the practicalities of medical diagnosis.
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But in that connection fuzzy logic has the drawback

that it introduces another layer of complexity to the

already difficult process of eliciting knowledge from

medical experts [4]. There seems to be some scope for

ameliorating this problem by the provision of appro-

priate tools [4] but the basic problem remains. By

contrast, the SP system allows concepts to be

expressed in a simple, intuitive manner and, at the

same time, it accommodates much, perhaps all, of the

fuzziness of medical diagnosis.

4.4. Bayesian networks

Two of the main differences between Bayesian

networks (see, for example, Ref. [15]) and the SP

system are:

! Bayesian networks focus on the binary relationship

between any given node in the network and each of

its parent nodes (if any). In this respect, they inherit

some of the thinking behind if–then rules. By

contrast, the SP system is oriented towards the

representation and processing of associations

(expressed as patterns) that may contain arbitrarily

many elements.

! Correspondingly, any given Bayesian network

stores its statistical knowledge in the form of tables

of conditional probabilities, one for each node in

the network. By contrast, the SP system stores its

statistical knowledge in the form of integers, one

for each pattern, representing the absolute or rela-

tive frequency of that pattern in some domain.

These and related differences seem to underlie

some of the apparent drawbacks of Bayesian networks

compared with the SP framework:

! The directional nature of Bayesian networks does

not sit easily with the non-directional nature of

medical syndromes.

! The process of calculating probabilities of infer-

ences in a Bayesian network is substantially more

complicated than the calculation of probabilities

for alignments and inferences in the SP framework.

! The tables of conditional probabilities required for

Bayesian networks are significantly more complex

than simple measures of frequency that are used in

the SP system. Notwithstanding the development of
special methods for eliciting conditional probabili-

ties from experts [22], the process of building up the

necessary tables of conditional probabilities is likely

to be much harder than measuring or estimating an

integer value for each disease, reflecting its absolute

or relative frequency in a given domain.

4.5. Case-based reasoning

A major attraction of case-based reasoning in med-

ical diagnosis (see, for example, Refs. [19,1]) is that,

compared with many of the alternatives, it can con-

siderably simplify the process of acquiring the neces-

sary knowledge. In its simplest form, a case-based

system merely requires a description of one or more

specific examples of each disease and a search algo-

rithm that can find exact matches or good partial

matches between the symptoms of a given patient

and one or more of the stored records.

In some respects, the SP system is like a case-based

system and it could indeed be used like a case-based

system. To use it in this way, each of the Old patterns

should represent a specific case (including its diagnosis)

and the New pattern or patterns should represent the

symptoms of a patient for whom a diagnosis is required.

The capabilities of the system for finding exact matches

and good partial matches between patterns will allow it

to retrieve patterns for previously-diagnosed cases that

are similar to any given current case.

The main advantages of the SP system compared

with the case-based approach to diagnosis are:

! It facilitates the description of diseases in gen-

eralised terms without the need to specify exact

values for every category of symptom. In our

main example, we saw how the temperature of a

patient with a disease like influenza may be

specified as a range of alternative values (Sec-

tion 3.6). Any other category of symptom may be

treated in the same way.

! It allows one to specify clusters of symptoms that are

found in two or more different diseases and it allows

one to describe diseases at two or more levels of

abstraction (Section 3.10). Both of these things

facilitate the description of diseases without the

need to repeat information unnecessarily where

similar patterns are found in different diseases or

varieties of disease.
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5. Conclusion

As we have seen, the SP system accommodates the

main elements of medical diagnosis, viewed as a

problem of pattern recognition, and there are reasons

to believe that it may also provide support for causal

reasoning in medical diagnosis. However, the SP62

model is only a prototype that serves for research and

demonstration. It is not yet a system with dindustrial
strengthT. The main developments that are needed to

reach that goal are:

! The provision of a well-designed graphical user

interface.

! There is probably scope for improvements in the

search methods that are used within the system.

! There is scope for the application of parallel pro-

cessing both to improve the scaling properties of

the system (Section 2.3.5) and to increase absolute

speeds of processing.

! Naturally, the system needs to be provided with

appropriate knowledge. For each area of applica-

tion, a set of patterns needs to be developed that

describes the diseases and symptom clusters in that

domain.

! At some stage after the development of a realistic

knowledge base, the performance of the system

must be validated against the judgement of

human medical experts.

The potential payoff from these developments is a

system that allows knowledge about diseases to be

expressed in a simple, intuitive manner, that can cope

with errors and uncertainties in knowledge about dis-

eases and knowledge about individual patients, that

simplifies the acquisition and storage of statistical

information, that calculates true probabilities of diag-

noses, that smooths the path to the automatic or semi-

automatic abstraction of medical knowledge in the

future, and should facilitate the integration of medical

diagnosis with other kinds of application.
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[13] M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity

and Its Applications, Springer-Verlag, New York, 1997.

[14] P. Mangiameli, D. West, R. Rampal, Model selection for

medical diagnosis, Decision Support Systems 36 (3) (2004)

247–259.

[15] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Re-

vised Second Printing Edition, Morgan Kaufmann, San Fran-

cisco, 1997.

[16] E.L. Post, Formal reductions of the general combinatorial

decision problem, American Journal of Mathematics 65

(1943) 197–268.

[17] J. Rissanen, Modelling by the shortest data description, Auto-

matica-J IFAC 14 (1978) 465–471.

[18] D. Sankoff, J.B. Kruskall, Time Warps, String Edits, and

Macromolecules: the Theory and Practice of Sequence Com-

parisons, Addison-Wesley, Reading, MA, 1983.

[19] R. Schmidt, L. Gierl, Case-based reasoning for antibiotics

therapy advice: an investigation of retrieval algorithms and

http:www.w3.org/TR/REC-xml
http:www.w3.org/TR/REC-xml


J.G. Wolff / Decision Support Systems 42 (2006) 608–625 625
prototypes, Artificial Intelligence in Medicine 23 (2001)

171–185.

[20] E.H. Shortliffe, Computer-Based Medical Consultations:

MYCIN, Elsevier/North Holland, New York, 1976.

[21] R.J. Solomonoff, A Formal theory of inductive inference: Parts

I and II. Information and Control 7 1964; 1–22 and 224–254.

[22] L.C. van der Gaag, S. Renooij, C. Witteman, B. Aleman, B.

Taal, Probabilities for a probabilistic network: a case study in

oesophageal cancer, Artificial Intelligence in Medicine 25

(2002) 123–148.

[23] C.S. Wallace, D.M. Boulton, An information measure for

classification, Computer Journal 11 (2) (1968) 185–195.

[24] J.G. Wolff, Learning syntax and meanings through optimi-

zation and distributional analysis, in: Y. Levy, I.M. Schle-

singer, M.D.S. Braine (Eds.), Categories and Processes in

Language Acquisition, Lawrence Erlbaum, Hillsdale, NJ,

1988, pp. 179–215 (Copy: www.cognitionresearch.org.uk/

lang_learn.html#wolff_1988).

[25] J.G. Wolff, dComputingT as information compression by mul-

tiple alignment, unification and search, Journal of Universal

Computer Science 5 (11) (1999) 777–815 (Copy: http://

arxiv.org/abs/cs.AI/0307013).

[26] J.G. Wolff, Probabilistic reasoning as information compression

by multiple alignment, unification and search: an introduction

and overview, Journal of Universal Computer Science 5 (7)

(1999) 418–462 (Copy: http://arxiv.org/abs/cs.AI/0307010).

[27] J.G. Wolff, Syntax, parsing and production of natural language

in a framework of information compression by multiple align-

ment, unification and search, Journal of Universal Computer

Science 6 (8) (2000) 781–829 (Copy: http://arxiv.org/abs/

cs.AI/0307014).

[28] J.G. Wolff, Information compression by multiple alignment,

unification and search as a framework for human-like reason-

ing, Logic Journal of the IGPL 9 (1) (2001) 205–222 (first

published in the Proceedings of the International Conference

on Formal and Applied Practical Reasoning (FAPR 2000),

September 2000. Copy: www.cognitionresearch.org.uk/

papers/pr/pr.htm).

[29] J.G. Wolff, Mathematics and logic as information compression

by multiple alignment, unification and search, Technical Re-
port, CognitionResearch.org.uk 2002; Copy: http://arxiv.org/

absMathML:/math.GM/0308153.

[30] J.G. Wolff, Unsupervised learning in a framework of informa-

tion compression by multiple alignment, unification and

search, Technical Report, CognitionResearch.org.uk 2002;

Copy: http://arxiv.org/abs/cs.AI/0302015.

[31] J.G. Wolff, Information compression by multiple alignment,

unification and search as a unifying principle in computing

and cognition, Artificial Intelligence Review 19 (3) (2003)

193–230 (Copy: http://arxiv.org/abs/cs.AI/0307025).

[32] J.G. Wolff, Unsupervised grammar induction in a framework

of information compression by multiple alignment, unification

and search, in: C. de la Higuera, P. Adriaans, M. van Zaanen,

J. Oncina (Eds.), Proceedings of the Workshop and Tutorial on

Learning Context-Free Grammars, 2003, pp. 113–124 (This

workshop was held in association with the 14th European

Conference on Machine Learning and the 7th European Con-

ference on Principles and Practice of Knowledge Discovery in

Databases (ECML/PKDD 2003), September 2003, Cavtat-

Dubrovnik, Croata. Copy: http://arxiv.org/abs/cs.AI/0311045).
Gerry Wolff is Director of CognitionRe-

search.org.uk. Previously, he has held aca-

demic posts in the School of Informatics,

University of Wales, Bangor, and the De-

partment of Psychology, University of Dun-

dee, a Research Fellowship with IBM in

Winchester, UK, and he has worked for 4

years as a Software Engineer with Praxis

Systems in Bath, UK. His first degree is in

Natural Sciences (Psychology) from Cam-

bridge University and his PhD is in Cogni-
tive Science from the University of Wales. He is a Chartered

Engineer and a Member of the British Computer Society (Chartered

IT Professional). Since 1987 his research has focussed on the

development of the SP theory. Previously his main research interests

were in developing computer models of language learning. He has

numerous publications in a wide range of journals, collected papers

and conference proceedings.

http://www.cognitionresearch.org.uk/lang_learn.html#wolff_1988
http://arxiv.org/abs/cs.AI/0307013
http://arxiv.org/abs/cs.AI/0307010
http://arxiv.org/abs/cs.AI/0307014
http://www.cognitionresearch.org.uk/papers/pr/pr.htm
http://arxiv.org/absMathML:/math.GM/0308153
http://arxiv.org/abs/cs.AI/0302015
http://arxiv.org/abs/cs.AI/0307025
http://arxiv.org/abs/cs.AI/0311045
http://arxiv.org/abs/cs.AI/0307010
http://arxiv.org/abs/cs.AI/0302015
http://arxiv.org/abs/cs.AI/0307025
http://arxiv.org/abs/cs.AI/0311045

	Medical diagnosis as pattern recognition in a framework of information compression by multiple alignment, unification and search
	Introduction
	The SP theory
	Computer models
	Representation of knowledge
	Processing knowledge
	Multiple alignments
	Evaluation of alignments
	The building of multiple alignments
	Unsupervised learning
	Computational complexity


	Application of the SP system to medical diagnosis
	Describing diseases using SP patterns
	Multiple alignment and medical diagnosis
	A framework pattern
	The ordering of descriptors
	Dereferencing of pointers
	Uncertainties in diagnosis
	Weighing alternative hypotheses and the calculation of probabilities
	Explaining away
	A patient may suffer from two or more diseases at the same time

	Inferences and the diagnostic cycle
	Causal reasoning
	Classes and subclasses of diseases
	Acquisition of knowledge
	Elicitation of expert knowledge
	Automatic or semi-automatic learning

	Integration

	Comparison with alternatives
	Rule-based systems
	Probabilities

	Neural networks
	Fuzzy logic and fuzzy set theory
	Bayesian networks
	Case-based reasoning

	Conclusion
	References


